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Emerging studies support that RNA-binding proteins (RBPs) play critical roles in human biology and pathogenesis. RBPs are 
essential players in RNA processing and metabolism, including pre-mRNA splicing, polyadenylation, transport, surveillance, 
mRNA localization, mRNA stability control, translational control and editing of various types of RNAs. Aberrant expression 
of and mutations in RBP genes affect various steps of RNA processing, altering target gene function. RBPs have been associ-
ated with various diseases, including neurological diseases. Here, we mainly focus on selected RNA-binding proteins including 
Nova-1/Nova-2, HuR/HuB/HuC/HuD, TDP-43, Fus, Rbfox1/Rbfox2, QKI and FMRP, discussing their function and roles in 
human diseases. 
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RNA-binding proteins (RBPs) play key roles in post-  
transcriptional processing of RNAs, which can occur at 
every aspect of the life of mRNAs, from pre-mRNA splic-
ing to mRNA localization, turnover, polyadenylation, trans-
lational control, nuclear export, and editing [1,2]. Post- 
transcriptional regulation adds substantial complexity to the 
control of gene expression and allows the cell to fine-tune 
its protein composition in order to respond to developmental 
or other stimuli, so it plays important roles in diverse cellu-
lar processes [3]. RBPs interact with specific cis-regulatory 
mRNA elements to form ribonucleoprotein (RNP) com-
plexes, thereby regulating expression/function of their target 
RNAs [4]. There are more than 800 RBPs encoded by the 
human genome with approximately 40 different types of 
domain motifs, including RNA recognition motifs (RRM), 

K-homology (KH) domains, RGG (Arginine-Glycine-  
Glycine) boxes, double-stranded RNA binding motifs 
(dsRBM), DEAD/DEAH boxes and Piwi/Argonaute/Zwille 
(PAZ) domains [5]. Although many RNA binding proteins 
are expressed ubiquitously in a wide range of tissues/cell 
types, numerous examples have been reported in which 
specific RBPs are expressed in cell- or tissue-specific man-
ners. On the other hand, many macromolecular complexes 
contain more than one RNA-binding protein, and the spe-
cific combinations of different RBPs may be cell- or tissue 
type-specific. Such cell/tissue-specific RBP expression pat-
terns increase genetic diversity and also contribute to the 
cell/tissue-unique manifestations when a specific RBP is 
mutated or defective [6]. Many RBPs have multiple target 
genes and modulate expression/function of an array of tar-
get RNAs. Consequently, disrupting the function of a single 
RBP often affects post-transcriptional regulation of many 
RNA transcripts, a phenomenon increasingly recognized in 
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human diseases associated with RBPs. Although the precise 
mechanisms by which RBPs achieve cell-type specific 
post-transcriptional control of their target genes are poorly 
understood, genetic studies have identified a large number 
of mutations in RBP genes in a wide range of human dis-
eases, suggesting the critical importance of RBPs in human 
biology and pathogenesis [7]. 

1  RBPs in post-transcriptional gene regulation  

The life of an mRNA begins in the nucleus, when a gene is 
transcribed by RNA polymerase II to produce its 
pre-mRNA transcript(s) [8]. In many cases, the 5′-end cap-
ping and 3′-end polyadenylation of the pre-mRNA occur 
co-transcriptionally. While the RNA is being transcribed by 
the RNA polymerase complex, the intervening sequences 
(introns) are removed from the pre-mRNA transcript, a 
process known as “pre-mRNA splicing”, by the mul-
ti-component splicing machinery called the spliceosome. 
Pre-mRNA splicing is under complex regulation by splicing 
enhancers or splicing silencers that interact with exonic or 
intronic cis-acting elements. Best known examples of splic-
ing regulators include the serine-arginine rich protein family 
(SR proteins) and heterogeneous ribonucleoproteins (hn- 
RNPs) [9]. The coordinated 5′-capping, pre-mRNA splicing 
and 3′-polyadenylation processes act to produce a mature 
mRNA ready for transport to the cytoplasm for translation. 
Once in the cytoplasm, the mRNA is associated with the 
protein synthesis machinery, which may be localized in the 
endoplasmic reticulum (ER) [10] or at sites far away from 
the nucleus. For example, in neurons, mRNAs may be 
transported to axons and dendrites for local protein synthe-
sis [11]. During mRNA transport, translation is repressed 
and the mRNA is protected from degradation [12]. The 
mRNAs are not distributed homogenously throughout the 
cytoplasm. Imaging studies have revealed two types of cy-
toplasmic RNA granules, processing (P)-bodies and stress 
granules, the RNA-protein complexes in which mRNAs 
could accumulate. P-bodies contain components for RNA 
decay, whereas stress granules frequently contain transla-
tion initiation factors [1315]. As shown in Figure 1, there 
is significant overlap between the components of P-bodies 
and stress granules. Under conditions of cellular stresses, 
the mRNAs can be sequestered into RNA granules, an 
RBP-dependent process that is often reversible [16]. 
Throughout its life, the mRNA is associated with a host of 
RBPs, many of which act in more than one aspect of 
post-transcriptional gene regulation. Such intimate associa-
tion between mRNAs and RBPs contributes to the complex 
temporal and spatial regulation of eukaryotic gene expres-
sion. The detailed coverage of specific functional activities 
of each RBP is not the goal of this review. Here, we will use 
a few examples of neuronally expressed RBPs to illustrate 
the importance of RBPs in human diseases.  

