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The generation of red blood cells (RBCs) from stem cells provides a solution for deficiencies in blood transfusion. Currently, 
primary hematopoietic stem cells, embryonic stem cells and induced pluripotent stem cells have shown the potential to produce 
fully mature RBCs. Here, we discuss the advantages, induction protocols, progress and possible clinical applications of stem 
cells in RBC production. 
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The shortage of blood for transfusions is a common prob-
lem in developing countries. Since 2010, numerous media 
outlets have reported deficiencies with regards to blood 
storage options in China, especially for rare blood type an-
tigens. For the moment, blood donations are the only source 
for transfusions. Considering the insufficient numbers of 
blood donors, and possible contamination with undetectable 
pathogens, it is urgent that alternative blood sources for 
transfusions are found. Stem cells are a possible alternative 
source to generate red blood cells (RBCs). 

Stem cells are undifferentiated cells that can differentiate 
into specialized cells and divide to produce more cells. All 
categorized stem cells, including hematopoietic stem cells 
(HSCs, a type of adult stem cell), embryonic stem cells 
(ESCs) and induced pluripotent stem cells (iPSCs), have the 
ability to differentiate into fully mature RBCs. However, the 
clinical application of stem cells for producing RBCs that 
can be used in transfusions requires further development. In 

this review, we discuss the milestones and common proto-
cols for inducing various stem cells in RBCs, the ad-
vantages and disadvantages of these cell resources, and the 
potential clinical application of these cells. 

1  HSC-derived RBCs 

The first identified stem cells were HSCs; they possess the 
potential to differentiate into every blood cell type, includ-
ing RBCs. The transplantation of HSCs is now routinely 
used in the treatment of diverse malignant and non-malig- 
nant diseases to replace or rebuild a patient’s hematopoietic 
system [1]. HSCs can be isolated from bone marrow, pe-
ripheral blood or cord blood. Using CD34 as a marker of 
human HSCs, there are around 1%–5% HSCs in bone mar-
row nucleated cells, 1% in cord blood cells, and less than 
0.1% HSCs in normal peripheral blood cells.  

Typically, the development of HSCs into RBCs involves 
different stages including common myeloid progenitors 
(CMPs), megakaryocyte-erythroid progenitors (MEPs), 
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burst forming unit-erythroid (BFU-E), colony forming 
unit-erythroid (CFU-E), proerythroblasts (ProE), erythro-
blasts/basophilic normoblasts (BasoE), polychromatophilic 
normoblasts (PolyE), orthochromatic normoblasts (OrthoE),  
reticulocytes (Retic), and mature RBCs (Figure 1). The 
maturation of RBCs usually takes place in the bone marrow 
as this microenvironment provides a niche for HSCs. The in 
vitro production of mature RBCs could be fulfilled by sim-
ulating the HSC niche in vivo. Using optimized media, 
combinations of cytokines, and stromal cells, researchers 
have successfully expanded and induced erythrocytes from 
HSCs. Neildez-Nquyen et al. reported that sequential appli-
cation of specific growth factor combinations in serum-free 
culture medium resulted in erythroid precursors that could 
fully mature when transplanted into immunodeficient mice 
[2]. These immature blood cells could be used for the 
treatment of chronic anemia and in gene therapy; however, 
they are not fully functional immediately after transfusion. 
Giarratana et al. [3] demonstrated the application of cyto-
kines and co-culture on stromal cells for large-scale ex vivo 
production of mature human RBCs from HSCs of diverse 
origins. Enucleated RBCs meet the demand of functional 
blood cells during acute hemorrhaging; however, the de-
pendency on stromal cells hampers the application of this 
method. Miharadac et al. [4] attempted to develop an in 
vitro stromal cell-independent model for producing RBCs. 
Despite this progress, the generation of large-scale, fully 
mature, and clinically applicable RBCs remains an obstacle 
to researchers. 

The in vitro induction and expansion of RBCs from 
HSCs can be divided into three steps: erythroid lineage de-
termination, expansion of erythroid progenitors, and RBC 
maturation [5]. In some instances an extra step for HSC 
amplification is necessary beforehand. Cytokines and sup-
plements applied to promote erythroid progenitor prolifera-
tion include lipids, SCF, IL-3, EPO, and/or a glucocorticoid 
receptor (GR) agonist. Reports trying to improve the expan-
sion and differentiation of erythroid progenitors showed that 
chromatin-modifying agents (such as valproic acid), hypox-
ia, agents that stabilize the transcription factor HIF-1α, and 
steroid hormones have a role during these processes [610]. 

