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Long non-coding RNAs (lncRNAs) are a group of RNA 
transcripts that exceed 200 nt in length, yet lack significant 
open reading frames (ORFs) [1–4]. In contrast to small 
non-coding RNAs (ncRNAs), such as microRNAs (miR-
NAs) [4–23], small interfering RNAs (siRNAs) [24–31] and 
transfer RNAs (tRNAs) [32–34], there are thousands of 
lncRNA genes discovered during the past three years in the 
human genome and most of their functions remain elusive. 
The long nucleotide chain of lncRNAs can either form a 
complex spatial structure and interact with protein factors, 
or provide a large segment for the concurrent binding of 
many molecules that collectively participate in genomic 
imprinting, X-chromosome silencing, chromosome modifi-
cation, intranuclear transport, transcriptional activation and 
interference, thereby regulating cell growth, differentiation, 
development, senescence and death [35]. 

Accumulating evidence supports that lncRNAs partici-
pate in many physiological processes by modulating gene 
expression at the epigenetic, transcriptional and post-   
transcriptional levels. LncRNAs regulate gene expression at 
the epigenetic level through DNA methylation or demethyl-

ation, RNA interference, histone modifications, chromatin 
remodeling, etc. [3642]. At the transcriptional level, 
lncRNAs depends on the relative position and sequence 
features of the lncRNA and the target gene to regulate gene 
expression. Khps1a is an lncRNA that is transcribed near 
the CpG island of the oncogene sphingosine kinase 1 
(SphK1). Through binding to 3 CC(A/T)GG sites in the tis-
sue-dependent differentially methylated region (T-DMR) of 
SphK1, Khps1a induces the demethylation of the CpG is-
land, resulting in increased expression of SphK1 [43]. An-
other example is the 3′ end of yeast lncRNA Srg1, which 
overlaps the promoter of the target gene Ser3 and inhibits 
Ser3 expression by occupying the binding site for transcrip-
tion initiation factors in the Ser3 promoter [44]. At the tran-
scriptional level, some lncRNAs inhibit the transcription of 
target genes by binding to the promoters of target genes and 
forming stable DNA-RNA triplex complexes [45], while 
others cooperate with transcription modulators in transcrip-
tional regulation and interfere with the formation of the 
transcription initiation complex to repress transcription ini-
tiation and to rapidly alter gene expression patterns [46]. 
Post-transcriptionally, the formation of a RNA dimer via 
complementary base pairing between the lncRNA and the 
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target mRNA can block the binding sites of transcription 
factors and processing-related factors, which regulate 
mRNA splicing, translation and degradation [47]. Some 
lncRNAs bind miRNAs and competitively inhibit the inter-
action between miRNAs and target mRNAs to modulate 
gene expression. Furthermore, lncRNAs can function as 
structural components of larger RNA-protein complexes, 
modulate the activity and subcellular localization of pro-
teins, and thus play additional specific roles [36]. 

Deregulated expression of lncRNAs has been found in a 
variety of cancers [48]. Profiling lncRNA expression in five 
cases of HBV-associated hepatocellular carcinoma tissue 
and non-cancerous tissue, Yang et al. [49] found that 174 
lncRNAs were deregulated in hepatocellular carcinoma. 
Khaitan et al. [50] discovered that 77 lncRNAs were dereg-
ulated in the melanoma cell line WM1552C; the authors 
further analyzed lncRNA expression in 29 melanoma pa-
tient samples and 6 normal skin samples and identified 4 
lncRNAs that were deregulated in both the WM1552C cells 
and the melanoma patient specimens. These data implicate 
lncRNAs in carcinogenesis and tumor progression. Howev-
er, the molecular mechanisms by which most lncRNAs in-
fluence oncogenesis are unknown and require further inves-
tigation. We discuss several tumor-associated lncRNAs: 
H19, ANRIL, MALAT1, HOTAIR and MEG3. 

The lncRNA H19, which is 2.3 kb in length and encoded 
by the maternally imprinted gene H19 on chromosome 
11p15.5, was the first lncRNA determined to be associated 
with cancer. H19 rapidly decreases in most tissues after 
birth, but is reactivated during carcinogenesis. H19 expres-
sion is elevated in several types of cancer, including hepa-
tocellular, bladder and breast carcinomas, which suggests an 
oncogenic function [51]. The oncogene c-Myc directly acti-
vates H19 by binding to the H19 promoter [52], while the 
tumor suppressor p53 decreases H19 expression [48]. Either 
direct or indirect binding of the transcription factor E2F1 to 
the H19 gene promoter stimulates cells to enter S phase and 
accelerates cell cycle progression, resulting in the prolifera-
tion of breast cancer cells [53]. In human colorectal cancer, 
miR-675 is processed from the first exon of H19 and this 
miRNA inhibits the expression of the tumor suppressor 
gene retinoblastoma (RB) to play an oncogenic role [54]. In 
contrast to its oncogenic effect, H19 appears to participate 
in tumor suppression in other contexts. Over-expression of 
H19 in two embryonic tumor cell lines, RD and G401, in-
hibits cell proliferation and tumorigenesis. In a mouse mod-
el of teratocarcinoma, embryos lacking H19 grew larger 
tumors than those expressing H19. In a similar model with 
hepatocarcinoma, mice developed tumor much earlier when 
H19 was absent [51].  

