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Transcriptome reconstruction is an important application of RNA-Seq, providing critical information for further analysis of 
transcriptome. Although RNA-Seq offers the potential to identify the whole picture of transcriptome, it still presents special 
challenges. To handle these difficulties and reconstruct transcriptome as completely as possible, current computational ap-
proaches mainly employ two strategies: de novo assembly and genome-guided assembly. In order to find the similarities and 
differences between them, we firstly chose five representative assemblers belonging to the two classes respectively, and then 
investigated and compared their algorithm features in theory and real performances in practice. We found that all the methods 
can be reduced to graph reduction problems, yet they have different conceptual and practical implementations, thus each as-
sembly method has its specific advantages and disadvantages, performing worse than others in certain aspects while outper-
forming others in anther aspects at the same time. Finally we merged assemblies of the five assemblers and obtained a much 
better assembly. Additionally we evaluated an assembler using genome-guided de novo assembly approach, and achieved good 
performance. Based on these results, we suggest that to obtain a comprehensive set of recovered transcripts, it is better to use a 
combination of de novo assembly and genome-guided assembly. 
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Transcriptome refers to all the transcripts and their corre-
sponding quantity in cells, under specific development 
stages or physiological conditions [1]. Transcriptome re-
construction is the process of identifying transcripts and 
isoforms (splice variants of a gene) which are expressed in a 
specific sample [2]. According to Martin et al., the assembly 
of transcriptome aims to obtain a collection of fragments, 
each one representing a full-length transcript as accurate as 
possible, from short reads [3]. As a fundamental step for 
further study of transcriptome [4], assembly can be utilized 

to discover novel transcripts and previously unknown genes, 
compute gene expression level and so on. Even for those 
well annotated transcriptome, assembly can still be used to 
improve genome annotation [5]. In recent years, RNA-seq, 
an increasingly widespread next-generation deep-sequenc- 
ing approach to transcriptome profiling, provides the prom-
ise of a much more comprehensive study of transcriptome 
in a cost effective way during considerably less time [1]. 
RNA-seq can detect transcripts not corresponding to exist-
ing genomic sequence and genes with low expression levels. 
Most importantly, it owns the capability to reconstruct a 
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complete picture of the transcriptome across diverse condi-
tions in theory [2].  

Some genome assemblers have already succeeded in as-
sembling transcriptome from RNA-seq data [6,7]. However, 
different from genome assembly, there are some specific 
challenges for transcriptome assembly [2,8,9]. The first is-
sue is a wide range of gene expression levels, which leads to 
non-uniform sequence coverage. Lowly expressed genes 
may be only partially covered by a few reads and hard to be 
recovered to full length. The second critical problem is to 
handle pervasive alternative spliced isoforms. One gene 
may have several isoforms, and reads are too short to tell 
which isoform they are from. Thirdly, homologous and re-
peated sequences, similar isoform sequences derived from 
the same gene may cause ambiguities in assembly. Fourthly, 
it is problematic to discriminate exons and introns which 
may originate from incompletely spliced precursor RNAs. 
Moreover, assembly methods are limited by current se-
quencing library protocols. For instance, samples that are 
strand-specific require assembly method to take into ac-
count the strand orientation to tease apart overlapping tran-
scripts.  

Up to now several transcriptome assemblers have been 
developed to handle these challenges. Depending on the 
usage of a reference genome, these assembly methods fall 
into two major categories: genome-guided assembly and de 
novo (or genome-independent) assembly [2,4,10,11]. Ge-
nome-guided transcriptome assembly strategy refers to first 
aligning sequencing reads to a reference genome and then 
assembling overlapping alignments into transcripts. In con-
trast, de novo transcriptome assembly method directly re-
constructs overlapping reads into transcripts by utilizing the 
redundancy of sequencing reads themselves. For organisms 
without reference genome, only de novo assembly is possi-
ble, but for those with reference genome, both approaches 
are workable, although it is generally preferable to employ 
genome-guided assembly. Moreover, it is very likely that de 
novo assembly can effectively complement the results of 
genome-guided assembly in the presence of reference ge-
nome sequences.  

To understand comprehensively the differences and con-
nections between the two kinds of transcriptome reconstruc-
tion methods when being applied to organisms with refer-
ence genome, we selected five representative assemblers: 
cufflinks [12,13] and scripture [14] from genome-guided 
category; trans-ABySS [8], trinity[9] and oases [15] from de 
novo category, and then we investigated their common and 
different points from various aspects. Firstly the similar and 
different algorithm features of each assembler in either cat-
egory were studied. Subsequently based on several common 
metrics, real performances of the five assemblers were 
compared to get an idea of their pros and cons in practice. 
According to the results, each assembler had its specific 
superiority in certain aspects on some datasets, and fur-

thermore either assembly strategy demonstrated unique 
features on the same data. Finally, we suggest that it may be 
better to combine genome-guided assembly and de novo 
assembly together to get a more accurate and complete 
transcriptome assembly. To validate this assumption, we 
tested two possible combination approaches: one is to 
merge the results of each assembly, and the other is to use a 
genome-guided de novo assembler. The final combined 
output from the first method significantly improved separate 
assembly, and the second method also provides a good re-
sult despite it seems to need modifications to achieve better 
performance. Moreover, the second strategy provides in-
sights into finding an efficient hybrid assembly method. 

1  Materials and methods 

1.1  Data used 

To find out algorithm features of each assembler, related 
literatures and source codes were studied. To test the real 
performances of these assembly methods, three Illumina 
RNA-Seq datasets from three species—human, mouse and 
Schizosaccharomyces pombe were selected respectively. 
These species all have relatively complete gene annotation, 
so they are convenient for assessment of transcriptome re-
construction methods. Additionally the reconstruction of S. 
pombe transcriptome is challenging for very short introns 
and dense transcripts. The S. pombe genome pombe_ 
09052011.fasta was downloaded from the Sanger Institute. 
All the other reference genome sequences and annotation 
files were obtained from Ensembl, with versions GRCh37.64 
for human, NCBIM37.64 for mouse, Schizosaccharomyces_ 
pombe.EF2.13.gtf for S. pombe. The reference annotation 
file of human was further filtered to include only chromo- 
some 1–22, MT, X, Y. Similarly, the reference annotation 
file of mouse was filtered to contain just chromosome 1–19, 
MT, X, Y. 

