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Virus-induced gene silencing is regarded as a powerful and efficient tool for the analysis of gene function in plants because it 
is simple, rapid and transformation-free. It has been used to perform both forward and reverse genetics to identify plant func-
tional genes. Many viruses have been developed into virus-induced gene silencing vectors and gene functions involved in de-
velopment, biotic and abiotic stresses, metabolism, and cellular signaling have been reported. In this review, we discuss the 
development and application of virus-induced gene silencing in plant functional genomics.  
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In recent decades, abundant plant genome information has 
become available through genome sequencing and ex-
pressed sequence tag (EST) analysis. In the post-genome 
era, a major challenge is to determine gene functions. 
However, even in the model plant Arabidopsis, less than 
10% of predicted genes have been identified and character-
ized functionally [1]. To knockout or reduce gene expres-
sion, traditional approaches for high-throughput re-
verse-genetic gene function screening include chemical in-
duced mutation, random mutation, and T-DNA insert muta-
tion. However, these methods may be hindered in the stud-
ies of non-model plants because of their large genome size, 
low transformation efficiency, and lack of a clear genetic 
background. 

Compared with traditional methods, virus-induced gene 
silencing (VIGS) is a powerful, recently developed ap-
proach for plant loss-of-function assay that can overcome 
the above-mentioned problems [2,3]. A recombinant virus 
for VIGS, delivering a fragment of plant gene into plant 

cells, can induce plant defense mechanism to silence both 
the targeted endogenous plant gene and the virus, through 
post-transcriptional gene silencing (PTGS). Gene functions 
can then be characterized by the sequence-specific pheno-
types [2,4]. Combined with the abundant plant genome and 
EST sequences, VIGS will significantly accelerate the gene 
function identification in various plant species. More than 
30 VIGS vectors have been developed, and these vectors 
have been widely used to uncover the functions of genes 
involved in basic cellular functions, metabolic pathways, 
development biology, plant-microbe interaction, and abiotic 
stress (Table 1) [5,6]. In this review, we will discuss the 
recent advances in the application of VIGS in plant func-
tional genomics. 

1  Establishment and development of VIGS  

In 1997, van Kammen [7] first mentioned the term “VIGS’’ 
to describe the phenomenon of recovery from virus infec-
tion. Since then, the term “VIGS” has been used exclusively 
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for the technique of using recombinant viruses to knock-
down expression of endogenous genes [2,8]. In the early 
stages, most of the VIGS systems were based on RNA vi-
ruses. In 1995, Kumagai et al. [9] inserted a fragment of 
phytoene desaturase (PDS), a key enzyme of the carotenoid 
biosynthetic pathway, into the Tobacco mosaic virus (TMV) 
[9]. When this recombinant virus was inoculated into Nico-
tiana benthamiana, a blench phenotype in the leaves was 
observed and this phenomenon was caused by reduction in 
endogenous PDS mRNA. In 1998, similar results were ob-
tained using another RNA virus, Potato X virus (PVX), 
carrying a fragment of the PDS cDNA [8]. Thus, VIGS is 
considered to be a useful technique for suppressing endog-
enous gene expression and uncovering plant gene functions. 
In 2001, a novel VIGS vector was established based on To-
bacco rattle virus (TRV). TRV was demonstrated to induce 
more efficient silencing of transgenes and endogenous 
genes [10]. TRV could spread more vigorously throughout 
the entire plant, including meristem tissue, and the symp-
toms induced by TRV are much milder compared with other 
viruses [10]. The TRV vector has been widely used in gene 
function studies of tomato, tobacco, Petunia hybrida, chili 
pepper, Arabidopsis, and cotton plants (Table 1).   

DNA viruses, such as geminiviruses, have also been suc-
cessfully modified into VIGS vectors. In 1998, Robertson et 
al. used TGMV as a vector to determine whether episomal 
DNA could induce silencing of homologous, chromosomal 
genes. They modified the TGMV DNA-A component into a 
vector and induced silencing of the two marker genes, the 
sulfur (su), a magnesium chelatase required for chlorophyll 
formation, and the firefly luciferase (luc) gene [11]. Subse-

quently, VIGS vectors were developed based on the DNA 
viruses African cassava mosaic virus (ACMV) and Cotton 
leaf crumple virus (CLCrV), which have been used for func-
tional genomic studies in cassava and cotton plants [12,13]. 