 

Figure 1  Known components of P bodies and stress granules. A diagram 
showing the distinct and shared RBPs detected in P bodies and stress gran-
ules. For details about these proteins, the readers are referred to several 
expert reviews [1315]. 

2  Post-transcriptional regulation in the nervous 
system 

Increasing evidence supports that post-transcriptional regu-
lation plays an important role in the nervous system [17]. 
First, a number of RBPs, including the well-known Rbfox3, 
HuB/HuC/HuD and Nova, are specifically expressed or 
enriched in neurons [18]. Second, alternative splicing seems 
to be particularly active in the nervous system, as compared 
with other tissues [19]. Alternative splicing regulates ex-
pression and function of almost each category of genes crit-
ical for neuronal function, ranging from nerve growth fac-
tors, membrane proteins such as receptors to intracellular 
signaling molecules, thereby influencing neurophysiology 
[2024]. Third, local protein synthesis guided by mRNAs 
localized in axons is required for neuron function, including 
learning and memory [2527]. Consequently, the dysfunc-
tion of or defects in RNA-binding proteins lead to defective 
post-transcriptional gene regulation, resulting in neurologi-
cal diseases [7].  

3  Distinct families of RBPs and their involve-
ment in neurological diseases 

Genetic studies have revealed mutations in or dysregulation 
of RBPs in a wide range of human diseases. Here we focus 
on those in the nervous system. These RBPs share certain 
structural features, as shown in Figure 2. Two types of ge-
netic mutations are best characterized, mutations affecting 
the protein coding regions of RBP genes and mutations in 
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the regulatory regions of RBP genes [28]. In addition, mul-
tiple RBPs are found in aggregates in neurodegenerative 
disorders, although it remains to be determined whether 
such aggregate formation is a direct cause of disease or a 
secondary event. In this review, we will describe several 
examples to illustrate the roles of RBPs in neurological dis-
eases and discuss underlying pathogenetic mechanisms 
(Table 1). The readers are directed to a number of excellent 
reviews on the roles of RNA binding proteins in human 
diseases in general [2832]. 

 

 

Figure 2  A diagrammatic illustration of domain structures present in the 
selected RBPs described in this article. KH, K-homology domain; RRM, 
RNA recognition motif; NLS, nuclear localization sequence; QUA, quak-
ing domain; RGG, Arg-Gly-Gly motifs. The drawing is not to the scale. 

3.1  The Nova family  

The proteins of the Nova (neuro-oncological ventral antigen) 
family, including Nova-1 and Nova-2, are neuron-specific 
RNA-binding proteins. Nova-1 is expressed primarily in the 
hindbrain and ventral spinal cord, whereas the expression of 
Nova-2 is restricted to the neocortex [33,34]. Nova-1 pro-
tein was first identified as a target antigen in an autoimmune 
syndrome known as paraneoplastic opsoclonus myoclonus 
ataxia (POMA), a form of paraneoplastic neurodegeneration 
(PND) [33,35]. Tumors outside of the nervous system can 
sometimes trigger ectopic expression of RBPs that are nor-
mally restricted to the central nervous system. The immune 
system recognizes the ectopically expressed RBPs as non- 
self antigens and initiates autoimmune responses against 
these antigens, resulting in PND. POMA is caused by au-
to-antibodies against Nova-1/Nova-2 triggered by ectopic 
expression of these proteins in breast cancers. Nova-1 
knockout mice die postnatally from a motor deficit associ-
ated with apoptotic death of brainstem and spinal neurons 
[36]. The hallmark pathological defect in POMA patients is 
neuronal cell death in the regions of the brainstem and spi-
nal cord where Nova-1 is normally expressed. Thus, Nova-1 
plays an important role in neuronal cell survival in the 
postnatal stage [36]. 

Nova-1 and Nova-2 contain three KH domains, connect-
ed by flexible linker regions (Figure 1). The third KH do-
main of Nova (KH3) is necessary and sufficient for specific 
RNA binding. The X-ray crystallography structure reveals  

Table 1  Selected RBPs associated with neurological diseasesa) 

RBPs RBD 
RNA 
motif 

Enrichment of 
mRNA targets 

Posttranscriptional 
regulation 

Neurological disease 
Pathological alter-

ation 
Ref. 