ANRIL (antisense non-coding RNA in the INK4 locus) 
is an antisense lncRNA encoded by the INK4 locus of the 
INK4B/ARF/INK4A gene cluster on chromosome 9p21.3 
and processed into multiple transcripts, including an 
unspliced transcript of 34.8 kb termed p15AS [55]. ANRIL 

is considered an oncogenic lncRNA due to its increased 
expression in leukemia and prostate cancer [36]. By regu-
lating the expression of the tumor suppressor genes 
p15/CDKN2B, p16/CDKN2A and p14/ARF in the INK4B/ 
ARF/INK4A gene cluster, ANRIL modulates cell cycle pro-
gression and cellular senescence and subsequently promotes 
tumorigenesis [56]. ANRIL interacts with the CBX7 com-
ponent of polycomb repressive complex 1 (PRC1) and re-
cruits PRC1 to the INK4B/ARF/INK4A gene cluster, where 
PRC1 induces changes in the chromatin structure that si-
lence the INK4B/ARF/INK4A gene cluster [36]. 

The lncRNA MALAT1 (metastasis-associated lung ade-
nocarcinoma transcript 1), also known as NEAT2, is 7.5 kb 
in length and encoded by the MALAT1 gene located on 
chromosome 11q13.1. Cellular MALAT1 can be post-  
transcriptionally processed to yield the short, highly con-
served, tRNA-like molecule mascRNA and the long 
MALAT1 transcript, which contains a poly(A) tail-like 
moiety [57]. MALAT1 is expressed in normal human tis-
sues and exhibits increased expression in cancers of the 
breast, prostate, colon, liver, lung and others [58]. The ex-
pression level of MALAT1 in the metastatic tumors of 
non-small cell lung cancer (NSCLC) patients is three times 
higher than that of patients lacking metastatic tumors, and 
patients harboring tumors with elevated MALAT1 expres-
sion have a poor prognosis [59]. MALAT1 promotes lung 
adenocarcinoma cell migration in vitro by regulating cell 
motility-related genes at the transcriptional and/or posttran-
scriptional level [60]. The inhibition of MALAT1 reduces 
the proliferative and invasive potential of cervical cancer 
cells in vitro [61]. MALAT1 remains in the nucleus and 
localizes to nuclear speckles, where pre-mRNA processing 
occurs. A recent study revealed that MALAT1 regulates the 
alternative splicing of pre-mRNAs by modulating the acti-
vation of serine/arginine splicing factors [62]. This result 
implies that MALAT1 regulates the post-transcriptional 
processing or modification of RNA. MALAT1 binds to PSF 
(polypyrimidine tract binding protein-associated splicing 
factor) and prevents PSF from binding to the transcriptional 
regulatory region of the oncogene CAGE6, which stimulates 
the abundant transcription of GAGE6 and thus promotes 
tumorigenesis [63]. 

HOTAIR (HOX antisense intergenic RNA), which is 
2158 nt in length, is an antisense lncRNA transcribed near 
the HOXC loci on chromosome 12q13.13 [37]. HOTAIR 
was discovered to be highly over-expressed in primary 
breast epithelial tumors and induced the invasion and me-
tastasis of breast cancer [64]. The expression level of 
HOTAIR in hepatocellular carcinoma tissues was also 
higher than that of adjacent non-cancerous tissues, and the 
high levels of HOTAIR expression correlated with recur-
rence and a poor survival rate in liver cancer patients that 
received liver transplants [65]. In addition, decreasing the 
expression of HOTAIR in breast cancer and hepatocellular 
carcinoma cell lines inhibited tumor invasion [64,65]. Fur-
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thermore, inhibition of HOTAIR sensitized tumor cells to 
tumor necrosis factor α (TNFα)-induced apoptosis, as well 
as apoptosis induced by treatment with chemotherapeutic 
agents cisplatin and doxorubicin [65]. HOTAIR functions as 
a molecular scaffold, binding at least two distinct histone 
modification complexes. The 5′ region of HOTAIR binds 
the PRC2 complex responsible for H3K27 methylation, and 
the 3′ region of HOTAIR binds the LSD1/CoREST/REST 
complex that mediates the demethylation of H3K4 [1]. 
HOTAIR recruits the PRC2 complex to specific target 
genes on a genome-wide scale, thereby facilitating abnor-
mal H3K27 methylation and the epigenetic silencing of tu-
mor metastasis suppressor genes, including JAM2, PCDH10, 
and PCDHB5. Furthermore, the HOTAIR-mediated re-
cruitment of PRC2 induces the expression of pro-metastasis 
genes, such as ABL2, SNAIL, and Laminin, thereby promot-
ing breast cancer metastasis [64]. 

