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Transcriptomics is one of the most developed fields in the post-genomic era. Transcriptome is the complete set of RNA tran-
scripts in a specific cell type or tissue at a certain developmental stage and/or under a specific physiological condition, includ-
ing messenger RNA, transfer RNA, ribosomal RNA, and other non-coding RNAs. Transcriptomics focuses on the gene ex-
pression at the RNA level and offers the genome-wide information of gene structure and gene function in order to reveal the 
molecular mechanisms involved in specific biological processes. With the development of next-generation high-throughput 
sequencing technology, transcriptome analysis has been progressively improving our understanding of RNA-based gene regu-
latory network. Here, we discuss the concept, history, and especially the recent advances in this inspiring field of study. 
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After the completion of the Human Genome Project as well 
as many other model or non-model organism genomes [1,2], 
the sequences of genome as genetic information carriers are 
available. However, to resolve the black box between ge-
nome expression and cell function remains challenging. 
According to central dogma, transcription is the first and 
key regulatory step of gene expression. Transcriptomics has 
become an inspiring field of life science research in the 
post-genome era [3], for the following reasons: (i) Tran-
scriptome analysis reflects the dynamics of genome expres-
sion. Although most cells share the same set of genes, their 
transcription patterns are highly temporal and spatial spe-
cific, which leads to different cell types and/or functions.  
(ii) Transcriptomics study supports the proteomics research. 
Transcriptome analysis not only helps to explain the incon-
sistency of the coding gene number with the number of 
proteins translated, but also is the starting point for the 
study of translational regulation. (iii) Structural and func-
tional studies of nonprotein-coding RNA (ncRNA) expand 

the scope of transcriptomics. Recently, a large number of 
RNA species, transcribed from nonprotein-coding genomic 
regions, have been discovered with important roles in gene 
regulation [4–6]. In addition to protein coding genes, both 
prokaryotic and eukaryotic genomes contain nonprotein-      
coding sequences [7,8]. Transcriptomics studies have shown 
that the vast majority of eukaryotic genome is transcribed 
into RNAs [9–11]. For example, more than 93% of the hu-
man genome is transcribed into RNAs [9], among which 
only 2% is from the coding region [7,12]. (iv) Metho-     
dology innovation, especially of the next-generation se-
quencing (NGS) technology, has allowed a higher through-
put and resolution level of transcriptome studies and gener-
ated more data with biological meanings [13,14]. 

1  Transcriptome  

1.1  A brief history 

Transcriptomics is the study of RNA, single-stranded nu-
cleic acid, which was not separated from the DNA world 
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until the central dogma was formulated by Francis Crick in 
1958, i.e., the idea that genetic information is transcribed 
from DNA to RNA and then translated from RNA into pro-
tein [15–17]. In 1961, Jacob and Monod [18] proposed a 
model that the protein-coding gene is transcribed into a spe-
cial short-lived intermediate associated with the ribosome, 
which was designated as messenger RNA (mRNA). In 1958, 
together with the central dogma of molecular biology, the 
“adaptor” hypothesis was indicated by Crick to explain how 
mRNA template directs the protein synthesis [17,19]. In this 
hypothesis, Crick predicted that each amino acid was first 
attached to its own “adaptor” which could fit onto the 
mRNA template by base-pairing and thus carry the amino 
acid to the specific site of the RNA template. A short, stable 
RNA, transfer RNA (tRNA), was identified as the predicted 
“adaptor” [20]. Shortly, ribosomal RNA (rRNA) involved 
in protein synthesis was purified [16].  

In 1977, Sharp [21] and Roberts [22] showed that the 
mRNA sequence of adenovirus displayed discontinuous 
distribution in the genome, and therefore first suggested that 
a typical eukaryotic gene consists of exons, the pro-
tein-coding sequence, and introns, the non-coding sequence; 
the protein-coding sequence was interrupted by the 
non-coding sequence. During RNA splicing, the introns are 
cut out from the primary transcripts and degraded, while the 
exons are reassembled into different mature messenger 
RNAs (mRNAs) (alternative splicing). The discovery of the 
split gene was a complete surprise and had revolutionized 
our understanding of the architecture of genes. 

Since the late 1970s, Altman and Cech [23–26] revealed 
respectively that RNA can function as a catalyst. In 1982, 
Kruger [26] put forward the “ribozyme” concept, demon-
strating that RNA could act as both genetic material (like 
DNA) and a biological catalyst (like protein enzymes). 