In the following, the three datasets are simply refered to 
as brain, esc, spombe respectively. The brain dataset 
accessed by GSE30222, is from several regions of the brain 
of 23 adult donors with 22 Caucasian and one unknown. 
The esc dataset accessed by GSE20851, is from mouse 
embryonic stem cells and initially used in the evaluation of 
scripture. The spombe dataset accessed by SRP005611, is 
firstly used in the test of trinity, and only data for late 
stationary phase of S. pombe was downloaded for analysis. 
Detailed information of them is shown in Table S1. 
Sequencing coverage for each dataset was estimated by 
Lander/Waterman equation [16] for computing coverage, 
with the haploid genome length replaced by approximate 
transcriptome size of each species (human ~266 Mbp, 
mouse ~175 Mbp, S. Pombe ~13 Mbp). According to the 
results, these datasets have gradually increasing coverage 
(brain ~22×, esc ~50×, spombe ~499×). 
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1.2  Software used and parameter settings in assembly 
process 

Almost all the five transcriptome assemblers are updated 
from time to time, so some software used in the comparison 
study was not the latest version. Here assemblers used were: 
cufflinks v2.0.0, scripture VPaperR3 (scripture-beta2.jar), 
ABySS [6,17] v1.3.3, trans-ABySS v1.3.2, trinityrnaseq_ 
r2012-04-27, velvet [7] v1.2.03, oases v0.2.06. To avoid 
merging pair end files, velvet v1.2.07 was used for dataset 
esc and spombe. Other related software used in the assem-
bly was: bowtie [18] version 0.12.7, samtools [19] version 
0.1.18.0, tophat [20] v2.0.0, blat [21] v34×12. All the as-
semblers were run on a 512G NUMA server with Intel 
Xeon CPU of 2.67 GHz as well as 48 cores, and the operat-
ing system installed was CentOS Linux release 6.0. To en-
sure the good quality of sequencing reads, fastx_toolkit  
(http://hannonlab.cshl.edu/fastx_toolkit/index.html) was ap- 
plied to remove reads with a Phred quality score less than 
20 over the 80% nt on brain dataset, and sickle (https:// 
github.com/ucdavis-bioinformatics/sickle) was utilized to 
filter the other two pair-end datasets with option ‘-q 2’ in 
order to keep the integrity of pair end reads. Besides,  
fastQC (http://www. bioinformatics.babraham.ac.uk/pro- jects/ 
fastqc/) was used to check the quality of the three datasets 
both before and after filtering. 

In the assembly, most parameters for the software were 
set as default. Some critical parameters are listed in Table 
S2. Only the first step of trans-ABySS (FEM) was em-
ployed. Since oases and trans-ABySS use multiple k-mers 
to achieve both higher sensitivity and specificity, 8 k-mers 
were carefully chosen according to their manuals and read 
length on each dataset. However, to get optimal results, 
some parameters should be tested many times, especially k 
value. In this analysis, some parameters may not be the best 
ones, but they can still give a somewhat fair comparison 
between these assemblers. Cufflinks have two different as-
sembly modes: with or without the help of reference anno-
tation. Both modes were run with the same other parameters 
in the experiments, and cufflinks assembly using annotation 
is represented as cufflinks (RABT). Cufflinks (RABT) em-
ployed full annotation files, but the filtered annotation files 
were used in all downstream analysis. For spombe dataset, 
it was suggested that blat was better than tophat when 
aligning reads to genome [9], but from the comparison of 
mapping results (Table S3), blat had no apparent advantages. 
Thus to avoid problems of format converting, spliced 
alignment from tophat, rather than blat, was taken as input 
to subsequent genome-guided assembly.  

1.3  Assessment metrics of assembly results 

Transfrag (transcribed sequence fragment) here refers to 
assembly output of an assembler, while transcript locus de-
notes a locus consisting of a set of transcripts which does 

not overlap with genomic locations of another set in any oth-
er locus. The overall analysis process is shown in Figure 1.  

Since there are no standard metrics to assess transcrip-
tome assembly, several simple standards were extracted 
from existing indexes used in related literatures. Firstly 
transcriptome assemblers can be assessed from five aspects: 
accuracy, completeness, contiguity, chimerism and variant 
resolution [4], so we used the five criteria to get an overall 
assessment. Similar to the definitions in Ronnator [3], here 
accuracy is defined by the percentage of transfrags that 
share at least 95% identity with the reference genome by at 
least 80% of the transfrag length; completeness denotes the 
percentage of known transcripts covered by transfrags to at 
least 80% of the transcript length; contiguity is the percent-
age of known transcripts covered by a single transfrag over 
at least 80% of the transcript length; chimerism is identified 
as the fraction of transfrags that overlap with more than 

 

 

Figure 1  Flow diagram showing the analysis process in the comparative 
study. RNA-seq data was first filtered and then input to genome-guided 
assemblers and de novo assemblers. Generally, the original assembly re-
sults are fasta files for de novo assemblers, and gtf files for genome-guided 
assemblers. These files were further processed by various programs and 
scripts to calculate metrics used in the study. Shape cylinder represents 
data file. Shape rectangle represents program or script used for analysis. 
Shape rectangle with an angle represents transcriptome reconstruction 
strategy. Shape eclipse represents the final metric. 
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50% of two or more annotated transcripts. Lastly variant 
resolution is simply represented by average number of 
isoforms per annotated gene.  