MEG3 (maternally expressed gene 3), 1.6 kb in length, is 
encoded by the MEG3 gene of the DLK1/MEG3 locus on 
human chromosome 14q32.3. The MEG3 gene is a mater-
nally imprinted gene composed of 10 exons, and 12 MEG3 
isoforms have been detected to date [66]. MEG3 is ex-
pressed in multi-organs and exhibits particularly high ex-
pression levels in the brain and the pituitary gland; however, 
MEG3 expression is reduced or absent in some tumors and 
tumor cell lines. Multiple mechanisms, including gene dele-
tion, hypermethylation of the promoter and the intergenic 
region, contribute to the loss of MEG3 expression in tumors 
[67]. MEG3 inhibits the proliferation of tumor cells and 
modulates tumor angiogenesis by regulating p53, MDM2, 
Rb, p16INK4A, Notch, VEGF and their signaling pathways, 
thereby suppressing tumorigenesis [68]. MDM2 is an im-
portant negative regulator of the p53 protein, and both p53 
and MDM2 are target genes of MEG3 [69]. In tumor cells, 
MEG3 can either directly increase p53 expression or indi-
rectly enhance p53 expression through targeted inhibition of 
MDM2 [69]. The activity of p53 requires the transcription 
of the full length MEG3 transcript, but not the translation of 
the MEG3 protein. Intriguingly, MEG3 fails to stimulate 
expression of the p53 target gene p21Cip1, but can increase 
the expression of the cell proliferation inhibitory gene 
GDF15 through p53 [69]. Further studies revealed that 
MEG3 enhances p53 binding to the GDF15 promoter but 
not to the p21Cip1 promoter [69]. Therefore, MEG3 activates 
p53 and selectively induces the expression of p53 target 
genes to inhibit the proliferation of tumor cells. Furthermore, 
MEG3-mediated functional activation of p53 depends on 
MEG3 secondary structure rather than the primary sequence 
of MEG3 [66]. MEG3 also suppresses tumor cell prolifera-
tion directly by regulating Rb phosphorylation and indirect-
ly by activating the tumor suppressor gene p16INK4A, which 
positively regulates Rb [68,70]. In a Meg3 knock-out mouse 
model, Meg3 was discovered to suppress angiogenesis by 
regulating VEGF signaling pathways [71]. Additionally, 
Meg3 regulates cell proliferation, differentiation and other 

important processes by modulating Notch signaling path-
ways to suppress tumorigenesis [71]. 

There are other lncRNAs that participate in carcinogene-
sis and cancer progression, including Zeb2 NAT (natural 
antisense transcripts, also known as antisense RNA), p21 
NAT, CCND1 ncRNA, etc. The Zeb2 gene is a transcrip-
tional repressor of E-cadherin. A recent study demonstrated 
that the NAT of Zeb2 (Zeb2 NAT, also known as Sip1 NAT) 
increases Zeb2 protein expression by regulating splicing 
and inhibiting E-cadherin expression in mesenchymal cells, 
which subsequently induces epithelial-to-mesenchymal 
transition (EMT) and promotes tumor metastasis [47]. The 
lncRNA p21 NAT, which is the NAT of the tumor suppres-
sor p21/CDKN1A, cooperates with Ago-1 to induce histone 
H3K27 methylation of the p21/CDKN1A promoter region, 
thereby inhibiting p21 expression and promoting tumor-
igenesis [72]. CCND1, encoding cyclin D1 protein, is an 
important cell cycle regulatory gene that, when 
over-expressed, induces malignant hyperplasia and pro-
motes tumorigenesis. When cells are subjected to DNA 
damage, the lncRNA CCND1 ncRNA is transcribed from 
the regulatory sequence of the CCND1 gene promoter re-
gion [73]. The CCND1 ncRNA recruits the RNA-binding 
protein TLS (translocated in liposarcoma) to the CCND1 
promoter region and converts the TLS protein from the in-
active conformation into the active form. The modified TLS 
then binds to and inhibits CREB-binding protein (CBP) and 
p300 histone acetyltransferase activities, thereby reducing 
the expression of CCND1 [73] and suppressing tumorigene-
sis.  

Many important biological functions of lncRNAs have 
been discovered recently as lncRNAs have become another 
hotspot in the field of molecular oncology. Substantial evi-
dence indicates that lncRNAs participate in all steps of tu-
mor initiation and development; therefore, thorough eluci-
dation of their functions and molecular mechanisms are of 
great importance in the diagnosis and treatment of cancer. 
For example, the lncRNA DD3 demonstrated greater speci-
ficity than serum prostate-specific antigen (PSA) in pre-
dicting prostate tumors and is being developed into a new 
diagnostic marker for prostate cancer [74]. HOTAIR may 
serve as a potential biomarker for the lymph node metasta-
sis of hepatocellular carcinoma [65]. Additionally, prevent-
ing the interaction between HOTAIR and the PRC2 or 
LSD1 complex may limit the metastatic potential of breast 
cancer cells [48]. Although our current knowledge on 
lncRNAs is only the tip of the iceberg, novel methods and 
technology will eventually lift the mysterious veil covering 
lncRNAs, thereby enabling the development of new cancer 
therapeutic strategies. 
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