In the early 1990s, it was observed by a number of scien-
tists independently that RNA inhibited gene expression in 
plants and fungi with unknown mechanism [27–29]. In 
1998, Fire and Mello [30,31] found that double-stranded 
RNAs (dsRNAs) could recognize specific mRNA sequence 
and then led to the degradation of the target mRNAs, which 
was known as RNA interference (RNAi). Further studies 
indicated that the actual molecules that directly caused 
RNAi were short dsRNA fragments of 21–25 base pair, 
called small interfering RNA (siRNA) [32–34]. 

In recent years, the species of RNA are increasing rapid-
ly with the development of NGS technology [13,14]. The 
expanding universe and functional characterization of 
non-coding RNAs (ncRNA) have been making our under-
standing of the RNA world more comprehensive and 
in-depth. Consequently, the research content of tran-
scriptomics has been expanded. 

1.2  RNA category 

The history of RNA research indicates that there is a great 

variety of RNAs, which have, besides structural roles, im-
portant and previously underestimated regulatory roles in 
many cellular processes. According to their products, RNAs 
can be largely divided into two classes: protein-coding 
RNAs and nonprotein-coding RNAs (ncRNAs) [5]. Pro-
tein-coding RNAs are also known as mRNAs. 

In a general sense, ncRNAs refer to all RNAs that are not 
translated into functional proteins. Based on their functions, 
ncRNAs can be divided into two categories: house-keeping 
and regulatory ncRNAs. House-keeping ncRNAs usually 
play structural and catalytic roles, including tRNAs and 
rRNAs involved in translation, small nuclear RNAs (snR-
NAs) involved in mRNA splicing, small nucleolar RNAs 
(snoRNAs) involved in rRNA splicing, guide RNAs 
(gRNAs) involved in RNA editing, and others [5,16].  

Many ncRNAs play regulatory roles in a diverse variety 
of biological processes. Depending on the length, regulatory 
ncRNAs can be divided into small ncRNAs and long 
ncRNAs (lncRNAs). Small ncRNAs, 17–35 nt in length, 
include microRNAs (miRNAs), siRNA and Piwi-interacting 
RNA (piRNA). miRNAs, 22 nt in length, derive from 
pri-miRNA containing hairpin structures [35]. The hairpins 
are processed subsequently by RNase III Drosha and Dicer 
to form mature miRNAs [35,36]. Pairing with their target 
mRNAs, miRNAs inhibit gene expression by translational 
repression or to promote mRNA degradation [37]. miRNAs 
have been found to play crucial regulatory roles in many 
biological processes, such as development, biological stress 
response, and cell behavior [36]. siRNAs and piRNAs are 
small RNAs produced through different pathways, which 
mainly act in gene silencing of transposons and repetitive 
sequences to maintain genomic stability [38–41]. 

lncRNAs, with a length of more than 200 nt, lack open 
reading frame and are usually RNA polymerase II tran-
scripts [42]. lncRNAs can be antisense, sense, intergenic, 
bidirectional, and intronic transcripts [42], which may regu-
late protein-coding gene expression in different ways: 
Transcriptional regulation can occur through lncRNA-protein 
interaction to inhibit the activity of transcription factors or 
RNA polymerase II directly, or by lncRNA helping to re-
cruit regulatory protein factors of chromatin structure to 
influence transcription indirectly; lncRNA may affect 
mRNA stability at the posttranscriptional level. Like small 
ncRNAs, lncRNAs play essential roles in many biological 
processes [42,43]. Currently, the challenge of lncRNA re-
search is to discover and quantify different lncRNAs in dif-
ferent tissues or under different physiological conditions, 
and then determine their biological functions and mecha-
nisms of action. 

2  Transcriptomics 

Transcriptome is the whole set of RNAs transcribed by the 
genome from a specific tissue or cell type at a developmen-
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tal stage and/or under a certain physiological condition 
[8,44]. After the genome has been sequenced, transcriptome 
analysis allows us to understand the expression of genome 
at the transcription level, which provides information on 
gene structure, regulation of gene expression, gene product 
function, and genome dynamics. Transcriptome analysis 
will further reveal the regulation network of biological pro-
cesses and eventually give some guidance in disease diag-
nosis, clinical therapy, and crop improvement.  