Genome-guided assembly methods are based on spliced 
alignment, so the output transfrags are largely identical to 
corresponding sequences in the reference genome, reducing 
the necessity of mapping transfrags to genome again. To 
validate transfrags from three de novo assemblers, original 
fasta files were mapped to reference gnome by blat with 
default parameters, except for dataset spombe which was 
imposed with restraint max intron length equaling to 900. 
To get the accuracy of transfrags reconstructed by de novo 
assemblers, all mapped transfrags were filtered by pslCDna- 
Filter requiring at least 95% sequence identity across at 
least 80% of the transfrag length. The final percentage of 
accuracy was then calculated by dividing the number of 
remained transfrags by the number of all recovered trans-
frags. The transfrags unaligned and failing to pass the filter 
were then blasted against non-redundant protein sequences 
(nr) database with e-value 1×10 to check their fidelity. 
Completeness and contiguity were calculated by dividing 
the total number of transcripts instead of only those ex-
pressed, because cufflinks (RABT) can reconstruct tran-
scripts that are even not expressed in the sample. The com-
putation of completeness, contiguity and chimerism was 
aided by intersectBed from Bedtools [22], with option 
‘-split -wo’ (additional option ‘-f 0.5 -s’ for the computation 
for chimerism) and a little customization of output format to 
get all overlap intervals between transfrags and annotated 
transcripts. The output files were then parsed by custom perl 
scripts to calculate exact length of each overlap. Variant 
resolution was obtained by parsing refmap file output by 
cuffcompare to get the number of unique transcripts corre-
sponding to each known gene. 

Since there is no single metric that could determine 
which assembler is superior, then other various metrics 
were also computed to compare the five assemblers more 
comprehensively, including computing resources usage, 
transfrags number and length, sequencing read usage, com-
parisons with reference annotations. Computing resources 
usage was obtained by time command in linux, with elapsed 
wall clock time and max resident memory being extracted. 
Transfrags length statistics were calculated by abyss-fac.pl 
from ABySS package. For oases, the final length of each 
transfrag in original fasta file was actually L+k1, where L 
is the length of the transfrag and k=27. However, for the 
convenience of comparison, all the length statistics were 
obtained directly from the original fasta files of de novo 
assemblers, as 26 is relatively smaller and causes little 
effect on final results. Cd-hit-est [23] was used to explore 
redundant transfrags (with parameters -c 1). However, to 
avoid losing information, all transfrags were used for fur-
ther analysis. To detect the percentage of read usage, which 
is the fraction of sequencing reads really used in assembly, 
sequencing reads input to assembly were aligned back to 

transfrags by bowtie, using alignReads.pl from trinity 
package. In addition, read usage for velvet-oases was ac-
quired directly from log files to check the results of bowtie. 
At the same time, RNA-SeQC [24] v1.1.7 was utilized to 
analyze the spliced mapping results which were input to 
genome-guided assemblers, to explore the impact of map-
ping on genome-guided assembly. The initial psl file output 
by blat was filtered by filterPSL.pl from augustus [25] 
package to retain only the unique best alignment which was 
then converted to gtf format by custom perl script. Scripture 
output was converted to gtf format by its task ‘toGFF’ too. 
Then all the gtf files were compared with reference 
annotation by cuffcompare. Several important standards 
were extracted from the cuffcompare outputs.  

Furthermore, relationship between transcripts reconstruc-
tion results and expression level of known transcripts was 
analyzed on three datasets, since gene expression level has a 
significant impact on the performance of assemblers. Actu-
ally a robust transcriptome reconstructing method should 
recover transcripts of diverse expression levels. Thus it is 
meaningful to explore the connection between the efficien-
cy of transcriptome reconstruction by each assembler and 
the abundance of transcripts. FPKM of annotated transcripts 
was calculated by cufflinks with option ‘-G’, filtered by 
FPKM>0.0005 and then divided into 20 quantiles. Subse-
quently median value for coverage of a known transcript (as 
fraction of the reference transcript length) by a single trans-
frag is calculated in each quantile. Meanwhile, in order to 
get the correlation between transfrags output by different 
assemblers, overlap of recovered full-length annotated tran-
scripts and novel transcripts, which were obtained from 
parsing tmap files output by cuffcompare, among five as-
semblers were also examined, with cufflinks (RABT) being 
excluded. Here full-length annotated transcripts are those 
matching intron chain completely with a transfrag, and nov-
el transcripts are those sharing at least one splice junction 
with a transfrag. 

2  Results 

2.1  Comparisons of algorithm features 

All the transciptome assembly algorithms used in the five 
assemblers are finally deduced to graph reduction problems. 
Because it is hard to find optimal graph reductions in as-
sembly [26,27], real assemblers often rely on heuristic algo-
rithms and approximation algorithms to get approximate 
solutions, such as removing redundancy, correcting errors, 
discarding uncertainty, reducing complexity. At the same 
time, pragmatic engineering techniques are utilized to re-
solve difficulties in real conditions, like random errors and 
systematic biases in sequencing reads, as well as physical 
limitations of computers when handling large volumes of 
data. Similar to genome assemblers, it seems that the suc-
cess of a transciptome reconstruction assembler also largely 
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depends on its heuristics [28]. Different from genome as-
sembly, transcriptome assembly has to construct a graph, 
instead of a linear consensus sequence, to cope with alterna-
tive splicing [29]. Generally, splicing graph can be used to 
represent the complex structures of alternative splicing 
transcripts[30,31]. Splicing graph can be built with or 
without the presence of reference genome, and therefore can 
be applied in both genome-guided and de novo transcript 
assembly. However, in practice each assembler has its own 
representation of graphs, resulting in specific graph simpli-
fication and traversing methods. 

Cufflinks [32] solves the assembly problem by finding a 
maximum matching in a weighted bipartite graph derived 
from a partial order (directed acyclic graph) on overlapping 
compatible spliced alignments, which permits polynomial 
time complexity. It finds only the minimal transcripts suffi-
cient to explain all the splicing events in the sequencing 
data, which will then be used for abundance quantification. 
By assembling fragments in each locus separately it uses 
few computing resources. It can also utilize reference anno-
tation to improve assembly, which is abbreviated as RABT 
(reference annotation based transcript assembly).  

By contrast, scripture is designed to reconstruct all tran-
scripts expressed at significant levels in the sequenced sam-
ple, so it will find all possible transcripts useful for annota-
tion. It transforms assembly into a statistical segmentation 
problem by searching significant paths instead of significant 
exons in a connectivity graph constructed from spliced 
alignments. Then it builds a transcript graph to extract 
isoforms. It assembles each chromosome separately which 
can be parallelized and in turn reduce resource usage sig-
nificantly. 