Nova KH 
Cluster 

of 
YCAY 

Synaptic proteins; 
Neuronal inhibition 

Alternative splicing; 
Polyadenylation 

Paraneoplastic 
opsoclonus myoclonus 

ataxia (POMA) 

Ectopic expres-
sion; Autoanti-

body production 
[33,37,38,41] 

Hu RRM AU-rich 

Amino acid biosyn-
thesis; Synaptic 
cytoskeletal dy-

namics 

Stability; Transla-
tion; Alternative 
splicing; Poly- 

adenylation 

Paraneoplastic sub-
acute sensory neuropa-

thy syndrome 

Ectopic expres-
sion; Autoanti-

body production 
[46,52,55,57,62] 

Rbfox RRM 
(U)GCA

UG 

Transmission; 
Membrane 
excitability 

Alternative splicing; 
Polyadenylation 

Mental retardation; 
Epilepsy; Autism 

Mutation [68,72,73,77] 

QKI 
KH 

Qua2 
A(C/U)U
AA(C/U) 

Myelination in 
CNS; Vascular 
development 

Stability; Transla-
tion; Alternative 

splicing; Localiza-
tion 

Psychiatric diseases; 
Schizophrenia; Ataxia 

Reduction of 
expression 

[80,82,86,91] 

FMRP RGG 
G-quadr

uplex 

Presynaptic pro-
teins; Postsynaptic 

proteins 

Translation; 
Transport; Stability 

Fragile X syndrome 
Repeat expansion 

mutation 
[29,97,105] 

TDP-43 RRM 
(UG)n 
repeat 

Neuronal develop-
ment; Neuron sur-

vival; Synaptic 
transmission 

Alternative splicing; 
MicroRNA bio- 

genesis; Stability; 
Transport 

Amyotrophic lateral 
sclerosis; Fronto- 

temporal lobar 
dementia 

 
Mutation; 

Cytoplasmic 
aggregate 

[117,126,128,129] 

Fus 
RRM 
GRR 

GGUG 
Vesicle transport; 
Neuronal impulse; 

Neuronal projection 

Transcription; Al-
ternative splicing; 
Transport; Gene 

silencing 

Amyotrophic lateral 
sclerosis; Fronto- 

temporal lobar 
dementia 

 
Mutation; 

Cytoplasmic 
aggregate 

[126,149,150] 

a) Y is a pyrimidine residue.  
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that the Nova protein holds the RNA in its grip by forming a 
molecular vice with the invariant Gly-X-X-Gly motif on 
one side and the variable loop of KH3 domain on the other. 
In vitro binding experiments have established that Nova 
proteins interact with sequence-specific clusters of YCAY 
elements (where Y is a pyrimidine) on pre-mRNA and can 
regulate alternative splicing [37,38]. A large number of 
candidate RNA targets regulated by Nova proteins have 
been identified based on the prediction of clusters of YCAY 
elements. Among these, the α2 subunit of the glycine 
(GlyRα2) receptor and the γ2 subunit of the GABAA 
(GABAA γ2) receptor are two targets that have been con-
firmed using cell biological and in vitro splicing assays 
[34,36,39,40].  

To demonstrate that Nova is a key player in PND patho-
genesis, Darnell and colleagues systematically searched for 
Nova target RNA genes using genome-wide methods. First, 
an ultraviolet cross-linking coupled immunoprecipitation 
(CLIP) approach was developed to analyze Nova-RNA 
complexes. Three-quarters of the Nova-interacting RNA 
transcripts identified encode proteins involved in the neu-
ronal synaptic function, and one-third of these play a role in 
inhibitory transmission. This study provided compelling 
evidence that Nova-1 could regulate a subset of RNA tran-
scripts encoding multiple components of the inhibitory 
synapses [41]. Second, exon-junction splicing microarrays 
were used to assess RNA splicing changes in Nova1-null 
mice. Fifty Nova1-dependent targets were identified. Inter-
estingly, nearly all 50 targets contained clusters of YCAY 
elements and encoded synaptic proteins [42]. Third, 
high-throughput sequencing was performed using RNAs 
isolated by crosslinking-coupled immunoprecipitation 
(HITS-CLIP), leading to the identification of Nova-2 CLIP 
tags and construction of genome-wide footprints. Both 
CLIP and HITS-CLIP have been used to study direct pro-
tein-RNA interactions in tissue and living cells. Two meth-
ods use ultraviolet irradiation to induce covalent crosslinks 
between protein-RNA complexes in situ, allowing rigorous 
purification of RBPs along with small fragments of RNA. 
RNAs purified by CLIP are amplified and sequenced, how-
ever, HITS-CLIP applies high-throughput sequencing 
methods to RNAs purified by CLIP and provides a ge-
nome-wide biochemical approach. Their study demonstrat-
ed that the position of Nova binding determines the out-
come of alternative splicing. Interestingly, many Nova-2 
binding sites are localized to 3′ untranslated regions (3′ 
UTRs), suggesting that Nova regulates alternative polyad-
enylation in the brain [43]. Finally, they combined CLIP, 
exon-junction splicing microarrays, HITS-CLIP, and more 
sophisticated bioinformatics identified a set of 700 No-
va-dependent alternatively spliced exons and a smaller 
number of alternative 3′ UTRs in the mouse brain [44]. The 
identification of these Nova target genes predicts a role of 
Nova in synaptic function, especially in mediating inhib- 
itory responses and suggests potential association of Nova 

with other neurological diseases [43,44].  