2.1  Quantifying the transcript 

Transcriptional response of the genome varies in different 
tissues or under different physiological conditions or envi-
ronmental stimuli. To discover differentially expressed 
genes was one of the earliest goals of transcriptome analysis. 
Expressed sequence tag based method (EST, SAGE), hy-
bridization based gene microarray or chip technology, and 
NGS based RNA-sequencing (RNA-seq) technology were 
developed to scan the transcriptome quickly and obtain the 
differentially expressed genes [45–51]. Many key genes 
from various developmental, physiological, or pathological 
processes were identified by these means.  

2.2  Defining the gene structure and RNA metabolism 

Gene is usually defined as a genetic unit. When talking 
about the transcription, we also refer to gene as a transcrip-
tion unit [52]. From the gene to the functionally mature 
RNA, multiple steps of transcription and post-transcrip-    
tional processing take place in the cells [52]. A transcription 
procedure consists of transcription initiation (forming the 
transcription initiation complex), elongation, pausing (tran-
scription complexes stop right downstream the transcription 
start site), and termination [16,52]. Combining the tradi-
tional biochemical and molecular biology technology with 
NGS, transcription events were observed globally in higher 
throughput and more precise level (Table 1) [53]. 

To understand the RNA transcript structure and its pro-
moter, mapping the transcription start site (TSS) is required. 
Taking the advantage of cap structure of mRNA 5′ end, cap 
analysis of gene expression (CAGE) method was developed 
to sequence the 5′ ends using Sanger sequencing [54,55]. 
This method was improved when NGS took the place of 
Sanger sequencing. Paired-end analysis of TSSs (PEAT), 
deepCAGE, nanoCAGE and CAGEscan revealed precisely 
the TSS of each gene [58–60]. Similarly, precision nuclear 
run-on and sequencing (PRO-cap) method allows detection 
of TSS of nascent RNAs [61]. 

Digital quantification by regular RNA-seq only repre-
sents a certain RNA species’ steady-state, which does not 
reflect the dynamic process of RNA metabolism. To deter-
mine the biogenesis rate of RNA, genome-wide nuclear 
run-on and sequencing (GRO-seq) and the improved ver-
sion PRO-seq succeeded in monitoring the nascent mRNA 
globally at very high resolution (single nucleotide for 
PRO-seq) [61,62]. These two methods, combining the 
RNA-seq and nuclear run-on assay, provide not only the 
rates of transcription initiation and elongation but also the 
RNA polymerase pausing positions. Kwak et al. [61] found 
that transcription pausing and elongation activation happen 
widely in the Drosophila genome. 

2.3  Studying the post-transcriptional processing 

The maturing of RNAs is a series of steps such as 5′ cap-
ping, splicing, 3′ cleavage and adding polyA [52]. 

In the human genome, protein-coding genes are less than 
30000, but in human cells more than 80000 different pro-
teins can be produced, which is mainly because that RNA 
precursor of one gene will generate different mature RNA 
molecules by post-transcriptional processing such as alter-
native splicing [77]. By pair-end sequencing, improving 
read length and depth, the majority of coding genes with 
introns were found to have more than one isoforms [78]. 
Hence, it is important to consider the abundance of each  

Table 1  RNA-seq based methods 

NGS method Conventional method Description 

RNA-seq [45–47] 
EST [48], SAGE [50], microarray [51] 

CAGE [54,55] 
Quantify and characterize the transcriptome 

Small RNA-seq [56,57] miRNA microarray Characterize small non-coding RNA 
deepCAGE [58], nanoCAGE [59], PEAT 

[60], CAGEscan [59], PRO-cap [61] 
CAGE [54,55], 

5′ RACE 
Map the 5′ end of mRNA/transcription start site 

PRO-seq [61], GRO-seq [62] Nuclear run on Detect nascent RNA 

3P-seq [63], PAS-seq [64] 3′ RACE Detect alternative polyadenylation 

BRIC-seq [65,66] NA Measure half life of RNA transcripts 
PAR-CLIP [67], Argonaute HITS-CLIP 

[68], Argonaute CLIP-seq [69] 
NA Detect the Argonaute associate RNA to predict miRNA targets 

PARE-seq [70], degradome-seq [71–73] Modified 5′ RACE 
Map the 5′ end of RNA degradation products to predict 

miRNA targets 
STRT [74], SMART-seq [75] SMART/template switch Single cell or low RNA input transcriptome analysis 

CEL-seq [76] In vitro transcription based cDNA amplification Single cell or low RNA input transcriptome analysis 
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isoform rather than calculate the sum of various isoforms, 
when quantifying a certain gene expression. 