Trans-ABySS actually is a bunch of scripts post-    
processing the results of parallel de novo genome assembler 
ABySS which assembles sequencing reads several times by 
de Bruijn graph using different k-mers. Trans-ABySS 
merges all the contigs output by ABySS into a non-    
redundant set of transfrags. It mainly analyzes junction con-
tigs of 2(k1) bp, composed of two (k1) overlaps, to get 
spliced isoforms. Because ABySS is a distributed assembler 
aimed to address memory limitations of large data, it con-
sumes much less computing resources than other de novo 
assemblers. Besides assembly, trans-ABySS can also pre-
dict polyadenylation sites, identify gene fusion, and com-
pute a gene-level expression metric. 

Conversely, trinity [33] is a 3-module assembler specifi-
cally designed for transcriptome reconstruction, composed 
of inchworm, chrysalis and butterfly. Firstly inchworm as-
sembles reads in a greed way and usually results in a set of 
full length contigs for major isoform as well as unique por-
tions of minor spliced variants. Chrysalis then clusters out-
put from inchworm into connected components which are 
likely to represent alternative splice forms and closely re-
lated paralogs, and builds de Bruijn transcript graphs for 
each component. Finally butterfly processes each generated 

graph and enumerates full length alternatively splice 
isoforms and transcripts from paralogous genes. This mod-
ularity offers a flexible way to extend trinity. It has been 
suggested that some parts of trinity can be replaced by other 
more efficient modules [33]. For example, part of inchworm 
has already been substituted by jellyfish, a faster method to 
count k-mer abundance in parallel. 

Lastly, oases combines the multiple k-mer strategy in 
trans-ABySS with a similar toplogical analysis like trinity, 
trying to deal with a broad spectrum of expression levels 
and alternative isoforms. It is built upon velvet and 
post-processes preliminary contigs output from a single 
k-mer assembly of velvet and further continues to construct 
a transcript de Bruijn graph followed by special topological 
analysis to extract isoforms. It runs with multiple k-mers 
and merges all the transfrags from different k-mers by 
oases-M in the end. Its dynamic error removal methods 
largely contribute to its robustness. 

Although all the five assemblers have different details of 
implementations, they still share a core set of features. The-
se features can be subdivided into the following aspects:  

(i) models to deal with features of reads 
(ii) graph construction 
(iii) graph reduction and transcripts extraction 
(iv) ways to resolve specific challenges 
(v) support for parallel computing 
Details about the similarities and differences between the 

five assemblers are shown in Table S4.  
In principle, genome-guided assembly has several inher-

ent advantages over de novo assembly [2,4,30]. In the first 
place, spliced mapping can partition very similar reads or 
reads from paralogous regions, based on their different ge-
nomic loci, into individual sets which can then be recon-
structed seperately, reducing required computing resources 
to a large extent. Secondly, sequencing errors, which will 
increase the complexity of assembly a lot, can also be re-
solved by mapping reads to genome. In addition, proximal 
aligned reads can be grouped into exons, and splice sites 
can help to extend exon boundaries. Moreover, ge-
nome-guided assembly is quite sensitive to lowly expressed 
transcripts since they can be mapped to reference genome. 
However, de novo assembly still has its merits. Given suffi-
cient read coverage, de novo assembly can still efficiently 
assemble a complete transcriptome. Furthermore, limita-
tions imposed by spliced alignment, like errors and artifacts, 
may negatively influence the following genome-guided as-
sembly and lead to false positive isoforms, while de novo 
assembly methods do not have this issue. Being independ-
ent of reference genome instead helps de novo assembly 
discover new transcripts not in the reference due to missing 
genes [34], structual variants or other reasons, identify tran-
scripts with long introns, and detect special events like 
trans-splicing, chromosomal rearrangements and so on. These 
differences in algorithm features of each assembly category 
as well as the five assemblers themselves may lead to dissim-
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ilar performances of the five assemblersin reality [4]. 

2.2  Comparisons of real performance 

2.2.1  Overall assessment of assembly results 

The results of assessing five assemblers on three datasets by 
five overall metrics are shown in Table 1. For dataset esc 
and spombe, trans-ABySS had the highest accuracy fol-
lowed by trinity and then oases. But for dataset brain, 
trans-ABySS was the least accurate one. For dataset esc the 
accuracy of oases was much lower than the other two de 
novo assemblers, while trinity performed poorest on dataset 
spombe in term of accuracy. The properties of each dataset 
may have a significant impact on each de novo assembler. 
For example, trans-ABySS may be incapable of handling 
single end samples efficiently, and oases may be less capa-
ble of dealing with non-strand-specific reads in dataset esc. 
It is worth noting that both oases and trans-ABySS pro-
duced transfrags with polyA tails of at least 35 bp while 
trinity did not. For dataset brain, trans-ABySS had 17694 
transfrags with such polyA tails and oases had 4152. For 
dataset esc, oases had 1035, and trans-ABySS had 209. For 
dataset spombe, oases had 72, and trans-ABySS had 3. 
These long polyA tails may cause less transfrags mapped to 
reference genome and contribute partly to low accuracy of 
trans-ABySS on brain dataset and oases on esc dataset. Of 
the unaligned transfrags for each de novo assembler, oases 

had 2479 blastx hits on dataset esc, 1310 on dataset spombe, 
while trinity had 2118 hits on dataset esc, 1900 on dataset 
spombe, and trans-ABySS had 8020 hits on dataset esc, 96 
on dataset spombe. Thus these transfrags not mapped to 
reference genome may still be bona fide transcripts. 

For shallow sequencing dataset brain, the completeness 
and contiguity of genome-guided assemblers were obvious-
ly much higher than de novo assemblers. However, with the 
increase of sequencing depth, the completeness and conti-
guity of de novo assemblers increased much quicker than 
genome-guided assemblers, even up to values higher than 
genome-guided assemblers for ultra-deep sequencing 
spombe dataset. Among de novo assemblers, trinity had the 
largest completeness and contiguity, followed by oases and 
trans-ABySS, except that on dataset spombe where 
trans-ABySS had slightly larger completeness than oases. 
While among genome-guided assemblers, cufflinks was 
better than scripture. Cufflinks (RABT) had best complete-
ness and contiguity among all assemblers, but still not ex-
actly as 100%, which may be partly owing to artifacts in-
troduced by additional annotation information.  