3.2  Hu/ELAVL protein family 

The mammalian Hu/embryonic lethal abnormal vision-like 
(ELAVL) family of RNA-binding proteins was another 
family of RBPs originally identified as antigens associated 
with paraneoplastic neurological syndrome [45]. Paraneo- 
plastic subacute sensory neuropathy/encephalomyelopathy 
syndrome, the neurologic disorder associated with the Hu 
antigen, is caused by the production of auto-antibodies 
against the Hu family proteins triggered by their ectopic 
expression in small cell lung cancers [46]. In mammals, the 
Hu protein family includes four members, HuR, HuB, HuC 
and HuD. Of the four Hu family members, HuR is widely 
expressed in many cell types, whereas HuB, HuC and HuD 
are expressed specifically in central and peripheral neurons 
[46,47]. Neuronal Hu proteins play an important role in 
neuronal development, neuronal plasticity and memory 
[4850]. Homozygous HuD knockout mice exhibited tran-
sient impairment of embryonic cranial nerve development, 
with reduced neurosphere formation, suggesting a role of 
HuD in neural stem cells [48]. Over-expression of HuD in 
forebrain neurons of HuD transgenic mice resulted in im-
paired acquisition and retention of memories [51]. Further-
more, antisense-mediated knockdown of HuC in mice re-
sulted in impaired spatial learning [52]. These studies sug-
gest the involvement of HuC and HuD in learning and 
memory. 

Hu proteins contain three RNA recognition motifs 
(RRMs), referred to as RRM1, RRM2 and RRM3. There is 
a basic hinge region between RRM2 and RRM3. RRM1 and 
RRM2 cooperate to recognize and bind to AU-rich se-
quences on mRNA targets, thereby achieving their 
post-transcriptional regulation [51,53]. Hu proteins are great 
multi-tasking proteins regulating various aspects of RNA 
metabolism in both cytoplasmic and nuclear compartments.  
In the cytoplasm, the most well-known molecular function 
of Hu proteins is to regulate mRNA stability. Hu proteins 
bind to AU-rich elements (AREs) located at the 3′ UTRs  
of GAP-43, VEGF, GLUT1, eotaxin and c-fos, thereby en-
hancing their mRNA stability [5458]. Approximately 
5%8% of human protein-coding genes contain AREs, 
suggesting the overall importance of Hu proteins in regu-
lating mRNA stability [54,59]. In addition to mRNA stabil-
ity, Hu proteins also regulate translation by acting as either 
enhancers or repressors of translation of their target genes, 
including neurofilament M, hypoxia inducible factor 1a and 
CD83 [56,60,61]. In the nucleus, Hu proteins serve as regu-
lators of polyadenylation and alternative splicing [62]. To 
date, at least four splicing targets of Hu proteins have been 
characterized, including Calcitonin/CGRP, NF1, Fas and 
HuD [6367]. Hu proteins bind to AREs and interact   
with spliceosomal factors to regulate exon inclusion or  
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exclusion [67].  
Extensive HuC-RNA interactions in the mouse brain 

have been revealed by using combined HITS-CLIP, splic-
ing-sensitive microarrays and bioinformatic analyses to 
examine HuC knockout mice.  In neurons, 699 robust in-
tronic and 3′ UTR HuC binding sites were identified. HuC 
preferentially binds to conserved U-rich sequences inter-
spersed with G residues at exon-intron junctions to either 
repress or enhance the inclusion of alternative exons. Gene 
ontology (GO) analysis demonstrated prominent roles of 
HuC proteins in mRNA stability, regulation of genes in-
volved in amino acid biosynthesis and alternative splicing 
regulation of transcripts involved in synaptic cytoskeletal 
dynamics. A subset of these HuC binding sites are mapped 
to the 3′ UTRs of genes involved in pathways regulating 
glutamate, a major excitatory neurotransmitter in the brain. 
Indeed, glutamate levels were reduced in the HuC knockout 
mouse brains, and both homozygous and heterozygous 
knockout mice showed spontaneous epilepsy. This pheno-
type confirmed the notion that neuron-specific HuC con-
trolled the excitation-inhibition balance in the brain, as 
suggested by the genome-wide analysis of HuC targets [52].   

3.3  Rbfox family 

The members of the Rbfox family of RNA-binding proteins, 
including Rbfox1, Rbfox2 and Rbfox3, are evolutionarily 
conserved regulators of tissue-specific alternative splicing 
in metazoans. Rbfox1 and Rbfox2 proteins are expressed in 
muscle, heart, and brain tissues [68]. In the brain, these 
proteins are exclusively expressed in neurons [69]. Rbfox3 
is neuron-specific [70]. Rbfox1 was originally identified in 
a yeast two-hybrid screen as a protein that interacts with the 
spinocerebellar ataxia type-2 gene (SCA2) [71]. Subsequent 
studies demonstrated that mutations in the Rbfox1 gene 
were associated with mental retardation, epilepsy and au-
tism [7274]. The CNS-specific conditional Rbfox1 knock- 
out mice exhibited spontaneous seizures [75]. In contrast, 
the CNS-specific deletion of Rbfox2 disrupts cerebellar 
development [76].  