Subsequently, a novel VIGS vector was developed based 
on an RNA satellite virus, the U2 strain of TMV (STMV). 
The RNA satellite virus silencing vector was able to obtain 
pronounced and severe knockout phenotypes for 13 targeted 
endogenous genes involved in various biochemical path-
ways and expressed in different plant tissues [14]. The ad-
vantages of STMV as an excellent candidate VIGS vector 
are its small genome size and high replication rate in plants. 

Tao et al. and Huang et al. reported induction of VIGS 
based on Tomato yellow leaf curl China virus (TYLCCNV) 
betasatellite (DNAβ) and Tobacco curly shoot virus 
(TbCSV) alphasatellite (DNA1) [15,16]. They demonstrated 
that these modified satellite vectors could effectively sup-
press GFP in transgenic N. benthamiana and endogenous 
Su in plants, when co-agroinoculated with their helper vi-
ruses. These modified satellite vectors have been used to 
induce gene silencing in Nicotiana spp., Solanum lycoper-
sicum, and Petunia hybrida plants [15–19]. 

VIGS vectors have not only been applied in dicotyle-
donous plants, but also in monocotyledonous plants. In 
2002, VIGS was established in barley and wheat using Bar-
ley stripe mosaic virus (BSMV), where certain genes related 
to resistance against leaf rust or powdery mildew were 
characterized in barley [20]. Ding et al. [21] also showed 
that a modified VIGS vector based on Brome mosaic virus 
(BMV) could be used for the analysis of gene function in 
rice and maize. 

Table 1  Various VIGS vectors and plant species used for gene silencing 

Virus vector Plant species and tissue for inoculation Inoculation method References 

RNA virus    

Apple latent spherical 
virus (ALSV) 

Nicotiana spp., Arabidopsis thaliana, Apple, Pear, 
Solanum lycopersicum, Cucumis spp.: leaf; Legu-

minaceae: leaf; beanpod: seed 

Nicotiana spp. and Arabidopsis thaliana with sap 
inoculation; soybean, apple and pear with particle 

bombardment into seedlings using extracted 
RNA from the virus infected plants 

[22–24] 

Brome mosaic virus 
(BMV) 

Oryza sativa, Zea mays, Hordeum vulgare, Festuca 
arundinacea, N. benthamiana: leaf 

 

Rub inoculation of in vitro transcripts for other 
crops and vacuum infiltration for rice 

[21,25,26] 

Barley stripe mosaic 
virus (BSMV) 

Brachypodium distachyum: root; Barely, Avena 
species and Triticum aestivum: leaf 

Rub inoculation of in vitro transcripts [20,27–30] 

Bean pod mottle virus 
(BPMV) 

Glycine max: root, leaf and shoot; Phaseolus vul-
gari: leaf 

Rub inoculation of in vitro transcripts and parti-
cle bombardment 

[31–33] 

Cucumber mosaic 
virus (CMV) 

G. max: leaf and seed 
With rub inoculation of in vitro transcripts in N. 
benthamiana and then inoculation of soybean 

plants with extract sap 
[34] 

Cymbidium mosaic 
virus (CymMV) 

Phalaenopsis orchids: flower Rub inoculation of in vitro transcripts [35] 

Potato virus X (PVX) 
N. benthamiana: leaf; Solanum tuberosum: leaf, 

root and tuber 
Agro-inoculation [8,36,37] 

Potato virus A (PVA) 
N. benthamiana: leaf 

 
Rub inoculation of in vitro transcripts and parti-

cle bombardment 
[38] 

Pea early browning 
virus (PEBV) 

Lathyrus odorata: leaf, shoot, root, flower and 
beanpod; Medicago truncatula: leaf 

Agro-inoculation [39–41] 

Poplar mosaic virus 
(PopMV) 

N. benthamiana: leaf 
 

Agro-inoculation [42] 

(To be continued on the next page) 
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(Continued) 

Virus vector Plant species and tissue for inoculation Inoculation method References 

Plum pox virus (PPV) 
N. benthamiana: leaf 

 
Agro-inoculation [43] 

Sunn-hemp mosaic 
virus (SHMV) 

N. benthamiana and Medicago truncatula: leaf Rub inoculation of in vitro transcripts [44] 

Tobacco mosaic virus 
(TMV) 

N. benthamiana: leaf Rub inoculation of in vitro transcripts [45,46] 

Tobacco necrosis virus 
A (TNV-A) 

N. benthamiana: leaf Agro-inoculation [47] 

Tomato bushy stunt 
virus (TBSV) 

N. benthamiana: leaf Rub inoculation of in vitro transcripts [48] 

Tobacco rattle virus 
(TRV) 