With respect to isoform resolution, except for dataset 
spombe, different assemblers detected various isoforms per 
gene. These isoforms may be truly expressed transcripts or 
just assembly artifacts, which need to be further validated. 
Normally de novo assemblers found more average number 
of isoforms per gene for dataset brain and esc, except that   

Table 1  Overall assessment of transcriptome assemblers from five aspects (accuracy, completeness, contiguity, chimerism and variant resolution) 

Dataset Assembler Accuracy (%) Completeness (%) Contiguity (%) Chimerism (%) 
Variant 

resolution 

brain 

oases 86.9 23.14 7.57 0.20 4.1 

trinity 94.1 23.45 8.59 0.84 4.0 

trans-ABySS 80.7 18.70 3.08 0.38 4.9 

cufflinks(RABT)  99.53 99.53 1.78 3.0 

cufflinks  26.45 14.21 5.78 2.7 

scripture  21.70 11.39 2.78 3.0 

cuffmerge  31.34 19.63 1.52 2.9 

inchworm 96.9 17.10 4.88 0.55 4.9 

esc 

oases 70.4 35.03 24.47 0.20 2.3 

trinity 93.4 40.43 25.18 0.78 2.1 

trans-ABySS 97.9 31.87 19.15 0.98 2.5 

cufflinks(RABT)  99.61 99.61 2.66 2.4 

cufflinks  36.34 31.30 14.12 1.4 

scripture  32.18 25.39 3.67 1.6 

cuffmerge  44.89 39.86 2.15 1.6 

inchworm 95.7 37.69 20.23 0.24 3.2 

spombe 

oases 97.1 84.47 79.76 0.07 1.0 

trinity 88.4 90.93 80.82 0.92 1.0 

trans-ABySS 99.4 85.03 78.44 0.52 1.0 

cufflinks(RABT)  98.82 98.82 1.56 1.0 

cufflinks  73.78 72.07 22.09 1.0 

scripture  64.90 62.26 10.24 1.0 

cuffmerge  92.14 91.52 11.16 1.0 

inchworm 98.4 68.98 36.21 0.03 1.0 
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cufflinks (RABT) obtained more mean number of isoforms 
per gene for dataset esc. Trans-ABySS generated most av-
erage isoforms per gene among de novo assemblers, fol-
lowed by oases, and trinity found the least. Scripture yield-
ed more isoforms per gene than cufflinks, which is a natural 
result of their opposite design ideas on parsimony.  

Genome-guided assemblers produced more fused tran-
scripts, and this may be due to improperly merging adjacent 
genes on the same strand sometimes. It seems that they 
yielded more fused transcripts as read coverage increases, 
and achieved highest fusion in data from S. pombe which 
has the deepest sequencing coverage. Higher gene density 
of S. pombe may also be a possible reason for extremely 
high chimerism on dataset spombe. In contrast de novo as-
semblers had chimerism less than 1 across all the three da-
tasets, alleviating the fusion problem effectively. Oases, in 
particular, generated fewest chimeric transcripts, even less 
than 0.25 of the huge number of transfrags it produced on 
each dataset. 

2.2.2  Other various metrics of assembly results 

(i) Computing resources usage. Generally, de novo assem- 
blers consume much more time and memory than genome- 
guided assembly [2], which is shown in Figure 2. Being 
consist with previous results [35], oases consumed most 
memory but has a higher speed. Without adapting to a 
computing grid and using just default parameters, trinity 
used quite a long time to finish assembly. It also took up 
large memory, sometimes even larger than oases. The usage 
of disk by oases and trinity was also substantial in the 
experiments and became a bottle block to use the programs 
on limited space. By contrast, trans-ABySS finished 
assembly with less memory and disk space in a not long 
period of time. Both cufflinks and scripture used similar 
amount of memory and time, much less than de novo 
assemblers. For oases, the choice of k-mer is essential, and 
using a too small k-mer lead to a very large graph and in 
turn much more memory and time were needed to process 
the graph. Time for trinity to assembly brain dataset was 
quite long partly because some butterfly commands failed 
for the first time and had to rerun for about 24 h. Time for 
trans-ABySS to assembly esc dataset were long partly due 
to the failure of k-mer 62 which cost about 14 h for the 
second run. In other words, it took trinity and trans-ABySS 
quite a long time to handle complex data. Probably tuning 
of some parameters can reduce resource usage to some 
extent. According to Robert et al. [36], 2010-06-08 version 
of trinity has largely improved runtime performance by 
optimizing some critical components. Nonetheless, de novo 
assemblers is much more computing resource demanding. 

(ii) Transfrag number and length statistics. As for the 
statistics of transfrags number and length (Table S5), de 
novo assemblers obtained much more transfrags than 
genome-guided assemblers, which may contribute to ali- 

 

Figure 2  Resource usage of each transcriptome assembler on three da-
tasets. A, Runtime usage of each transcriptome assembler on three datasets. 
The time unit of numbers on the top of each bar is hour. B, Max memory 
usage of each transcriptome assembler on three datasets. The memory unit 
of numbers on the top of each bar is gigabyte. 

gnments reducing plenty of artifacts. Typically, oases and 
trans-ABySS reconstructed several folds of fragments than 
other assemblers, largely due to the merge of multiple ass- 
emblies. Scripture detected more transfrags than cufflinks, 
which reveals again that cufflinks is more conservative. 

On the other hand, genome-guided assemblers produced 
much longer fragments, as illustrated in Figure 3. The 
length distribution of transfrags from cufflinks (RABT) is 
very similar to that of known transcripts, so it can be used 
as a benchmark. It is not difficult to see that cufflinks re-
covered least short transcripts across all datasets, partly be-
cause split alignments cannot detect very short exons. 
Scripture had the same issue, but it reconstructed more short 
transfrags than cufflinks. Moreover, scripture recovered far  
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Figure 3  Length distribution of transfrags from each assembler on three 
datasets. Transfrag length is transformed in lg scale, but tick labels for the 
x-axis show the original data values. ‘Merged’ represents result of cuff-
merge. 

more transfrags which are longer than known transcripts. 
Apparently most transfrags from de novo assemblers were 
very short. Typically trans-ABySS had lots of fragments 
below 100 bp as a result of using transfrags of length 2(k1) 
for analyzing alternative splicing variants. Trans-ABySS 
also got more fragmented transfrags for dataset brain in the 
absence of pair ends. Although de novo assemblers, like 
oases, may sometimes produce extremely long transfrags, 
they still yielded lots of short fragments, thus mean length 
and N50 of transfrags from them were still lower than ge-
nome-guided assemblers. However, the gap gradually de-
creases as the sequencing coverage goes up. Notably the 
length distribution of transfrags from oases tends to be like 
those of genome-guided assemblers, especially on dataset 
spombe. In all, oases yielded longest fragments among de 
novo assemblers, followed by trans-ABySS and then trinity.  