Rbfox1, 2 and 3 share a common protein domain struc-
ture and contain a single RNA-binding domain. The Rbfox 
family specifically recognizes the (U)GCAUG element in 
regulated exons or in flanking introns, either promoting or 
repressing alternative splicing of a number of target exons 
[68]. A recent study using HITS-CLIP demonstrated that 
Rbfox2 interacted with GCAUG elements in embryonic 
stem (ES) cells, consistent with biochemical studies [77]. 
The position-dependent splicing map based on the position 
of GCAUG elements around alternative exons is consistent 
with earlier bioinformatics predictions made by analyzing 
UGCAUG binding sites and support a role for Rbfox2 as a 
splicing factor in neurons. Interestingly, many of the pre-
dicted Rbfox2 alternatively spliced target transcripts them-
selves encoded splicing factors, suggesting the possibility of 

a higher-order regulatory network. Gene ontology (GO) 
analysis of the Rbfox2 splicing regulatory network demon-
strated enrichment of a biologically coherent set of tran-
scripts encoding proteins mediating synaptic transmission 
and membrane excitability [77,78]. Genome-wide analysis 
of brain RNA of Rbfox2 knock-out mice identified numer-
ous splicing changes altering proteins important both for 
brain development and mature neuronal function. 

3.4  QUAKING 

QUAKING (QKI) belongs to the STAR (signal transducer 
and activator of RNA) family of RNA-binding proteins. It 
regulates differentiation of myelin-forming oligodendrocyte 
and Schwann cells [79]. In the adult mouse CNS, QKI is 
highly expressed in glial cells, including astrocytes and oli-
godendrocytes [80]. Expression of QKI mRNA is reduced 
in disease-related regions from postmortem brain tissue 
samples from patients, and multiple studies suggested that 
QKI is a strong candidate gene for several psychiatric dis-
eases including schizophrenia and ataxia [81,82]. The role 
of QKI in myelination was further supported by the quak-
ing-viable mutation in mice (qkv mice) [83]. The qkv mice 
showed severe CNS dysmyelination because the myelin 
fails to undergo compaction in the CNS due to a large dele-
tion upstream of the quaking locus [83].   

QKI proteins consist of a central KH domain flanked by 
two conserved subdomains, referred to as Qua1 and Qua2. 
QKI proteins bind the consensus RNA element A(C/U)- 
UAA(C/U) via the KH and Qua2 regions, while the Qua1 
domain is essential for homodimerization [8486]. Multiple 
studies demonstrated that QKI played key roles in oli-
godendroglia differentiation and maturation by controlling 
post-transcriptional gene expression including mRNA stabi-
lization, translation, subcellular localization and alternative 
splicing [79,81,8790]. By PAR-CLIP (photoactivatable 
ribonucleoside-enhanced CLIP) and bioinformatics predic-
tion, over a thousand mRNA species are targeted by QKI in 
mice. In HITS-CLIP, living cells or tissue samples are irra-
diated with UV light at a wavelength of 254 nm, however in 
PAR-CLIP, cells are fed with 4-thiouridine, which becomes 
incorporated into newly transcribed RNA, allowing cross-
linking with UV light at 365 nm and can be used to pinpoint 
the crosslinked nucleotide. Although many proteins encod-
ed by target mRNAs are important for myelination in CNS, 
targets of QKI are not restricted to the control of mye-
lin-related gene expression and are implicated in multiple 
biological processes such as smooth muscle cell differentia-
tion, vascular development and heart development [91,92]. 

3.5  Fragile X mental retardation protein 

Fragile X mental retardation protein (FMRP), the product of 
the FMR1 gene, encodes an RNA-binding protein associat-
ed with fragile X mental retardation. A repeat expansion 
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mutation in the 5′ UTR of FMR1 causes hypermethylation 
of the genes’ promoter, leading to transcriptional silencing. 
This mutation causes fragile-X syndrome (FXS) the most 
common genetic cause of mental retardation, with an inci-
dence of approximately 1:4000 males and 1:8000 females 
[93,94]. Affected individuals display a variety of intellectu-
al deficits, ranging from mild learning impairments to ab-
normal social behaviors and autism. Expansion of the CGG 
repeats >200 copies leads to transcriptional silencing of 
FMR1 and a loss of the FMRP expression [9597]. Inter-
estingly, individual males with an intermediate number of 
CGG repeats in the FMR1 gene (50200), referred to as 
premutation alleles, do not develop FXS, but develop fragile 
X tremor ataxia syndrome (FXTAS), a late-onset disorder 
characterized by dementia, gait abnormality, and tremor 
[98]. In individuals with FXTAS, the FMR1 gene is not 
completely silenced [99]. In the case of FXTAS, the ex-
panded CGG repeat is transcribed as part of the FMR1 
mRNA. Several RBPs that interact with the CCG re-
peat-containing RNAs, including hnRNPA2/B1 and MBNL, 
are sequestered away from their normal locations and pre-
vented from executing their normal function. The loss of 
function of these RBPs leads to development of FXTAS, as 
demonstrated by the observation that overexpression of 
these RBPs rescues the disease phenotypes in FXTAS ani-
mal models [100102].  

