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Primary ovarian insufficiency (POI) occurs in about 1% of female population under the age of 40, leading to reproductive 
problems, an earlier encounter with menopausal symptoms, and complicated diseases. There are three presumable mechanisms 
involved in the development of POI, namely apoptosis acceleration, follicular maturation blocking and premature follicle acti-
vation, through the following studied causes: (i) chromosomal abnormalities or gene mutations: mostly involve X chromosome, 
such as FMR1 premutation; more and more potentially causal genes have been screened recently; (ii) metabolic disorders such 
as classic galactosaemia and 17-OH deficiency; (iii) autoimmune mediated ovarian damage: observed alone or with some cer-
tain autoimmune disorders and syndromes; but the specificity and sensitivity of antibodies towards ovary are still questionable; 
(iv) iatrogenic: radiotherapy or chemotherapy used in cancer treatment, as well as pelvic surgery with potential threat to ova-
ries’ blood supply can directly damage ovarian function; (v) virus infection such as HIV and mumps; (vi) toxins and other en-
vironmental/lifestyle factors: cigarette smoking, toxins (e.g., 4-vinylcyclohexene diepoxide), and other environmental factors 
are associated with the development of POI. The etiology of a majority of POI cases is not identified, and is believed to be 
multifactorial. Strategies to POI include hormone replacement and infertility treatment. Assisted conception with donated oo-
cytes has been proven to achieve pregnancy in POI women. Embryo cryopreservation, ovarian tissue cryopreservation and oo-
cyte cryopreservation have been used to preserve ovarian reserve in women undergoing cancer treatments.  
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Primary ovarian insufficiency (POI), commonly referred to 
as premature ovarian failure (POF), is defined as the occur-
rence of amenorrhea (for 4 months or more) before the age 
of 40 in women, accompanied with an increase of serum 
FSH to menopausal level (usually over 40 IU L1, obtained 
at least 1 month apart), and estradiol levels less than 50 pg 
mL1 (which indicate hypoestrogenism) [1]. Primary ovari-
an insufficiency is first brought to light by Fuller Albright in 
1942, who emphasized that the end stage of ovarian func-
tion is the primary defect rather than abnormality in gonad-
otropin secretion [2], and avoided the discomforting and 
inaccurate stressing on “failure”, like death-sentence for 

ovarian function and conception. 
Menopause is a destined phase of women, which is ex-

pected to occur at around the age of (50±4) years in US 
women [3]. The age of 40 is two standard deviations below 
this average [4]. With an incidence of 1% in women under 
the age of 40, and 0.1% in women under the age of 30 [5], 
POI renders patients estrogen deficiency and anovulation, 
resulting in vasomotor symptoms (hot flashes and night 
sweats), atrophic vaginitis, dyspareunia, primary or second-
ary amenorrhea, and infertility. 76% of POI cases developed 
after normal puberty and establishment of regular menses 
[6]. Some of such conditions occur after stopping hormonal 
contraceptives intake, some occur as failure to resume 
menses after pregnancy, and some with prodromal menstru-
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al disorders. But, still 10% of patients present with primary 
amenorrhea. Even though presented with clinical findings 
similar to menopause, almost 50% of POI patients have 
varying and unpredictable residual ovarian function, and 
about 5 to 10% are able to accomplish pregnancy [710]. 

POI is far beyond a group of physical discomforts. Psy-
chosocial and reproductive problems that come along as 
well as the long-term risks associated with POI need to be 
attentively evaluated and taken care of in an integrated 
management. Compared with women in general population, 
patients with POI are more like to have bone and cardio-
vascular diseases such as osteoporosis myocardial infarction 
and stroke [11,12].  

There are no well-established diagnostic criteria yet, but 
differential diagnosis is needed to rule out pregnancy, and 
other underlying conditions causing secondary amenorrhea 
such as polycystic ovary syndrome, hypothalamic disorders, 
or uncontrolled diabetes mellitus [13]. Serum hormonal 
levels, anti-Müllerian hormone (AMH), antral follicle count 
(AFC) and ultrasonography of ovaries, together with age are 
traditional indicators to evaluate ovarian aging [14]. X 
chromosomal abnormalities and FMR1 premutations are 
most commonly known intrinsic causes of POI [6], but only 
a limited number of clear causal mutations (FMR1, BMP-15, 
GDF-9) are reported to have been identified and incorpo-
rated as diagnostic biomarkers. Moreover, antibodies 
screening still lacks specificity and sensitivity [15]. It is of 
importance that more candidate genetic aberrations, anti-
bodies, and other reliable biomarkers are investigated and 
validated. 