RNA editing is a post-transcriptional processing, where 
RNA sequence alteration is introduced, such as uridine in-
sertion and deletion, A-to-I shift. These alterations may lead 
to changes of amino acid sequence in protein, splicing sites 
within RNA precursor, or seed sequence of miRNAs [79]. 
By comparing the RNA-seq results to the reference genome 
sequence [80], Park et al. [81] found 500–3000 RNA edit-
ing events in certain cell type after filtering out the poly-
morphisms and somatic mutations.  

mRNA 3′ end processing involves endonucleolytic 
cleavage and adding multiple adenosines. The mRNA 
products of many genes have more than one 3′ cleavage or 
polyadenylation sites, known as alternative polyadenylation 
(APA) [82]. APA may affect the length of protein coding 
sequence or 3′ untranslated region, thereby regulating 
mRNA translation efficiency and/or its half-life. RNA-seq 
based method, PAS-seq and 3P-seq, together with specific 
bioinformatics analysis revealed that APA is an evolution-
arily conserved mechanism of gene regulation [63,64,82]. 

Degradation is an important step in the metabolism of 
RNA, Tani et al. [71,72] developed the 5′-bromo-uridine 
immunoprecipitation chase-deep sequencing analysis (BRIC-    
seq) method to determine half-life of RNAs by sequencing 
the pulse-labeling RNA, finding many short half-life non-    
coding RNAs. 

2.4  Discovering and characterizing the non-coding 
RNA 

Tremendous progress has been made in characterizing reg-
ulatory non-coding RNAs recently. Unbiased transcriptome 
analysis allowed the discovery of numerous previously un-
known RNA transcripts. 

Short non-coding RNA usually includes miRNA, siRNA, 
and piRNA, with lengths shorter than 35 nt. The short 
non-coding RNA cDNA library construction started with 
the purification of 15–35 base RNAs by denaturing poly-
acrylamide gel, followed by ligation of 3′ and 5′ adapter, 
and finished by reverse transcription [56,57]. At present, 
more than 20000 of miRNA genes have been cloned from 
~200 species [83]. Therefore, it is more challenging to iden-
tify miRNA’s target mRNA in order to elucidate its func-
tion. Two methods emerged based on the fact that miRNA 
interacts with and cleave its target mRNA through Argo-
naute protein [84]. Argonaute cross-linking immunoprecip-
itation and sequencing (CLIP-seq), designed to immunopre-
cipitate the Argonaute-RNA complex, allows to sequence 
the Argonaute associated RNA [67–69]. While, degradome- 
seq or parallel analysis of RNA end (PARE) methods suc-
ceed to sequence the 5′ ends of the target mRNA cleavage 
products by miRNA [70–73]. Along with the bioinformatics 
analysis, miRNA:mRNA complex regulatory network can 
be reconstituted [85]. 

lncRNAs, especially antisense transcripts, were recov-
ered by the strand-specific RNA-seq [61,62,86–88]. This 
modification on RNA-seq provides the direction infor-
mation of transcripts sequenced and therefore allows dis-
tinguishing antisense ncRNA from sense coding transcripts. 
Strand-specific sequencing of polyA RNA or rRNA minus 
RNA fraction found that the human genome is able to ex-
press more than 10000 lncRNA [89]. Defining the differen-
tial expression in different tissues and/or under different 
physiological conditions will help to elucidate the function 
expression of lncRNAs. How to find the regulating targets 
for each lncRNA will be another challenge. 

2.5  Checking the genome by RNA-seq 

Huge amount of transcriptome data were generated from 
medical research, especially in cancer research. Besides the 
comparison of gene expression in normal and pathological 
conditions, further changes in genome sequence can be 
learned, such as somatic mutations in disease tissues, in-
cluding mutation, insertion and deletion [90]. Gene fusion 
often indicates the genomic rearrangements, such as trans-
location, deletion, and inversion. Gene fusion revealed by 
RNA-seq may provide extra functional hints compared with 
that by genome sequencing [91,92]. 