FMRP is expressed in all cell types of the nervous sys-
tem except mature glia. In neurons, FMRP is enriched in the 
cell body, although it is also detected in granules in den-
drites and axons during development [103]. FMRP is criti-
cal for the formation of synapses and neural circuits [104]. 
FMRP contains two KH domains, an RGG box, a nuclear 
localization and export signals (NLS and NES). FMRP 
binds to G-quadruplex structures, possibly via its RGG box, 
to participate in different steps of post-transcriptional gene 
regulation [29,105,106]. The RNA G-quadruplex is formed 
by stacks of planar layers of guanine tetrad units and regu-
lates different steps of RNA processing [107], including 
protein translation and stability of a subset of mRNAs in 
neurons [108]. First, FMRP is a polyribosome-associated 
RNA-binding protein in dendrites that regulates translation 
of mRNAs required for synaptic plasticity by stalling ribo-
somal translocation on target mRNAs [109111]. Second, 
FMRP may play a role in the transport of RNAs to the syn-
apse in a microtubule-dependent manner [112]. Finally, 
FMRP is involved in mRNA stability control of PSD95, a 
key regulator of synaptic plasticity [113]. In knock-out mice, 
the loss of FMRP leads to reduced glutamate-induced 
transport of mRNA to the synapse, and decreased distribu-
tion of FMRP target RNAs and their proteins in the synap-
ses [114,115]. Recently, HITS-CLIP experiments uncov-
ered >800 candidate FMRP target mRNAs in the mouse 
brain. Such FMRP-targets are markedly enriched in both 
presynaptic and postsynaptic regions, consistent with the 

synaptic function of FMRP [29]. Together these studies 
suggest that the loss of FMRP function in regulating 
transport, translation and stability of target RNAs result in 
the deficits seen in FXS patients and animal models. 

3.6  RRM-RGG families: TDP-43 and FUS 

The DNA/RNA-binding protein TDP-43 (Tar-DNA binding 
protein 43) was initially identified as a transcriptional re-
pressor of HIV. TDP-43 is a member of hnRNP family, 
with structural similarity to hnRNPs A1 and A2 [116]. 
Since 2006, TDP-43 has attracted more attention following 
the landmark discovery that TDP-43 was a major compo-
nent of intraneuronal insoluble aggregates detected in de-
generating neurons in patients affected by amyotrophic lat-
eral sclerosis (ALS) or fronto-temporal lobar degeneration 
(FTLD) [117]. More than 30 missense TDP-43 mutations 
have been identified among ALS patients, however, the 
majority FTLD-TDP43 patients have no detectable TDP-43 
mutations, although they show TDP-43 positive pathologi-
cal lesions [118120]. It remains unclear how mutations in 
TDP-43 lead to ALS, although they appear to enhance its 
cytoplasmic aggregate formation, suggesting a key role of a 
toxic aggregation of TDP-43 in these neurological diseases 
[118,120]. Mice over-expressing wild-type human TDP-43 
or mouse TDP-43 developed ALS/FTLD-like neurodegen-
eration with cytoplasmic ubiquitin-positive TDP-43 aggre-
gation, indicating that too much TDP-43 may be just as det-
rimental as mutant TDP-43 [121123]. ALS is considered 
the most common adult-onset motor neuron disease and 
results from loss of motor neurons in the brain and spinal 
cord. ALS is a fatal disease and most patients die of paraly-
sis of the respiratory muscles [124]. ALS is frequently di-
agnosed post mortem, by the loss of motor neurons and 
presence of intra-neuronal inclusion bodies [125]. Dominant 
mutations in the TDP-43 gene are implicated in ~ 4% of 
familial ALS cases [126]. FTLD is the second most com-
mon form of early-onset dementia. A pathological hallmark 
for FTLD-TDP43 is the presence of ubiquitinylated in-
tra-neuronal TDP-43 positive protein aggregates in the af-
fected brain regions [127]. Recently TDP-43 proteinopathy 
has been associated with mutations in other ALS and FTLD 
related genes such as GRP or VCP, which may suggest a 
new pathological mechanism for TDP-43 proteinopathy. 