1  Etiologic mechanisms of primary ovarian in-
sufficiency 

The pathophysiological development of POI remains un-
known in most cases, and is yet to be fully studied. Possible 
underlying causes (Table 1) include chromosomal abnor-
malities, gene mutations, autoimmunity, metabolic disorders, 
infections, and iatrogenic treatments somehow leading to 
follicle dysfunction or follicle depletion [1]. The serum 
AMH level, which is correlated with remaining primordial 
follicle counts, can distinguish follicle dysfunction and fol-
licle depletion. Altered rate of apoptosis, follicle maturation 
blocking and abnormalities in primordial follicle activation 
that result in reduced number of functional follicles or ac-
celerated atresia are possible involved molecular mecha-
nisms in one or more types of POI [16,17].  

At a certain point of time, the majority of primordial fol-
licles in the ovary rest in a quiescent state, avoiding prema-
ture follicular depletion, which could end up in POI. Adhi-
kari et al. [18] demonstrated the function of tumor suppres-
sor tuberous sclerosis complex 1 (Tsc1) in oocytes to pre-
vent premature activation and therefore maintain the quies-
cence of primordial follicles, through negative regulation of 
mammalian target of rapamycin complex 1 (mTORC1) us-
ing mutant mouse models. They suggested that Tsc/Mtorc1 
signaling pathway and PTEN/PI3K signaling pathway reg-
ulate the on-and-off of primordial follicles activation col-
laboratively, ensuring a normal reproductive lifespan. 
Meanwhile, novel concept has arisen to challenge tradition-
al understanding of ovarian functions, stating that ovarian  

Table 1  Classification of primary ovarian insufficiency by etiologya) 

Etiology Known risk factors Diagnostic methods/features 

Genetic 

Chromosomal abnormalities 
X monosomy, trisomy X, X chromosome mosaicism, deletions, or 

balanced X/autosomal translocations detected by karyotyping or FISH 
Mutated POI-related genes on X chromosome Genetic screening for FMR1, BMP-15, etc. 

Mutated POI-related genes on autosome 
Genetic screening for GDF-9, FOXL2, FSHR, LHR, FSH-β, LH-β, 

INHA, GALT, AIRE, etc. 

Metabolic 
Classic galactosaemia 

Family history, symptoms, blood/urine/amniocentesis tests for enzyme 
levels, genetic screening for GALT 

17-OH deficiency 
Symptoms, serum gonadal and adrenal sex hormones levels, Genetic 

screening for 17-hydroxylase 

Autoimmune 
Accompanied with APS, dry-eye syndrome, myasthe-

nia gravis, rheumatoid arthritis, or SLE, etc. 

Serum ovarian antibodies, adrenal cortex antibodies, 
3β-hydroxysteroid dehydrogenase (3β-HSD) autoantibodies, antibod-

ies against FSH and LH receptors, anti-thyroid antibodies, an-
ti-parathyroid antibodies, etc. Genetic screening for AIRE 

Iatrogenic Chemotherapy 
High risks: alkylating agents 

Low risks: vinca alkaloids, anthracyclic antibiotics, and antimetabo-
lites Age and dose dependent 

 Radiotherapy Age and dose dependent 

 Surgical procedures Esp. pelvic surgeries 

Viruses Mumps, HIV infection Symptoms of corresponding infection, test for antibodies 

Environmental/lifestyle 
Toxins (e.g., VCD), cigarette smoking, nulliparity, 

lifelong irregular menstrual patterns 
 

Existing somatic diseases e.g., epilepsy  

a) FISH, fluorescence in situ hybridization; APS, autoimmune polyglandular syndrome; SLE, systemic lupus erythematosus; VCD, 4-vinylcyclohexene 
diepoxide. 
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germ cells are capable of self-renewal over time [19]. Fur-
ther studies are required to support such optimistic concept. 

Approximately 10%15% of POI cases have a positive 
family history [6,20]. Many genes have been reported to 
have association with familial POI. Davis et al. [21] looked 
into 41 cases of familial premature ovarian failure. Clear 
genetic association has been identified in 11 cases, and the 
investigation in siblings of the remaining 30 families re-
vealed female sex preponderance, indicating that X chro-
mosome defect is an important cause of familial premature 
ovarian failure. In 2008, Hunter et al. [22] compared wom-
en from 225 families with a history of fragile X syndrome 
with women from families in the general population, and 
reported significant familial aggregation of age at meno-
pause with an estimated additive genetic variance of 
0.55–0.96. Adjustment for FMR1 repeat size and confound-
ers is performed. 