Although the genome sequencing cost continues to de-
cline, there are still a lot of non-model organisms of inter-
ests lacking genome reference sequence. Through the 
pair-end, long read length RNA-seq and de novo assembly 
[93], both quantification and transcripts structure infor-
mation will be provided for an unsequenced genome. Such 
transcriptome analysis also helps to annotate the genome to 
be or being sequenced. 

3  Technology for transcriptome analysis 

Techniques have been evolved for almost 20 years, from the 
initial expression sequencing tag (EST) strategy to gene 
chips, and now the RNA-seq. To analyze the transcriptome 
becomes cost effective with higher throughput, better sensi-
tivity, and less starting RNA [13,14]. 

3.1  EST and microarray 

Sanger sequencing of EST or cDNA library provided in-
formation for genome annotation in the early days of ge-
nome research [48]. Due to the limitations on throughput 
and cost, it is impossible to achieve transcriptome quantita-
tive analysis using EST methods. With serial analysis of 
gene expression (SAGE) [50] and CAGE [54,55], respec-
tively, multiple 3′ and 5′ cDNA ends were concatenated to 
be one clone. Therefore, multiple sequence tags can be re-
covered from one Sanger sequencing reaction, which over-
comes those limits and makes quantitative analysis possible. 
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However, due to the high cost of Sanger sequencing and the 
difficulty to map the short sequence (~20 bp) tags to ge-
nome, CAGE and SAGE were replaced by DNA microarray 
shortly. 

DNA microarray or chip method is based on nucleic acid 
hybridization. Fluorescent labeled cDNAs incubate with 
oligonucleotide probes on the chip, then the abundance of 
RNA is determined by measuring fluorescence density [49, 
51]. High-density gene chip allowed relatively low cost 
gene expression profiling. Specific microarrays were de-
signed according to the purpose of the experiment, such as 
arrays to detect different isoforms from alternative splicing 
[94]. In addition, the genome tiling array is an unbiased 
design, without prior knowledge of genome transcription 
information, using a set of overlapping oligonucleotide 
probes for the detection of whole genome expression with 
the resolution up to a few nucleotides [95–97]. However, 
for large genomes, tiling array is expensive. Another limit-
ing factor of hybridization methodology is high background, 
because it is unable to distinguish RNA molecules sharing 
high sequence similarity [98]. 

3.2  RNA-seq 

Compared with Sanger sequencing, the core of NGS is mas-
sive parallel sequencing. Development of nanotechnology 
makes it possible to sequence hundreds of thousands of 
DNA molecules simultaneously [13,99]. The prototype of 
NGS is massive parallel signature sequencing (MPSS) [99], 
which applies four rounds of restriction enzyme digestion 
and ligation reactions to determine the nucleotide sequence 
of cDNA ends generating a 17–20 bp sequence as the fin-
gerprint of a corresponding RNA. MPSS is used to digitize 
the quantitative transcriptome with the capacity to produce 
more than 100000 signatures at a time. However, due to the 
nature of digestion and ligation reactions, a large fraction of 
the sequence signatures obtained is not long enough to be 
unique fingerprints of RNA molecules. 

Overcoming the limits of MPSS, Illumina, Roche, 
Lifescientific, and other companies developed their own 
platforms with considerable improvement on the throughput, 
reading length, and sequencing accuracy [13]. Based on 
these platforms, the RNA-seq methodology became the 
most convenient and cost effective tool for transcriptome 
analysis [14]. Briefly, total or part of RNA transcripts (e.g., 
polyA RNA or small RNA fraction) are purified and re-
versely transcribed into cDNAs, which are subjected to 
massive parallel sequencing. By analyzing millions to bil-
lions of 25–500 bp sequence tags from massive parallel 
sequencing, the transcriptome can be studied qualitatively 
and quantitatively [45]. In addition, RNA-seq is an ap-
proximately unbiased way, even without prior knowledge of 
genomic information. Because of the single-base resolution, 
RNA-seq’s background noise is very low compared to hy-
bridization-based technology. Linear detection range of 

RNA by RNA-seq spans several orders, which is at least 
one order higher than the DNA chip [45]. 