TDP-43 contains a nuclear localization signal (NLS), a 
nuclear export signal (NES), two RRMs and a glycine-rich 
domain at carboxyl terminus. The NLS and NES allow 
TDP-43 to be continuously shuttled between the nucleus 
and the cytoplasm. TDP-43 recognizes (UG)n repeat ele-
ments in target mRNAs by its RRM1 [128,129]. The gly-
cine-rich domain mediates the interactions between TDP-43 
and other proteins such as hnRNPs [130]. TDP-43 also 
contains a Q/N-rich prion-like element that mediates its 
interaction with polyQ aggregates. The biological function 
of TDP-43 is multi-faceted, including transcriptional regu-
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lation and post-transcriptional regulation at the different 
stages such as pre-mRNA splicing, microRNA biogenesis, 
RNA stability and RNA transport [131]. Here, we briefly 
discuss the role of TDP-43 in pre-mRNA splicing and 
mRNA stability control. By binding to the UG repeats of 
the target pre-mRNA transcripts, TDP-43 modulates alter-
native splicing of many genes, such as the cystic fibrosis 
transmembrane conductance regulator (CFTR) gene, SMN2 
and apolipoprotein A-II [132134]. CFTR was the first 
identified target gene whose pre-mRNA splicing is regulat-
ed by TDP-43. CFTR contains an alternative exon 9, and 
the exclusion of exon 9 results in a nonfunctional CFTR 
protein [133]. TDP-43 inhibits exon 9 inclusion by binding 
specifically to an UG containing splicing silencing element 
located at the 3′-splice site within intron 8 of CFTR. Second, 
TDP-43 regulates mRNA stability by binding to the 3′-UTR 
of the target mRNAs including the low molecular weight 
neurofilament (NFL), cyclin-dependent kinase 6 (CDK6), 
and histone deacetylase 6 (HDAC6) genes [135,136]. 
HDAC6 is well characterized as a target of TDP-43. 
TDP-43 promotes HDAC6 mRNA stability through binding 
to UG repeat elements in the 3′-UTR. Interestingly, HDAC6 
has been implicated in suppression of neurodegeneration by 
autophagic degradation of aggregated proteins in Alz-
heimer’s disease and Parkinson’s disease [137]. Recent ge-
nomic studies using HITS-CLIP identified about 7000 pro-
tein-coding RNA substrates for TDP-43 in brain and cell 
lines. Consistent with multiple roles of TDP-43 in 
post-transcriptional regulation, TDP-43 binding is enriched 
in long intronic regions, the 3′-UTR of mRNA, and nuclear 
ncRNAs [138142]. Many targets are involved in neuronal 
development, neuron survival, and synaptic transmission, 
suggesting a critical role of TDP-43 in neurons.  

Homozygous disruption of TDP-43 in mice is embryoni-
cally lethal, whereas disrupting one copy of the gene leads 
to more subtle motor disturbances and muscle weakness, 
which is similar to transgenic animals [143,144]. Therefore, 
TDP-43 may be linked to disease via loss-of-function in 
which pathological TDP-43 fails to exercise its function in 
post-transcriptional gene expression. On the other hand, 
simple overexpression of the wild-type TDP-43 in animal 
models recapitulates many pathological and clinical features 
of TDP-43 proteinopathy patients [123,145147]. Analyses 
of FTLD patients with TDP-43 immunoreactive protein 
aggregates show that the TDP-43 protein level is frequently 
increased [121,148]. It remains to be determined whether 
gain-of-function toxicity or loss-of-function haplo- insuffi- 
ciency is the major pathogenic mechanism underlying vari-
ous TDP-43 proteinopathies in humans. 

4  Other ALS-associated RBPs 

Similar to TDP-43, several other RNA-binding proteins 
have been linked to ALS. First, the RNA-binding protein 

FUS (fused in sarcoma, also known as translocated in lipo-
sarcoma, TLS) is associated with ALS and FTLD. FUS- 
immunoreactive aggregates are pathological hallmarks for 
ALS-FUS and FTLD-FUS. A large number of FUS muta-
tions have been identified in ALS-FUS since 2009 [149]. 
Approximately 4% of familial ALS cases contain mutations 
in the FUS gene [126]. FUS and TDP-43 share similarities 
in protein structure and functional activities. FUS contains a 
single RRM domain, a Glycine-rich domain, a lysine-rich 
region, a glutamine-glycine-serine-tyrosine (QGSY)-rich 
region, two arginine-glycine rich regions, a zinc finger mo-
tif and a C-terminal nuclear localization signal (Figure 1). 
FUS recognizes GGUG motifs on RNAs via its RNA bind-
ing domain [150]. FUS is predominantly localized to the 
nucleus and plays a role in transcription, mRNA splicing 
transport, and gene silencing. Hippocampal neurons from 
homozygous FUS knock-out mice displayed reduced spine 
numbers and abnormal dendritic spines as long thin filopo-
dia-like structures. This may be associated with the FUS 
function in regulating transport of mRNAs encoding ac-
tin-stabilizing proteins to maintain the normal dendritic 
spine morphology [151,152].  

Discoveries of mutations in TDP-43 and FUS in ALS 
suggest that other RBPs may be involved in pathogenesis of 
neurodegenerative diseases. A screen in yeast identified 133 
human RBPs, that were cytotoxic and formed cytoplasmic 
aggregates, similar to TDP-43 and FUS [153]. Some of 
these RBPs contain prion-like sequences. Mutations in ALS 
patients were found in TAF15, which were also inde-
pendently found in another study [154]. Subsequently muta-
tions were also identified in the EWSR1 gene in ALS pa-
tients [155]. Discovery of mutations in the hnRNPA1 gene 
suggest involvement of hnRNAPA1 in ALS and multisys-
tem proteinopathy [156]. These mutations were found to 
affect the prion-like domains of the RBPs and accelerated 
hnRNP fibrillization and, similar to mutations in TDP-43 
that increase amyloid fibril formation [156].  