In fact, a majority group of POI cases arise spontaneous-
ly, alone or together with a series of systemic syndromes. If 
no causes are found after thorough evaluation, they are  
classified as idiopathic or spontaneous ovarian insufficiency. 
Abnormality on X chromosome account for a portion of 
spontaneous insufficiency, while karyotypically normal 
cases have been reported to be associated with premutation 
of FMR1 gene [23], autoimmune response to steroidogenic 
cells, or some kinds of syndromes. 

1.1  Genetic causes 

Genetic causes are considered the main factor in determin-
ing age at menopause in general population, and are report-
ed in 7% of POI cases [6,24]. The chromosomal and genetic 
aberrations mostly involve X chromosome, yet increased 
findings of autosomal involvement are reported. Even 
though a large number of related genes have been found, 
with some understanding of their pathogenesis, the precise 
genetic mechanisms are often unclear. Generally, these ab-
errations may impair meiosis through reduced gene dosage 
and non-specific chromosome effects, therefore decrease 
the reserves of primordial follicles, and accelerate atresia of 
follicles [15]. Involved genes have various biological func-
tions including regulation of the hypothalamic-pituitary- 
ovarian (HPO) axis, regulation of oogenesis, coordination 
of development of germ cell to primordial stage (GDF9, 
BMP15 and NGF), regulation of development of further 
stages (FSH and LH), and participation in systemic endo-
crinal functions [25,26]. 

1.1.1  Chromosomal abnormalities 

X chromosomal abnormalities have been described in both 
familial and non-familial POI patients. Almost all kinds of 
defects are involved, including X monosomy (Turner’s  
syndrome), trisomy X, X chromosome mosaicism, deletions, 
and balanced X/autosomal translocations [8,15,27]. How-
ever, very limited cases of POI are reported to have associa-

tion with translocation within autosomes [2830]. In X 
monosomy, the depletion of great number of oocytes may 
be associated with haploinsufficiency for loci on the X 
chromosome, or a nonspecific meiotic breakdown, as the 
solitary X is unable to pair. 

1.1.2  POI genes on X chromosome 

The Fragile X mental retardation 1 gene (FMR1) is located 
in Xq27.3 [15]. Mutations of FMR1 can lead to the expan-
sion of a polymorphic CGG repeat in the 5′ untranslated 
region, which can become unstable and expand in length 
from generation to generation [22]. According to the count 
of repeats, alleles are classified in four types, normal range 
(2634 repeats), intermediate (3554 repeats), premutation 
(55199 repeats), and full mutation (greater than 200 re-
peats) [31]. When there is a full mutation, the gene is si-
lenced by methylation, resulting in the absence of FMR 
protein (FMRP) expression, which causes mental retarda-
tion. Premutations of FMR1 gene, especially those with 
~8099 repeats, are the most common discovered genetic 
cause of spontaneous 46, XX POI, and the resultant POI is 
named the fragile X-related primary ovarian insufficiency 
(FXPOI) [6,17,22,32]. Premutation alleles remain un-
methylated, and lead to increased FMR1 transcription and 
decreased levels of FMRP [22]. Premutation alleles occur in 
~7% of sporadic POI and ~21% in familial POI, signifi-
cantly higher than in general population [33,34]. Further-
more, evidence suggests that women with premutation tend 
to have decreased ovarian function along a continuum of 
severity, dependent on CGG repeat length and environmen-
tal factors, even not yet met the criteria of POI. Full muta-
tion, however, is not associated with POI [35]. Increased 
repeat size might play a role in the pathogenic process of 
POI throughs elevated level of mRNA transcript level 
[36,37]. Bretherick et al. [37] considered the FMR1 gene as 
a possible indicator for age at menopause. Clinics already 
establishing the detection of FMR1 premutation as a routine 
biomarker to screen potential patients with POI. 

Region Xq13 is critical for ovarian maintenance, as 
nearly all terminal deletions originating in this region are 
associated with primary amenorrhea and ovarian failure 
[25]. Xq13.3-21.1 is designated as premature ovarian failure 
2 (POF-2). Region Xq 21.3-Xq27 is labeled premature 
ovarian failure 1 (POF-1). Despite of lower significance 
than POF-1 genes, mutations in POF-1, specifically at Xq25 
or 26, often result in secondary amenorrhea [25,38,39]. 
Other potential POI genes located on X long arm: (i) Di-
aphanous homolog 2 (DIAPH2), associated with cytoskele-
ton and involved in oogenesis; (ii) Dachshund homolog 2 
(DACH2); (iii) POF1B, mapped to distal POF2, on Xq21, 
associated with non-muscle myosin, which plays a pivotal 
role in cell division; (iv) the X-inactivation gene (XIST), 
mapping to Xq13. Associated with haploinsufficiency of 
vital ovarian developmental genes; (v) X-propyl aminopep-
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tidase 2 (XPNPEP2), mapping to critical region Xq25; (vi) 
FSH primary response homologue 1 (FSHPRH1), mapping 
to Xq22, expressed in the developing ovary [15,25]. 