3.3  Advance of RNA-seq 

In order to accurately reveal the transcriptome of complex 
biological tissue or precious sample, low RNA input (even 
single cell) RNA-seq techniques have been developed by 
direct RNA sequencing or RNA amplification method 
[100–103]. Tang et al. [104] reported the first single cell 
transcriptome analysis, where the authors reversely tran-
scribed polyA RNA from a single mouse blastomere lysate. 
The cDNA was subjected to PCR amplification with the 
primers annealing to the anchoring sequences introduced 
during the generation of the 1st and 2nd strand cDNA. The 
STRT (single-cell tagged reverse transcription) [74] and 
SMART-seq (switching mechanism at the 5' end of the 
RNA transcript sequencing) [75] methods took the ad-
vantage of the extra few cytosines added by MMLV reverse 
transcriptase to amplify the cDNAs transcribed from a sin-
gle cell. The in vitro transcription amplification strategy 
was applied in the latest CEL-seq (cell expression by linear 
amplification and sequencing) [76], which introduced the 
T7 promoter into the 5' end of the 1st strand cDNA and di-
rected a linear and less biased amplification. Besides the 
spiking RNA molecules, barcoding strategy was imple-
mented in single cell RNA-seq to overcome the bias 
brought from the cDNA amplification [105,106], in which 
each single RNA molecule was uniquely barcoded. There-
fore, multiple reads of a specific RNA molecule with the 
same barcode would be considered as amplification redun-
dancy and counted only once. 

Over the past few years, RNA-seq technology has been 
widely used in the transcriptomics study not only because of 
its advantages over previously prevalent methodologies but 
also because of its fast evolvement. In order to fulfill dif-
ferent research purposes, the preparation of the cDNA li-
brary has been modified to different forms, such as 
strand-specific RNA-seq. Combined with conventional mo-
lecular biology and biochemistry methods (Table 1), 
RNA-seq was applied to study different aspects of the tran-
scriptome, such as deepCAGE and CAP-Seq to map TSS, 
GRO-seq and PRO-seq to detect nascent RNA, small 
RNA-seq, degradome-seq and Argounate CLIP-seq to 
characterize miRNA targets, and so on. 

4  Bioinformatics analysis 

It becomes increasingly obvious that bioinformatics analysis 
is a significant part of transcriptome research. The challenge 
facing bioinformatics analysis is almost as big as the ex-
perimental procedure including RNA purification, cDNA 
library construction, and high-throughput sequencing. The 
difficulty of analysis comes from not only massive amounts 
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of data, errors introduced by sequencing experiments, but 
also unimaginable complexity of the transcriptome. 

A typical RNA-seq data analysis can be summarized as 
follows: (i) Perform quality control for raw RNA-seq data. 
Low-quality sequence tags produced from library construc-
tion or sequencing process are trimmed away by the soft-
ware provided by the sequencing platform. (ii) For cases 
with a reference genome, map millions of short reads to the 
reference genome, determine the position of each RNA 
transcript in the genome, calculate the expression level of 
each transcript, and then find differentially expressed genes 
across the samples. All the above processes are carried out 
by corresponding pipelines, including representatives of 
Bowtie to map reads to the reference genome [107], Tophat 
to identify splice junctions [108], cufflinks to test for dif-
ferential expression [109], and so on. For cases without a 
reference genome, de novo transcriptome assembly is per-
formed from short RNA-seq reads [93], and then all assem-
bled contigs are subjected to functional annotation, which 
requires extensive computer resources. 

Further specific analysis will be performed to answer 
certain questions involved in transcriptomics, such as anal-
ysis of RNA editing and ncRNAs, discovery of novel tran-
scripts, and correlation of transcriptome data to available 
genomic or epigenetic data. 

5  Summary 

Over the past 10 years, great achievements have been made 
in understanding the transcriptome of cells due to the ge-
nomics research needs and omics technology innovation. 
Particularly, the implementation of NGS based RNA-seq 
technology changed our view on the transcription of ge-
nome and its regulation. Meanwhile, previously impossible 
high throughput transcriptome analyses for basic or applied 
research become routine and cost effective. However, tran-
scriptomics study faces several challenges: RNA-seq tech-
nology needs to be improved to overcome the bias intro-
duced by library construction or RNA amplification and to 
reduce the cost for low input RNA-seq; experimental design 
and bioinformatics analysis remain to be optimized to effi-
ciently and accurately characterize the transcriptome; how 
to reconstruct the complex RNA-based gene regulatory 
networks using transcriptome data, in order to help us fully 
understand the biological processes under different physio-
logical conditions at cell, tissue, individual, and population 
levels. In short, functional studies of transcriptome will in-
creasingly impact the fields from molecular biology to clin-
ical applications and so on. 
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