An hexanucleotide repeat expansion in the C9orf72 gene 
has been identified as a common genetic change associated 
with both familial and sporadic ALS [157,158]. Similar to 
FXTAS, intranuclear RNA foci have been observed in ALS 
patients carrying the C9orf72 repeat expansion [157]. A 
model of RNA toxicity has been postulated for ALS associ-
ated with C9orf72 repeat expansion. Several RBPs have 
been identified that interact with the expanded repeat, in-
cluding Pur-α [159], hnRNPA3 [160] and ADARB2 [161]. 
ADARB2 is a double-stranded RNA adenosine deaminase, 
a family of RBPs that edit pre-mRNAs by altering adeno-
sines to inosines. Inosines in RNA are recognized as gua-
nosines by the splicing and translational machinery. Thus, 
editing can create new splice sites in pre-mRNAs or result 
in translated proteins with altered amino acid sequences 
[162,163]. ADARB2 was shown to co-localize with RNA 
foci in both induced pluripotent stem cells (iPSCs) and post 
mortem tissue from repeat expansion carriers. Gluta-
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mate-mediated excitotoxicity, RNA foci and sequestering of 
ADARB2 to foci, were all reduced when antisense oligonu-
cleotides targeting the toxic repeat containing C9orf72 RNA 
were introduced into the iPSCs. Along with ADARB2, 18 
additional proteins were reported to associate with the hex-
anucleotide repeat [161]. Together, these studies suggest 
that RBPs may play important roles in ALS pathogenesis. 

Mutations in the senataxin gene, encoding a DNA/RNA 
helicase, lead to a rare form of ALS with typically juvenile 
onset (ALS4) and the inherited ataxia, AOA2 (ataxia oculo-
motor apraxia 2) [164,165]. Recent studies indicate that se-
nataxin plays a role in DNA repair, suggesting the involve-
ment of DNA repair in pathophysiology of ALS4 [166].  

Interestingly, intermediate lengths of expanded polyglu-
tamine tracts (polyQ) in the RNA-binding protein ATXN2 
were found to increase risk for ALS [167]. CAG-expansions 
in the ATXN2 gene cause spinocerebellar ataxia-type II 
(SCA2), an autosomal-dominant neurodegenerative disorder 
[168]. In SCA2, the polyQ tract in ATXN2 is expanded 
from the normal 22Q to 34Q or more. PolyQ-expanded 
ATXN2 forms cytosolic aggregates, where it may acquire a 
toxic gain of function [169]. The normal cellular function of 
ATXN2 is largely unknown. However, the presence of a 
like-Sm (LSM)-type RNA-binding domain and its associa-
tion with other RBPs suggest potential involvement of 
ATXN2 in RNA metabolism. Many unanswered questions 
remain as to how polyQ expansion of ATXN2 ultimately 
causes neurodegeneration.  

5  Concluding remarks 

It has become increasingly clear that RBPs are important 
players in neurodegenerative disorders and other human 
diseases. The advent of high-throughput technologies, bio-
informatics analysis, genetic mouse models and biochemi-
cal approaches significantly advanced our understanding of 
the involvement of RBPs in human diseases. However, the 
molecular mechanisms by which genetic mutations or aber-
rant expression of RBPs lead to impairment of neuronal 
function remain to be elucidated.  

Most RBPs are involved in multiple steps of post-  
transcriptional regulation and interact with a large number 
of RNA targets. Recent studies show that different genetic 
mutations or defects in different genes may lead to the 
same pathological lesions and clinical manifestations. For 
example, genetic alterations in different genes could lead 
to TDP-43 proteinopathy. Both Rbfox and QKI are impli-
cated in ataxia [170]. On the other hand, the same mutation 
may have distinct clinical manifestations in different indi-
viduals. It is interesting to note that many of these RBPs 
play multiple roles in different steps of RNA processing. 
For example, both FUS and TDP-43 likely regulate 
pre-mRNA splicing of multiple genes. It remains to be de-
termined whether splicing defects in a subset of substrate 

genes important for neuronal survival and function con-
tribute to neurodegeneration in FUS or TDP-43 proteinop-
athies. Therefore, identification of a specific set of dis-
ease-causing defects in RNA processing is highly de-
manding. It is even more challenging to elucidate the 
mechanisms by which the cell integrates information from 
myriad of different RBPs to coordinate the RNA metabo-
lism and to determine cellular heath and function. 

Although significant efforts have been invested into un-
derstanding biological function of RBPs and pathogenic 
mechanisms underlying the human diseases associated with 
RBPs, a number of questions remain to be addressed. For 
example, why do mutations in ubiquitously expressed RBP 
genes (such as TDP-43 or FUS) cause ALS that predomi-
nantly affects motor neurons? What factors prevent such 
genetic mutations from causing neuronal damage early on in 
life? How do such mutations cause neuronal death?  How 
do RNA processing defects contribute to neuronal loss? 

Disease-causing mutations in RBP genes may not result 
in a loss of gene expression, therefore, gene knockout mod-
els may not necessarily be disease-relevant (e.g., embryonic 
lethality in TDP-43-deficient mice). On the other hand, 
transgenic animals overexpressing either wild-type or mu-
tant RBPs may result in neurodegenerative pathology and 
functional impairment. It is likely that both loss of the nor-
mal function and gain-of-function neurotoxicity contribute 
to the pathogenesis of these diseases. Animal models in 
combination with molecular and cellular studies have begun 
to address pathogenetic mechanisms, however, much more 
work is necessary to identify the early events and bi-
omarkers for neural damage and for developing effective 
therapeutic approaches to these devastating diseases.  
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