In addition, the output of oases and scripture were much 
more redundant. For oases the possible reason is very likely 
due to the lack of efficient filter steps after merging multiple 
k-mers, although it indeed tries to remove redundant trans-
frags (identical or included in others) in oase-M. For scrip-
ture, it may be owing to particularly long transfrags which 
contain many short ones entirely. 

(iii) Sequencing read usage. With respect to read usage, 
oases obviously employed much less reads to reconstruct 
transcripts compared with trinity and trans-ABySS, which 
utilized similarly larger amount of reads (Figure S1). It 
seems that as sequencing depth grows, the percent of read 
usage is also up. Table S6 further demonstrates read usage 
of oases, which is closely related to the settings of k-mer 
length and coverage cutoff. The value of k-mer which is too 
high or too low both caused the decrease of reads usage for 
dataset spombe. Also lower coverage cutoff may lead to 
more reads being employed. Compared to the excellent 
mapping results (Table S3), de novo assemblers lose ad-
vantage in efficiently using sequencing reads than ge-
nome-guided assemblers which identify transcripts based on 
spliced alignment. The insufficient usage of reads by de 
novo assemblers, especially oases, offers room to further 
postprocess unassembled reads. 

(iv) Comparison with reference annotation. Table 2 
summarizes the comparison of transfrags from each assem-
bler with annotated transcript model. In total, de novo as-
semblers detected far more transcripts and loci than ge-
nomeguided assemblers when compared with the reference 
annotation files, particularly oases and trans-ABySS. Thus 
de novo assemblers generally achieved more transcripts per 
locus, which is in line with their high variant resolution 
shown in Table 1. The exceptionally large numbers of tran-
scripts per locus for oases and trans-ABySS on dataset 
spombe are perhaps owing to multiple similar transcripts at 
individual locus from allelic variation or undetected se-
quencing errors, which is hard to discriminate without a 
reference genome. However, trinity discovered relatively 
more loci and thus much less transcripts per locus,  
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Table 2  Results of comparing transfrags output by five assemblers with reference annotations on three datasetsa) 

 
Number of 

mRNA 
Number of 

loci 
Number of tran-
scripts per locus 

Base sn (%) 
Base sp 

 (%) 

Number of full 
length (=) 
transfrags 

Number of partial 
(c) transfrags 

Number of 
novel (j) 

transfrags 
human 166625 49201       

oases 701113 357179 ~2.0 31.4 40.3 4437 171274 13625 

trinity 406653 310028 ~1.3 35.5 45.7 5564 106694 18718 

trans-ABySS 618800 248551 ~2.5 28.4 45.5 3503 378909 7704 

cufflinks (RABT) 233316 107737 ~2.2 99.3 78.1 158186 232 8646 

cufflinks 115018 105663 ~1.1 37.3 58.4 5322 32083 11449 

cuffmerge 287218 237105 ~1.2 41.1 41.3 7341 41951 44498 

inchworm 604933 421837 ~1.4 25.2 34.4 2793 182727 279653 

scripture 112758 74385 ~1.5 25.9 56.2 6463 28175 33815 

mouse 93525 36292       

oases 283997 77942 ~3.6 24.7 39.1 3927 47997 14277 

trinity 318049 253777 ~1.3 25.2 25.2 4720 25124 9350 

trans-ABySS 270505 94620 ~2.9 28.8 38.1 4274 85231 6246 

cufflinks (RABT) 111177 48292 ~2.3 99.5 82.0 89703 187 6567 

cufflinks 41146 31895 ~1.3 43.9 59.8 8247 5508 9831 

scripture 73149 33347 ~2.2 35.7 64.5 8292 10467 31405 

cuffmerge 157565 94120 ~1.7 48.6 32.8 8662 7566 45044 

inchworm 1107272 442826 ~2.5 24.1 21.6 2618 338492 2545 

spombe 6907 6210       

oases 33220 4105 ~8.1 41.5 50.5 3467 5842 1693 

trinity 24078 14645 ~1.6 92.7 76.2 4485 3969 1481 

trans-ABySS 32748 5913 ~5.5 64.6 55.1 1956 8836 1026 

cufflinks (RABT) 7528 6076 ~1.2 98.9 96.9 6866 119 235 

cufflinks 3779 3502 ~1.1 70.3 83.0 1572 174 839 

scripture 3844 2759 ~1.4 44.9 60.3 743 136 1493 

cuffmerge 6405 4572 ~1.4 90.6 56.7 913 97 2363 

inchworm 372728 12852 ~29.0 59.4 73.6 1781 348584 382 

a) Full length transfrag refers to a transfrag with complete match of intron chain as a reference transcript, corresponding to classcode =; partial transfrag 
refers to a transfrag contained in a reference transcript, corresponding to classcode c; novel transfrag refers to potentially novel isoform sharing at least one 
splice junction with a reference transcript, corresponding to classcode j. 

even less than scripture for dataset brain and esc. Trinity 
also yielded surprisingly large number of transcripts and 
loci for dataset esc, possibly a result of lacking 
strand-specific information. Similarly, scripture detected 
more transcripts and loci than cufflinks for dataset esc. Ad-
ditionally scripture always found more transcripts per locus 
than cufflinks across all three datasets, which is also in 
concordance with variant resolution metric. But the power 
of RABT helped cufflinks find more transcripts per locus.   