Growth differentiation factor 9 (GDF-9) and Bone mor-
phogenetic proteins 15 (BMP-15, GDF-9B) are two growth 
factors that are present in follicles during most stages of 
folliculogenesis. They share a coincident primary structure 
and spatio-temporal expression pattern in ovary [40]. The 
roles of the two proteins in follicle growth and development 
can be co-operative but with species-dependent granulosa 
cell responses [41]. GDF-9 is located on an autosome [25], 
and will be discussed in detail later. BMP-15 gene is located 
at Xp11.2 within the Xp POF critical region [42,43]. 
BMP-15 null males have intact fertility, but BMP-15 
knockout female mice were subfertile, with reduced litter 
size. The first BMP-15 mutation associated with primary 
ovarian insufficiency was detected in 2004 [44], being an 
A-G transition at base pair 704 of BMP-15 gene, resulting 
in a non-conserved substitution of Y235C. It was a hetero-
zygous mutation in BMP-15 found in two sisters, acting in a 
dominant negative fashion. Many other mutations in 
BMP-15 gene are later on identified in women with primary 
ovarian insufficiency [4447]. Research on different sheep 
breeds uncovered several point mutations on BMP-15 gene 
that could result in ovulation variability, indicating the role 
of BMP-15 in ovulation, but there were no significant rele-
vancy between BMP-15 gene SNPs and dizygotic twinning 
[48]. Impaired posttranslational proprotein processing of the 
BMP-15 and/or GDF-9 proteins results in reduced mature 
protein levels, and is associated with increased ovulation 
rate and litter size. Therefore, their mutations might result in 
a limited period of enhanced ovulation and fertility in early 
phase of reproductive age, increasing possibility of dizy-
gotic twins as well as premature drain of ovarian reserve 
[49]. 

Other potential POI genes located on X short arm: (i) 
Ubiquitin-Specific Protease 9 (USP9X), also known as 
Drosophila fat facets related X-linked gene (DFFRX), map-
ping to Xp11; (ii) Zinc Finger X (Zfx): Zfx null mice are 
characterized by diminished germ cell number in ovaries 
and testes and impaired fertility [15,25]. 

1.1.3  Autosomal POI genes 

GDF-9 is an oocyte-secreted growth factor, which influ-
ences differentiation of oocyte, granulosa and theca cells 
[50,51]. GDF-9 gene is located on chromosome 5 (5q31.1) 
[25]. According to a research using GDF-9 null mouse 
model, while a complete loss of GDF-9 does not impact 
male fertility, homozygous females were infertile [52]. 
Homozygous GDF-9 null female mice present significantly 
smaller ovaries than wild type, probably because the granu-
losa cells lost mitotic ability and the follicle growth is 
blocked at the primary one-layer follicle stage [40,53]. 
Eight SNPs were uncovered across the coding region of 
GDF-9 gene [54,55], in which GDF-9S77F and GDF-9S109R 

were directly associated with sterility phenotype in ewes 
[5456]. GDF-9P103S mutation is identified both in patients 
with non-syndromic primary ovarian insufficiency and in 
mothers of dizygotic twins indicating polyvulatory feature 
[57,58]. 

Blepharophimosis-ptosis-epicanthus inversus syndrome 
(BPES) is an autosomal dominant condition caused by 
FOXL2 mutation. BPES is classified into two types accord-
ing to the presence of POI. Type I BPES is complicated 
with POI [15]. Pisarska et al. [59] used coimmunoprecipita-
tion and kinase assays to demonstrate that LATS1 is coex-
pressed with FOXL2 in granulosa cells of small and medi-
um follicles in ovaries in mice. LATS1 phosphorylates 
FOXL2 at its serine residue, and promotes FOXL2’s repres-
sive activity on the StAR promoter, which is involved in 
granulosa cell differentiation. Mutant FOXL2 or its dysreg-
ulation by LATS1 may result in inappropriate rate of gran-
ulosa cell differentiation and follicle maturation, potentially 
causing POI.  