Aquilegia vulgaris: flower; Opium or California 
poppy: leaf and flower; N. benthamiana: leaf, 

shoot, flower and root; S. lycopersicum: leaf, shoot, 
flower and fruit; A. thaliana: leaf, shoot, flower 

and silique; Capsicum spp.: leaf and fruit; Petunia 
hybrida: leaf and flower; Solanum spp.: leaf; 

Gossypium spp.: leaf; Jatropha curcas L.: leaf; 
Thalictrum dioicum: leaf and flower 

Agro-inoculation [10,49–63] 

Turnip yellow mosaic 
virus (TYMV) 

A. thaliana: leaf, shoot, flower and silique Rub inoculation of in vitro transcripts [64] 

DNA virus    
Abutilon mosaic virus 

(AbMV) 
N. benthamiana: leaf Agro-inoculation [65] 

African cassava 
mosaic virus (ACMV) 

Manihot esculenta and N. benthamiana: leaf 
N. benthamiana with agro-inoculation and 

Manihot esculenta with particle bombardment 
[13] 

Beet curly top virus 
(BCTV) 

Spinacea oleracea and S. lycopersicum 
Spinacea oleracea: with particle bombardment 

and S. lycopersicum with agro-inoculation 
[66] 

Cabbage leaf curl virus 
(CaLCuV) 

A. thaliana and N. benthamiana: leaf 
A. thaliana with particle bombardment and N. 

benthamiana with agro-inoculation 
[19,67] 

Cotton leaf crumple 
virus (CLCrV) 

Gossypium spp.: leaf, flower and boll Particle bombardment and agro-inoculation [12] 

Grapevine virus A 
(GVA) 

N. benthamiana and Vitis vinifera: leaf Agro-inoculation [68] 

Pepper huasteco yel-
low vein virus 

(PHYVV) 
Capsicum spp: fruit Particle bombardment [69] 

Rice tungro bacilliform 
virus (RTBV) 

O. sativa: leaf Agro-inoculation [70] 

Tomato golden mosaic 
virus (TGMV) 

N. benthamiana: leaf Particle bombardment [71] 

Tomato leaf curl virus 
(ToLCV) 

N. benthamiana and S. lycopersicum: leaf Agro-inoculation [72] 

RNA satellite virus    
Satellite of tobacco 

mosaic virus ( STMV) 
N. tabacum: leaf and flower Rub inoculation of in vitro transcripts [14] 

Satellite DNA    
Tomato yellow leaf 

curl China virus 
(TYLCCNV) 
Betasatellite 

S. lycopersicum: leaf, shoot, fruit and root; Nico-
tina spp.: leaf; Petunia hybrida: leaf and flower 

Agro-inoculation [15,17,18] 

Tobacco curly shoot 
virus (TbCSV) 

Betasatellite 
N. benthamiana: leaf Agro-inoculation [73] 

TbCSV Alphasatellite 
S. lycopersicum and Nicotina spp.: leaf; Petunia 

hybrida: flower 
Agro-inoculation [16,19] 

 
 

2  Methodology and development of VIGS 

In a VIGS system, to suppress expression of an endogenous 
plant gene, a fragment of the gene to be silenced should be 
cloned and inserted into the VIGS vector and then inocu-
lated into plants. The VIGS phenotype can be subsequently 
observed. Generally, to increase the efficiency of silencing, 
the VIGS system should be optimized. 

First, the size of the inserted fragment of target endoge-
nous gene may affect the efficiency of VIGS. Most VIGS 
vectors have the capacity to carry a fragment of length be-
tween 150 and 800 bp. VIGS vectors may fail to induce 
gene silencing if a fragment of more than 1500 bp is insert-
ed. Although some studies showed that a 23 bp insertion 
was able to induce VIGS, fragments of 200350 bp in 
length is usually chosen for VIGS to obtain higher silencing 
efficiency. Furthermore, some studies found that the orien-
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tation of the inserted gene fragment was also an important 
factor that could affect the efficiency of VIGS, with higher 
silencing efficiency being induced by a reverse oriented 
insertion compared with that of a forward oriented insertion. 
However, it is not applicable to all vectors. For example, the 
efficiency of the TYLCCNV DNAβ vector is the same 
whatever the orientation of the inserted fragment [19]. Ad-
ditionally, the silencing efficiency could be significantly 
enhanced if the target fragment was constructed as a hairpin 
structure [74]. 