The performance of cufflinks (RABT) also stood out re-
garding base sensitivity and specificity. In general, ge-
nome-guided assemblers had higher specificity, which is 
probably linked to the fact that de novo assemblers gener-
ated too many transfrags beyond reference annotation. 
However, the sensitivity of assemblers varies a lot, and it 
appears that each assembler performed better on certain 
datasets. For instance, cufflinks had highest sensitivity for 
brain and esc dataset, but trinity had particularly higher sen-
sitivity than cufflinks for dataset spombe. This can be partly 
explained by special measures trinity taken to deal with 
gene-dense genomes. Moreover, all de novo assemblers had 

higher sensitivity than scripture for dataset brain, but less 
sensitivity than genome-guided assemblers on dataset esc. 
This may be owing to that esc dataset is not strand-specific, 
causing problems to distinguish orientation of transcripts for 
de novo assemblers. Probably due to the same reason, 
scripture instead achieved higher sensitivity for dataset esc 
while performing worse on the other two datasets. General-
ly trans-ABySS performed well on all datasets, while oases 
had the lowest sensitivity on dataset esc and spombe.  

Overall, genome-guided assemblers found more full- 
length transfrags than de novo assemblers, with the excep-
tion of spombe dataset. One possible reason is that spombe 
dataset has pretty high sequence coverage. As expected, 
cufflinks (RABT) produced much more full-length trans-
frags and less partial transfrags than other assemblers. 
Scripture obtained more full-length transfrags than cufflinks 
for dataset brain and esc, but less than half of the number of 
full-length transfrags detected by cufflinks for spombe 
datastet, suggesting problems in dealing with complexity of 
S. pombe genome. However, the number of known tran-
scripts covered entirely by a single transfrag from scripture 
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(brain, 2435; esc, 3809; spombe, 1574) was much smaller 
than that of full-length transfrags from scripture reported by 
cuffcompare. This reveals that many transfrags from scrip-
ture do not exactly overlap with annotated transcripts on 
initial and terminal exons, although they have identical in-
tron chains (or complete exon-intron borders) as known 
transcripts. Among the three de novo assemblers, trinity 
identified most full-length transfrags and least partial trans-
frags, whereas trans-ABySS recovered most partial transfrags, 
partially because ABySS tends to report fragmented contigs 
on which trans-ABySS is based on. As for novel transfrags, 
scripture recovered most except on dataset spombe, while 
cufflinks and cufflinks (RABT) detected much less. In short, 
among de novo assemblers, oases identified more novel 
transfrags and trans-ABySS found least.  

2.3  Relationships between transcripts reconstruction 
and expression level 

Figure 4 shows the correlation between transcriptome re-
construction efficiency by each assembler and transcript 
expression level clearly. Without exception, cufflinks 
(RABT) reconstructed almost all the transcripts completely 
across all FPKM quantiles on three datasets, while other 
assemblers only reached this performance on ultra-deep 
sequencing dataset spombe at higher expression quantiles. 
Except for cufflinks (RABT), the median coverage of anno-
tated transcripts by assembled transfrags output by all as-
semblers rises when transcript expression level increases, 
suggesting that these assemblers reconstructed more and 
more complete transcripts. However, these assemblers vary 
in the extent of rising. For example, scripture performed 
worst at low expression level on dataset brain, but was only 
worse than cufflinks when reaching high levels. Besides, 
trans-ABySS had slight disadvantages over scripture at low 
quantiles for dataset esc, but caught up with scripture at 
higher expression quantiles. Nevertheless, for dataset 
spombe these assemblers quickly acquired similar results at 
higher levels, although they had large differences at very 
low expression levels, especially scripture which showed 
much lower median coverage of transcripts than other as-
semblers. 

Generally speaking, de novo assemblers are more likely 
to be limited by low read depth than genome-guided assem-
blers, lacking enough information to reconstruct full length 
transcripts. But when sequencing coverage goes up higher, 
de novo assemblers can perform quite well, even better than 
genome-guided assemblers [9,15]. Hence it is not surprising 
to see that de novo assemblers had comparable performanc-
es with genome-guided assemblers throughout the spectrum 
of expression quantiles on all three datasets. Particularly 
trinity surpassed cufflinks except at higher expression levels 
on dataset brain. Oases had a similar performance as trinity 
at higher quantiles, but it performed poorly at lower levels  

 
Figure 4  Correlation between transcript reconstruction efficiency and 
transcript expression level on each dataset. Point in each curve represents 
median coverage of annotated transcripts by a single assembled transfrag 
from corresponding assembler, according to expression quantiles (in 5% 
increments) in dataset brain (A), esc (B) and spombe (C). ‘Merged’ repre-
sents result of cuffmerge. 
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and had a sharper drop at the highest quantile. Trans- 
ABySS appears to perform worst overall among de novo 
assemblers, but it still exceeded scripture sometimes. It is 
also intriguing to note that most assemblers had a more or 
less decrease at the highest expression level, typically on 
dataset esc, which is probably caused by increasing se-
quencing errors in highly abundant reads [15]. Among them, 
scripture always had the biggest drop. 

2.4  Overlap between reconstructed transfrags 

It has been shown that each assembler can detect specific 
transcripts not discovered by others [15]. According to the 
overlap between full length annotated transcripts and novel 
transcripts (Figure S2) respectively, all the five assemblers 
indeed reconstructed considerable amount of unique full 
length and novel transcripts while sharing substantial num-
ber of common ones (full length: brain, 757/11836; esc, 
422/13531; spombe, 85/4886; novel: brain, 2088/10888; esc, 
668/10073; spombe, 57/1635), but they still detected signif-
icant amount of unique transcripts.  

It seems that each assembler found more unique full 
length transcripts and novel transcripts on some datasets and 
less on another. For example, trinity found most unique 
full-length transcripts on spombe dataset, but much less on 
dataset brain and esc. Scripture detected most unique 
full-length transcripts on dataset brain and esc but least on 
dataset spombe. Oases found more unique novel transcripts 
than other de novo assemblers for dataset esc, but least on 
dataset spombe. Cufflinks found most unique novel tran-
scripts on dataset brain and esc, but much less on dataset 
spombe. Conversely trans-ABySS found least unique novel 
transcripts on dataset brain and esc, but much more on da-
taset spombe. This suggests the necessity of integrating dif-
ferent assemblers together to have a more comprehensive 
assembly. 