As part of the hypothalamo-pituitary-ovarian axis, FSH 
and LH pathway are pivotal for normal ovarian functions. 
FSH-β is located at 11p13, and mutations in this gene are 
reported in two women primary amenorrhea [60]. FSH re-
ceptor is crucial for recruitment of ovarian follicles and fol-
licular maturation from and beyond the preantral stage 
[15,25]. FSHR gene maps to 2p21p16. The missense mu-
tation C566T (Ala566Val) was found in many families of 
women with 46,XX primary or secondary amenorrhea in 
Finland, but seemed to be uncommon elsewhere [61]. Nine 
different loss-of-function mutations have been identified in 
six POI patients [6], and there are also reports about muta-
tions of FSHR associated with resistant ovary syndrome 
[15]. Polymorphisms have no known significance to ovarian 
function so far [62]. Women with POI are found to more 
commonly have LH-β subunit variants than controls [63], 
and a homozygous LH-β mutation was found in a woman 
who experienced secondary amenorrhea as well as her two 
hypogonadal male siblings [64]. LH receptor is necessary 
for follicle ovulation. LHR maps to 2p21, near the locus for 
FSHR [15,25]. LH receptor (LHR) mutations in 46,XX may 
cause gonadal dysgenesis or premature ovarian failure. A 
homozygous C544→X mutation was found in a 22-year-old 
46, XX female with primary amenorrhea. All of her three 
siblings (46,XY), sharing the same mutation, had a reversed 
sexual phenotype and Leydig cell hypoplasia, and her fe-
male sibling experienced anovulation [65]. 

Inhibin has dual actions on FSH secretion by the pituitary 
and gametogenesis. There is a strong association between 
POI and variants in the inhibin-α subunit gene (IHNA) (e.g., 
G769A missense mutation) in female population in India 
and New Zealand [66,67]. The INHA G769A mutation, with 
prevalence from 011% in different population [15], results 
in normal production of dimeric inhibin A and B, but im-
paired bioactivity of inhibin B, which may be related to POI 
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development [66]. Low serum inhibin B level has been re-
ported to have association with reproductive aging, dimin-
ished ovarian reserve, and POI [6870]. 

Galactose 1-phosphate uridyl transferase (GALT) gene, 
located at 9p13, can cause galactosemia, a rare autosomal 
recessive disorder [15]. Galactosemia is a metabolic cause 
of POI, and will be discussed in detail in the following part 
in this article. GALT heterozygotes appear to be at no in-
creased risk of POI. Human homozygotes and GALT 
knockout mice do not obligatorily have POI, and those who 
have POI seem to present with varied severity, possibly due 
to redundant bypass [25,71]. 

AIRE gene maps to 21q22.3. Mutations of the gene are 
responsible for autoimmune polyendocrinopathy-candidia- 
sis-ectodermal dystrophy (APECED) syndrome. Up till  
now, more than 40 mutations have been identified [15,39]. 
Discussion is continued in the following part with regards to 
autoimmune mediated mechanisms. 

A genome-wide study on ovarian reserve in reproduc-
tively normal women with regular cycles aged 2545 years 
(232 Caucasian and 200 African American) was performed, 
reported to be the largest study on this issue. Scientists ana-
lyzed genetic variants across the genome associated with 
FSH and AMH, and identified one SNP approaching ge-
nome-wide significance and several nominal SNPs nearby 
and within the MYADML (myeloid-associated differentia-
tion marker-like) gene, which were associated with FSH 
levels. They also found that several variants associated with 
AMH or FSH map to the same genomic regions of 
12p13.1–13.2 and 13q12.13, which may be a hot spot for 
causative alleles linked with ovarian reserve. As none of the 
variants were within or close to known ovarian genes, the 
study provided excellent candidate genes for further ap-
proach to possible genetic causes of POI [72]. 

Apart from the above genes, other genes involved, or 
potentially involved in POI in women include: fragile men-
tal retardation 2 (FMR2), newborn ovary homeobox protein 
(NOBOX), factor in the germline-α (FIGLα), forkhead box 
O3 (FOXO3), estrogen receptor-α (ERα), estrogen recep-
tor-β (ERβ), splicing factor 1 (SF1, NR5A1), Eukaryotic 
initiation factors 2B (EIF2B), Noggin, POLG, Wilm’s tumor 
suppressor gene-1 (WT1), Ataxia telangiectasia mutated 
(ATM), mitochondrial DNA polymerase-γ, connexin 37, 
CYP-19, G-protein coupled receptor 3 (GPR3), LIM home-
obox 8 (LHX8), NANOS3, 17-hydroxylase (CYP-17) [15, 
39,73,74]. Further studies are required before their use in 
genetic diagnosis for POI. 