Selection of the target gene is important for VIGS. Evi-
dence has shown that an improper gene fragment might 
induce off-target silencing, producing an inaccurate pheno-
type [75]. Many candidate fragments can be selected for 
silencing of a specific gene. However, if the target gene 
belongs to a gene family, some sequences may have con-
served domains among different genes in the gene family, 
and the fragment of the target gene may have more than 23 
bp that is homologous to other genes in the gene family 
resulting in the degradation of non-target genes. Therefore, 
a more specific fragment needs to be chosen. Generally, a 
fragment from UTR region is a good choice. On the other 
hand, the conserved domains should be chosen to avoid 
functional complementation by genes from the same family; 
in this case all the genes in the family are silenced [76].  

The efficiency of gene silencing may be affected by dif-
ferent inoculation methods. The common methods used for 
inoculation are agro-infiltration, rub-inoculation with RNA 
transcripts, and particle bombardment (Table 1). For some 
viruses, susceptible plants will be inoculated firstly to mul-
tiply the virus, and then the sap or the virus RNA extract 
will be used to inoculate target plants. High silencing effi-
ciency was reported using agrodrench, a method of watering 
the plant roots with agro-inocula directly [60]. Liu et al. [58] 
successfully induced the TRV vector into tomato by spray-
ing a TRV agro-culture using an airbrush. Ding et al. re-
ported that efficient gene silencing could be obtained by 
vacuum agro-infiltration in plants that are hard to inoculate 
by conventional methods. For fruits, direct injection with an 
agro-culture produces a more obvious silencing phenotype 
than inoculation of cotyledons or seedlings [53,77]. Some 
studies showed that efficient silencing could be induced by 
injecting plucked tomato, strawberry and bilberry fruits with 
an agro-culture containing VIGS vector [78–80], which is 
useful for studying gene functions during the post harvest 
stage. Co-inoculation of viral suppressors with VIGS vec-
tors may also improve the silencing efficiency. When plants 
were inoculated with a mixture of VIGS vector and a 
gene-silencing suppressor, higher accumulation of virus in 
local inoculated cells induced a higher efficiency of silenc-
ing in systemic leaves. With the establishment of more and 
more new virus inoculation methods, VIGS will be applica-
ble to more plant species.  

Finally, environmental factors of plant growth will affect 
the efficiency of gene silencing. At higher temperatures, the 

accumulation of virus is significantly reduced, which im-
pairs the efficiency of virus induced silencing. On the other 
hand, lower temperatures lead to higher virus concentration 
and silencing efficiency. For TRV vectors, tomato plants 
should be kept at less than 21C. Lower temperature and 
humidity will increase silencing efficiency [12,54]. Howev-
er, for some vectors, temperature is not so important, for 
example, both DNA and DNA 1 vectors can induce highly 
efficient silencing from 22 to 32°C [15,18].  

3  Validation of gene functions in different plant 
organs or tissues via VIGS 

The high efficiency of VIGS has led to its increasing use in 
uncovering the functions of hundreds of plant genes in-
volved in defense response pathways, plant development, 
and metabolism. Recent progress in gene function identifi-
cation by VIGS is detailed below. 

3.1  Genes involved in the defense response to patho-
gens, insects, and abiotic stresses 

Plants grow in an environment surrounded by a diversity of 
microbes and abiotic stresses. A highly effective defense 
system has been evolved to resist potential attack by biotic 
and abiotic stresses. Previous studies have determined the 
functions of diverse plant genes involved in virus-, bacteria-, 
fungi-, and insect-resistance and stress responses. 

In the study of plant resistance to virus infection, the 
most successful examples of using VIGS to uncover gene 
functions in defense response pathway was the N gene 
against TMV and Rx gene against PVX. Up to now, a num-
ber of genes have been identified, such as NRG1, NbCA1, 
NbCAM1, NbrbohB, RAR1, EDS1, NPR1/NIM1, MEK1, 
MAPKK, NTF6, MAPK, WRKY/MYB transcription factors, 
COI1 and CTR1 genes [18,59,81–84]. The power of VIGS 
as a tool in reverse genetics is further manifested by the 
subsequent studies of the roles of BECLIN-1 and NRIP1 in 
N-gene and RanGAP2 in Rx-gene induced programmed cell 
death (PCD) [85–87]. Silencing of BECLIN-1 by TRV in N. 
benthamiana plants containing the N gene showed an unre-
stricted PCD response upon TMV infection [86]. NRIP1, 
which can directly interact with both the N gene and the 50 
kD helicase (p50) of TMV, is involved in pathogen recogni-
tion, and is required for N gene-mediated complete re-
sistance to TMV [85]. The interaction of Rx and RanGAP2 
in N. benthamiana or potato is required for extreme re-
sistance to PVX, where RanGAP2 is part of the Rx signaling 
complex [87]. In addition, a number of host genes involved 
in virus replication and movement in plants have been iden-
tified by VIGS [17,88–93].   