3  Discussion 

Based on the results of comparing the five assemblers from 
several metrics on three different Illumina RNA-Seq da-
tasets, we can easily observe that each transcriptome as-
sembler has its own strengths which are not implemented by 
others, although cufflinks and trinity seem to have steadily 
better performance across all the three datasets. Cufflinks 
(RABT) had nearly perfect results via utilizing the reference 
annotation. Scripture can reconstruct more long transfrags 
and transfrags with same intron chains as annotated tran-
scripts. De novo assemblers can identify more transfrags 
and isoforms per locus, and detect short transfrags ignored 
by genome-guided assemblers, among which oases, in par-
ticular, can recover much more long transfrags as sequenc-
ing coverage increases. Trans-ABySS consumed much less 
computing resources than other de novo assemblers, and 

still had a pretty good performance, like finding most splice 
variants per gene. Furthermore, with the increase of se-
quencing coverage, de novo assemblers can work better 
than genome-guided assemblers in some aspects. 

Broadly speaking, both genome-guided assembly and de 
novo assembly have their advantages and drawbacks, per-
forming worse or missing some information in certain as-
pects while having a good performance in other conditions. 
Therefore, it is not easy to choose a single best assembly 
method once and for all. The wise choice of transcriptome 
assemblers is always dependent on concrete context. Gener-
ally de novo transcriptome assemblers are much more 
computationally expensive than genome-guided assemblers, 
and are used when reference genome is not available. But 
when the reference genome is accessible, they can also be 
utilized. Furthermore, it might be better to combine ge-
nome-guided assembly and de novo assembly to get a more 
comprehensive transcriptome. This combined approach 
might take advantage of superiorities of either strategy and 
complement the shortness of each other [2]. To validate the 
assumption, we merged assemblies of the five assemblers 
(excluding cufflinks (RABT)) by cuffmerge, and then eval-
uated the results with some of previous metrics. The merged 
assembly significantly improved individual assembly from 
each assembler, from overall assessment to length statistics, 
comparison with annotation and sensitivity to expression 
level (Figures 3 and 4; Tables 1 and 2; Table S5).  

In theory, it is also feasible to integrate these different 
algorithms to get a more ideal assembly. It is said that many 
parts of scripture can be used in de novo assembly [14], and 
RABT of cufflinks can be used with other assemblers too 
[12]. This flexibility in the design of assembly algorithms 
provides possibility to adapt some components of an as-
sembler to fit in different situations. However it requires 
further efforts to design an efficient hybrid method. Cur-
rently as a represent of genome-guided de novo assembler, 
inchworm integrates the two transcriptome reconstruct 
strategies cleverly, hence we tested inchworm03132011 
(http://inchworm.sourceforge.net/) to see its performance in 
terms of previous metrics. The results (Figures 2 and 4; Ta-
bles 1 and 2; Table S5) showed that inchworm had a rela-
tively good performance. Inchworm took much less time 
than de novo assemblers. It also consumed much less 
memory, at most 1 g, due to partitioning aligned reads to 
multiple small subsets and doing assembly separately. 
However, it got more transfrags with shorter length. Its 
performance in comparison with annotation is also not well, 
but it detected more isoforms for each gene and had low 
chimerism. Since it leverages alignment, its accuracy was 
pretty high, whereas it had low completeness and continuity. 
Inchworm transfrags had lowest median coverage of known 
transcripts with respect to expression quantiles on dataset 
brain, but showed better performance on dataset esc and 
spombe. In a word, inchworm had a desired performance, 
despite that it appears to still require optimization. Most 
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importantly, inchworm provides an ingenious way to com-
bine genome-guided assembly and de novo assembly.  

Actually, there have been two commonly used combing 
strategies: assemble-then-align and align-then-assemble [4]. 
Assemble-then-align means using de novo assembly at first, 
followed by extending transfrags through aligning the as-
sembly result along with unassembled reads to the reference 
genome, whereas align-then-assemble refers to firstly re-
constructing transcripts by aligning reads to the reference 
genome, and subsequently handling the small fraction of 
unmapped reads by de novo assembly. But combination 
approaches may vary a lot in practice depending on con-
crete conditions. For instance, cufflinks and velvet have 
been used together to unveil some missing expressed genes 
in human genome, via performing genome-guided assembly 
first and then using de novo assembly to explore novel gene 
outside the reference genome [34]. Whatever ways to com-
bine genome-guided assembly and de novo assembly, it 
seems that integrating multiple assemblers in each category 
can achieve a better assembly.   

In summary, no transcriptome assembler in either ge-
nome-guided assembly category or de novo assembly cate-
gory is the best choice for every condition, and each assem-
bler is able to capture unique transcripts not detected by 
others. Although tuning parameters may get better results 
for some assemblers, it is likely that integrating assemblers 
from both categories together can offer a more accurate 
picture of transcriptome and can further improve genome 
annotation and other downstream analysis. Actually, all 
these assemblers are designed flexibly, revealing the possi-
bility of combing some of them together. Furthermore, 
some combination approaches have been successfully ap-
plied in practice to achieve a more complete transcriptome 
assembly. However, further efforts are needed to explore an 
optimal pipeline of hybrid assembly using both ge-
nome-guided assembly and de novo assembly. Nevertheless, 
adopting an integrative approach to assemble transcriptome 
seems to bring many benefits for further study of transcip-
tome. 
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Figure S1  Read usage for three de novo transcriptome assemblers on three datasets.  

Figure S2  Overlap between reconstucted full-length annotated transcripts and novel transcripts on three datasets. S1 refers to trinity, S2 refers to oases, S3 
refers to trans-ABySS, S4 refers to cufflinks, S5 refers to scripture. A and B, On brain; C and D, On esc; E and F, On spombe. 

Table S1  Details of three datasets 

Table S2  Critical parameters of some assemblers on three datasets 

Table S3  Mapping statistics of spliced alignment on three datasets 

Table S4  Similarities and differences of algorithm features for five assemblers 

Table S5  Number and length statistics of transfrags output by transcriptome assemblers on three datasets 

Table S6  Read usage for velvet-oases on dataset spombe and esc 

 
The supporting information is available online at life.scichina.com and www.springerlink.com. The supporting materials 

are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains en-
tirely with the authors. 
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