1.2  Metabolic disorders 

Classic galactosaemia is an inherited inborn disease caused 
by GALT deficiency. Severe phenotypes lead to lethal toxic 
syndrome and cognitive and motor abnormalities [75]. 
17%–67% galactosemic women are reported to have POI 
[71,76], and studies show that classic galactosaemia leads to 

varied level of ovarian dysfunction in different individuals 
[77]. Almost all women with homozygous mutation in the 
GALT gene present POI sooner or later in their lives [71]. 
FSH is often elevated as early as from infancy (4 months4 
years). It has been reported that neonatal ovaries have nor-
mal morphology, number and folliculogenesis [78]. How-
ever, histological examination on ovaries in young women 
suffering from classic galactosaemia revealed severely de-
creased number of primordial follicles with normal mor-
phology, without intermediate or mature follicles. Ovaries 
of patients in their teens and twenties have been found to be 
hypoplastic and streak-like. These findings, suggesting ma-
ture arrest, have also been observed in patients with FSHR 
inactivating mutations and other genetic diseases affecting 
the ovary [77]. Although girls with classic galactosaemia 
are often believed to be infertile, fluctuating POI course and 
spontaneous pregnancies have been reported, even with low 
AMH, latter being the indicator for poor ovarian reserve 
[79,80]. Mechanisms and timing of follicle development 
disturbance are still unclear. It have been hypothesized that 
the accumulation of galactose and its toxic metabolites (ga-
lactose-I-phosphate and galactitol) after birth (since toxic 
metabolites in fetus should be cleared rapidly by maternal 
enzymes) leads to direct ovarian damage. Apart from this, 
hypoglycosylation of glycoproteins or glycolipids, oxidative 
stress and activation of apoptosis could result in FSH dys-
function [15,75,81]. Gubbels et al. [75] compared the FSH 
isoform patterns between 5 galactosaemia patients, one 
PMM2-CDG (a primary glycosylation disorder) patients, 
and 5 naturally postmenopausal women, finding that less 
acidic isoform of serum FSH due to hypoglycosylation is 
not significantly related to the development of POI. Auto-
immune mechanisms might also be involved, but no anti-
bodies have been reported yet. Although classic galac-
tosaemia is strongly associated with POI and infertility, 
correct interpretation of pregnancy chance at different time 
is needed. 

17-OH deficiency has also been reported to have caused 
POI [39]. 

1.3  Autoimmune causes 

A study of a cohort of 357 consecutive patients presenting 
with POI showed that 14.3% of cases are clinically and/or 
biologically associated with autoimmunity [6]. The preva-
lence of autoimmune diseases reported in other studies var-
ied from 10%20% to 55% [15].  

POI is associated with a series of autoimmune diseases 
and syndromes, such as Addison’s disease and Autoimmune 
polyglandular syndrome, dry-eye syndrome, myasthenia 
gravis, rheumatoid arthritis, or systemic lupus erythemato-
sus [15,8285]. A study of 266 women with 46,XX sponta-
neous premature ovarian failure showed a clear association 
between histologically-confirmed autoimmune oophoritis 
and serum adrenal cortex antibodies [10]. Autoimmune oo-
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phoritis is characterized by mononuclear cell infiltration 
into the theca layer of antral follicles. Steroid cell autoim-
munity primary ovarian insufficiency (SCA-POI) is caused 
by autoimmune destruction of theca cells, yielding elevated 
concentrations of inhibin, but there is still a preserved pool 
of functioning follicles [84,86].  

Several ovarian autoimmunities may be responsible for 
primary ovarian insufficiency, and the breakdown of im-
munological tolerance can be provoked by either genetic or 
environmental factors [87,88]. However, specificity and 
pathogenic importance of ovarian antibodies are questiona-
ble [15]. Therefore, diagnosis of autoimmune-mediated POI 
is still a challenging task. Non-ovarian antibodies potential-
ly mediating autoimmune damage in POI include: autoanti-
bodies to steroid producing cells, 3β-hydroxysteroid dehy-
drogenase (3β-HSD) autoantibodies, antibodies against FSH 
and LH receptors, anti-thyroid antibodies, anti-parathyroid 
antibodies, autoantibodies to a zona pellucid 3 epitope, etc. 
[10,15]. Apart from autoantibodies, alteration of T-cell 
subsets and T-cell-mediated injury, decrease in number and 
activity of natural killer cells may also be responsible for 
autoimmune ovarian damage [39]. 