For the maturation of erythrocytes, EPO and IGF-I are re-
quired. However, regulators for erythrocyte enucleation 
remain to be identified. It was suggested that no cytokines 
other than stromal cells or matrix are necessary for enuclea-
tion [11] (Figure 1). The establishment of massive in vitro 
expansion methods for human RBCs is a prerequisite for the 
clinical application of these cells; therefore, greater effort 
should be applied to achieve higher proliferation capacities 
and greater specificity of fully mature RBCs. 

Although RBCs generated ex vivo are not in as much 
demand for transfusion, appropriate animal models and 
proof-of-principle human transfusion studies have con-
firmed their function in vivo. Immunodeficient mice were 
first used to evaluate the in vivo function of cultured RBCs. 
Hu and coworkers further suggested that by depleting mac-
rophages, human RBCs could develop and function better in 
immunodeficient mice [12]. Primates are also excellent 
animal models based on their close relationship to humans. 
In 2011, Giarratana and colleagues produced the first trans-
plantable RBCs ex vivo [13]. In their study, 1010 RBCs were 
generated from peripheral CD34+ HSCs and transplanted 
into a health volunteer. These RBCs survived more than 26 
d in the circulatory system, verifying their quality and func-
tion in vivo. 

Increasing knowledge of hematopoiesis and erythropoie-
sis makes the generation of RBCs from HSCs an accessible 
goal. However, the limited proliferation ability of HSCs 
restricts the usage of these cells. The high cost of cell cul-
ture is another obstacle that needs to be overcome before 
these cells can be applied in a clinical setting. 

2  Pluripotent stem cell-derived HSCs and 
RBCs 

Currently, HSCs used during clinical transplantation are 
usually derived from cord blood, adult bone marrow or pe-
ripheral blood. Given the shortage of donors and limited 
supply of HSCs, human ESCs have become an alternative 
source of HSCs and mature blood cells for therapeutic pur-
poses. ESCs have the capacity for nearly unlimited prolifer-

 

 

Figure 1  Differentiation of pluripotent stem cells into RBCs. Meso, mesoderm; HA, hemangioblast; CMP, common myeloid progenitor; MEP, megakar-
yocyte-erythroid progenitor; BFU-E, burst forming unit-erythroid; CFU-E, colony forming unit-erythroid; ProE, proerythroblast; BasoE, basophilic erythro-
blast; PolyE, polychromatophilic erythroblast; OrthoE, orthochromatic erythroblast; Retic, reticulocyte. 
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ation and can differentiate into cells/tissues of all three germ 
layers. In recent years, induced pluripotent stem cells (iP-
SCs) with the characteristics of ESCs have been obtained 
using adult somatic cell reprogramming, which involves the 
overexpression of key transcription factors [14], or culturing 
with combinations of exogenous small molecules [15]. The 
development of iPSC technology has revolutionized the 
possibilities of personalized cell therapy. These iPSCs could 
serve as an embryo-free source of patient-specific stem cells 
with reduced human leucocyte antigen (HLA) mismatching. 
Taylor suggested that a tissue bank from 150 selected ho-
mozygous HLA-typed volunteers could match 93% of the 
UK population with a minimal requirement for immuno-
suppression [16]. For RBC transfusion, nucleated cells are 
routinely removed from RBC concentrates, while RBCs 
minimally express HLA molecules. Therefore, pluripotent 
stem cells such as ESCs and iPSCs are able to create RBCs 
with universal O and rhesus (RhD)-negative blood types. 
The use of iPSC technology could also be applied to modify 
the mutated genes from patients with inherited RBC disor-
ders, such as sickle cell anemia [17] and α-thalassemia [18]. 
Several groups have generated gene-corrected β-thalassemia 
iPSCs from patients; these could be induced to differentiate 
into hematopoietic progenitor cells and then into erythro-
blasts expressing normal β-globin [1921]. 