1.4  Iatrogenic causes 

Chemotherapy and radiotherapy, potentially lifesaving 
therapies for several neoplastic diseases and thalassemia 
major undergoing bone marrow transplantation, is responsi-
ble for a portion of primary ovarian insufficiency [89,90]. 
The effect of chemotherapy and radiotherapy are dependent 
on types of drugs, location of radiation field, dose and age 
[15,91]. Ovaries of young women appear to be relatively 
resistant to these two forms of gonadotoxicity.  

Alkylating agent cyclophosphamide (CYC) is a 
non-cell-cycle-specific drug that is cytotoxic even to resting 
cells [91], and results in up to 40% risk of ovarian failure at 
childbearing age [92]. Alkylating agents are reported to be 
of high risk of gonadotoxicity, while vinca alkaloids, an-
thracyclic antibiotics, and antimetabolites are of relatively 
low risk [93]. Histological examination of ovaries in pa-
tients after treatments with alkylating agents, antimetabo-
lites, anthracycline antibiotics, vinca alkaloids, or predniso-
lone showed cortical fibrosis, blood vessel damage, and 
reduced follicle numbers [94,95]. Anticancer drugs are 
presumed to interrupt essential cell processes, arrest 
cell proliferation and therefore cause ovarian follicular 
and stromal damage [93]. Chemotherapy does most 
harm to mature ovarian follicles during treatment, by 
inducing apoptosis in granulosa cells. But the extent of 
effects on primordial and dormant follicles needs fur-
ther studies. A meta-analysis by Clowse et al. [92] reached 
a conclusion that the adoption of GnRHa during chemo-
therapy appears to prevent ovarian damage and help im-
prove ovarian function and increase pregnancy chance. 
Although some scientists believe that 65%70% cases of 

POI are reversible after stopping medication, the long-term 
impairment of fertility is still a concern [93].  

26% of patients who received whole abdominal irradia-
tion at mean age of 3.45 years developed POI at an average 
age of 23.5 years [91]. Although best efforts are made to 
shield the gonads from radiation during cancer therapy, it is 
hard to preserve intact ovarian function. Even cranial irradi-
ation could affect ovulation and fertility by disrupting hy-
pothalamic-pituitary-ovarian (HPO) axis. Direct radiation 
damages the ovaries in similar ways to chemotherapy, pos-
sible mechanisms being increased activation of follicles and 
resultant accelerated atresia [93]. 

Surgeries, especially those in pelvic region, such as hys-
terectomy [96], may also cause POI by affecting blood sup-
ply to ovaries or causing local inflammation [97]. Laparo-
scopic ovarian drilling (LOD) in women with PCOS does 
not necessarily end in diminished ovarian reserve or POI 
according to existing literature [98].  

1.5  Viruses 

Several cases of mumps oophoritis have been described as 
the presumable cause of POI [99,100]. A multicenter U.S. 
study of 1139 HIV seropositive and 292 seronegative 
women showed that HIV seropositive women were three 
times more likely to have prolonged amenorrhea (for at 
least 1 year) than HIV seronegative women [101]. A pro-
spective pilot study in France evaluated ovarian function of 
78 HIV-seropositive women using markers including the 
antral follicular count (AFC), follicle-stimulating hormone 
(FSH), inhibin B and antimüllerian hormone (AMH). The 
four markers all showed high rate of abnormal values, being 
63%, 36%, 57%, 23% respectively for AFC, FSH, inhibin B 
and AMH [102]. These results indicate that HIV infection 
or the corresponding antiretroviral therapy may impair 
ovarian functions and fertility, and end in POI. 

1.6  Toxins and other environmental/lifestyle factors 

4-vinylcyclohexene diepoxide (VCD) is an ovotoxic occu-
pational chemical. Repeated doses of VCD can accelerate 
apoptotic process of atresia, and selectively destruct pri-
mordial and primary follicles in rats and mice. Molecular 
studies using cultured whole neonatal rat ovaries showed 
that VCD specifically interacts with and inhibits autophos-
phorylation of c-kit receptor, which is a key molecule in a 
critical signaling pathway associated with cell growth, and 
thus disturbs normal oocyte growth. Women with exposure 
to VCD are therefore considered at risk of POI [103106]. 