It has been reported that pluripotent stem cells can be 
induced to differentiate into hematopoietic cells using three 
different culture methods: embryoid body formation; stro-
mal cell-based co-culturing; and monolayer culturing 
[2224]. These different induction strategies often engage 
several sets of cytokines to provide a simulated microenvi-
ronment for hematopoiesis. Pluripotent stem cells undergo 
several stages when differentiating into hematopoietic cells 
(Figure 1). Bone morphogenetic protein-4 (BMP-4) and 
basic fibroblast growth factor (bFGF) were employed to 
induce the differentiation of mesoderm progenitors [25]. 
Vascular endothelial growth factor (VEGF ) and bFGF were 
used to promote hemangioblast specification [26]. Hemato-
poietic cytokines, such as stem cell factor (SCF), Fms-like 
tyrosine kinase 3 (Flt-3), interleukin-3 (IL-3), IL-6, throm-
bopoietin (TPO) and erythropoietin (EPO), were used to 
promote the formation of hematopoietic cells. Until now, 
the generation efficiency of CD34+ hematopoietic cells from 
pluripotent stem cells has required improvement. A greater 
understanding of hematopoiesis mechanisms might help us 
develop more efficient induction strategies for hematopoi-
etic cells. McKinney-Freeman et al applied a network biol-
ogy-based analysis to reconstruct the gene regulatory net-
works during sequential stages of HSC development [27]. 
They found that HSCs from in vitro differentiated embry-
onic stem cells closely resembled definitive HSCs; however, 
they lacked a Notch signaling signature. Their results sug-
gested that an exogenous Notch ligand could be added to 
the induction system and facilitate hematopoietic commit-
ment [27]. Delaney reported that the Notch ligand can pro-

mote the expansion of cord blood HSCs [28]. Although in 
vitro culture methods for the differentiation of pluripotent 
stem cells into hematopoietic cells have been improved, 
optimization is required to obtain HSCs that are more suita-
ble for transplantation. To efficiently generate engrafted 
hematopoietic cells, forced expression of certain transcrip-
tion factors such as HOXB4 and RUNX1a is an alternative 
approach [29,30]. Recently, Daley’s lab reported a strategy 
to re-specify CD34+CD45+ myeloid precursors from plu-
ripotent stem cells into multi-lineage progenitors that can be 
expanded in vitro and engrafted in vivo using five transcrip-
tion factors [31]. These engrafted human erythroblasts from 
pluripotent stem cells underwent hemoglobin switching in 
vivo. 

Pluripotent stem cells have been shown to differentiate 
into an erythroid population [32]. These erythroid cells be-
gan to express β-globin and approximately 40% of the 
RBCs became enucleated [33]. These differentiated 
erythroid cells showed similar functions as RBCs derived 
from cord blood. However, scalable expansion and genera-
tion of mature erythrocytes from pluripotent stem cells re-
mains a problem. Recently, Hirose reported that immortali-
zation of erythroblasts by overexpression of c-MYC and 
BCL-XL enabled large-scale erythrocyte production from 
human pluripotent stem cells [34]. Another group demon-
strated the generation of large-scale human ESCs into func-
tional erythrocytes using a sequential four-step procedure 
[35]. They reported that 1011–1012

  nucleated erythroid cells 
can be produced from approximately 107 human ESCs; their 
differentiated RBCs had comparable functions with normal 
adult RBCs. However, full maturation and efficient enucle-
ation of erythroid cells from pluripotent stem cells are yet to 
be accomplished. A deeper understanding of the process of 
erythrocyte maturation would be helpful in directing the ex 
vivo generation of functionally mature RBCs from stem 
cells.  

3  Future perspectives 

Progress has been made over the last 10 years in the genera-
tion of a large number of RBCs from stem cells ex vivo. 
However, there are several issues that remain to be resolved. 
Over the next 5–10 years, much work needs to be conducted 
surrounding the efficient differentiation of erythroid cells 
from stem cells, the switch to adult β-globin, and enuclea-
tion of erythrocytes. Given the limited number of HSCs 
derived from cord blood or adult sources, large-scale man-
ufacturing of RBCs from pluripotent stem cells will be re-
quired. However, there remain challenges in the production 
of a large number of RBCs that can be used clinically. Ap-
propriate bioreactor design and culture will be required to 
realize RBC manufacturing for clinical applications; the 
cost of RBC products is another consideration. Biosafety is 
particularly important for the application of RBCs generated 
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ex vivo, with good manufacturing practices needed to pro-
duce stem cell-derived RBCs. This should encompass the 
choice of stem cells, source of reagents, the use of defined 
component-free animal culture environments, quality con-
trol, and quality assurance procedures. Novel RBC products 
from stem cells are highly suitable as an alternative to blood 
transfusion. If the barrier of obtaining enough RBCs from 
stem cells is resolved, these cells might become the first 
stem cell-derived products to be reliably used in a clinical 
setting. 
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