Cigarette smoking was reported to have adverse fertility 
and pregnancy outcomes, and was associated with prema-
ture menopause and increased risk of idiopathic POI 
[72,107,108]. Limited studies suggested that smoking is 
associated with elevated FSH levels, and certain changes in 
AFC or AMH levels, but further validations with larger 
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population base are needed [109,110]. Tobacco toxins may 
affect ovarian reserve by accelerating follicular atrophy and 
atresia via increased apoptosis in primordial germ cells 
[72,107]. For example, polycyclic aromatic hydrocarbons 
(PAHs), toxic chemicals in tobacco, induce aromatic hy-
drocarbon receptor (Ahr)-driven expression of Bax in oo-
cytes, followed by apoptosis [111]. 

Sharara et al. [112] reviewed that environmental toxi-
cants, including endocrine disruptors, heavy metals, sol-
vents, pesticides, plastics, industrial chemicals, and cigarette 
smoke, were associated with adverse reproductive outcomes 
and ovarian failure in animals. However, the underlying 
mechanisms were not yet fully elucidated and conflicting 
results were found in human about these toxicants. 

Klein et al. [113] reported that women with epilepsy 
were at higher risk for developing POI than general popula-
tion. Whether education level and other sociodemographic 
characteristics are associated with risks of POI is incon-
sistent among different literatures. Nulliparity and lifelong 
irregular menstrual patterns are also reported risk factors of 
primary ovarian insufficiency [114]. 

Environmental and lifestyle factors [115], as well as ex-
isting somatic diseases are considered minor causes of POI, 
and among them many still require further investigation and 
validation for their negative effects and underlying mecha-
nisms. However, these are the factors that are easily ex-
posed to yet often ignored in daily life. Professional advices 
upon more standard studies are in demand to eliminate 
avoidable risks. 

2  Management 

Unexpected diagnosis of POI affects a woman’s physical 
and emotional well-being. Therapeutic strategies to POI are 
hormone replacement therapy (HRT), infertility rescue, and 
concern about maintenance of bone health and emotional 
health as well. 

2.1  HRT 

Long-term HRT is needed for relief of menopausal symp-
toms (including vasomotor instability, sexual dysfunction, 
mood, and fatigue) and to prevent long-term health sequel 
of estrogen deficiency, such as osteoporosis. A wide range 
of HRT preparations are available, although no studies have 
directly compared various hormonal therapies for POI 
women [116118]. Evidence supports that transdermal es-
tradiol has little effect on hemostatic factors, and has been 
associated with a lower risk of venous thromboembolism 
than has oral estrogen. Normally a dose of 100 μg of estra-
diol per day administered by transdermal patch is recom-
mended to achieve average serum estradiol levels in this 
range and effectively treat symptoms. However, dose of 
estrogen regimen required by young women may be higher 

than that used in an older age group. To date, no data are 
available to evaluate the impact of treatment on risk factors, 
such as the development of breast cancer, endometrial can-
cer, or of cardiovascular events. 

2.2  Infertility 

It has been clearly established that many young women with 
spontaneous POI have remaining ovarian follicles that may 
function intermittently and developing pregnancy even 
years after the diagnosis. Pregnancy may occur while a 
woman is taking estrogen and progestin therapy, suggesting 
that this might be a method to improve fertility in these 
women. Approximately 95% of women with spontaneous 
POI have serum LH levels above normal for the mid-   
follicular phase. Inappropriate premature luteinization of a 
growing follicle would thus be expected to impair follicle 
growth, reduce estradiol production, and impair ovulation. It 
has been demonstrated a dose of 100 μg of estradiol per  
day, administered by transdermal patch, achieves average 
serum estradiol levels [9]. Theoretically estrogen replace-
ment therapy might improve ovulation rates in women with 
spontaneous POI by reducing the associated chronically 
elevated serum LH levels to normal. A strategy to provide 
appropriate physiological negative feedback and maintain 
LH levels in the normal range might avoid inappropriate 
luteinization of the few remaining follicles that women with 
POI have in their ovaries [119].  

Assisted reproductive technique with donated oocytes 
has been used to achieve pregnancy in women with POI, 
and it remains the only means for fertility treatment in POI 
that carries high success rate. Cryopreserved embryos have 
also been employed for ovum donation in POI with a high 
pregnancy rate of 30% per transfer. 

2.3  Recommends 

Unexpected infertility is a life-altering diagnosis for many 
women. Emotional support should be addressed to maintain 
their health being. A positive and optimistic lifestyle should 
be encouraged to maintain, including engaging in regular 
weight-bearing exercise, maintaining an adequate intake of 
calcium (1200 mg daily) and vitamin D (at least 800 IU 
daily), eating a healthy diet to avoid obesity. Regular 
screening for bone loss and cardiovascular risk factors is 
also recommended.  
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