VIGS has also been applied to study plant resistance 
against fungi [94]. A series of host genes involved in 
Cladosporium fulvum-tomato resistance have been charac-
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terized [95]. NRC1 and SlPLC4, and ACIK1 and NbCA1 
genes have been proved to be necessary for Cf-4/Avr4 and 
Cf-9/Avr9 interactions, respectively, to elicit plant resistance 
[84,96–98]. Using a VIGS assay, Liu et al. [99] showed that 
CITRX is a negative regulator of the Cf-9/Avr9 induced hy-
persensitive response (HR). Furthermore, LeMPK1, 
LeMPK2, and LeMPK3 are activated during the Cf-4/Avr4-     
induced HR [100]. Additionally, some genes related to de-
fense responses and basal resistance against powdery mil-
dew fungus [101,102], wheat leaf rust fungus [29,103], 
Colletotrichum destructivum, C. orbiculare [104], and to-
bacco blue mold fungus [105] have been identified in dicot-
yledonous or monocotyledonous plants.  

Applications of VIGS in studies of plant resistance 
against bacteria have been reported. Many new genes in the 
pathway of the Pto-mediated defense response against 
Pseudomonas syringae have been discovered in tomato, i.e., 
NbCA1, NPR1, TGA1a, TGA2.2, MEK1, MEK2, and NTF6 
[84,106]. Recently, the function of COR, a virulence factor 
of P. syringae, was revealed by VIGS. In addition, the roles 
of SGT1 and SlALC1, two key genes in the corona-
tine/jasmonate (JA) pathway, and inducible NO synthase 
(iNOS) in resistance against P. syringae have been uncov-
ered [107]. In tobacco plants, the important roles of 
NbHSP90c-1, NbHSP70c-1, WIPK, and SIPK genes in 
non-host resistance to P. cichorii, and SGLP in resistance 
against Ralstonia solanacearum, have been demonstrated 
by VIGS [108–110]. In a study searching for genes required 
for defense responses against Xanthomonas campestris in 
plants, Bs4, SGT1, CaCYP450A, CaRING1, SlMKK2 and 
SlMPK2 genes have been characterized [111–115]. 

VIGS has also been successfully used to investigate the 
resistance of plants to nematode and herbivore attack, such 
as aphids and Manduca sexta. Some genes have been found 
to have important roles in resistance against nematodes and 
aphids, such as SlWRKY72a, HSP90, LeMPK2, LeMPK1, 
LeMPK3, SlSERK1, and SGT1 [116–120]. Suppressing 
threonine deaminase (TD) and germin-like, jasmonate-     
resistant4 (JAR4) by VIGS confirmed that these genes have 
important roles in activating plant defenses to M. sexta 
[121,122]. MPK1 and MPK2, which are essential compo-
nents of the systemic signal pathway, were shown by VIGS to 
be required for successful defense against herbivorous insects 
[123]. Using VIGS, MKK1, MEK2, and BAK1 have been 
demonstrated to be involved in herbivore M. sexta-induced 
responses by regulating JA biosynthesis [124,125]. 

VIGS was used to identify genes that mitigate stress. late 
embryogenic abundant 4 (lea4) was shown to be involved in 
mitigating moisture stress [126]. SlGRX1 was reported to 
regulate abiotic tolerance against oxidative, drought, and 
salt stresses [127]. In pepper, CaOXR1 was found to play 
roles in tolerance to high salinity and osmotic stress [128]. 
In tobacco plants, NbPHB1 and NbPHB2, two subunits of 
prohibitins, were found to have a crucial role in mitochon-
drial biogenesis and protection against stress and senes-

cence in plant cells. NaHD20 has a role in responses to de-
hydration [129,130]. In addition, VIGS has been used to 
study water deficit-induced genes in peanut [131]. 

3.2  Plant development related genes 

VIGS is a transient assay for suppressing gene expression; 
therefore, VIGS facilitates the study of genes whose loss of 
function could be lethal to plants. Up to now, many devel-
opment-related genes have been characterized by VIGS. 
Recently, a study on the flowering of the opium poppy us-
ing VIGS indicated that PapsAG-1 has a role in stamen and 
carpel identity; however, the homologous gene, PapsAG-2, 
while displaying redundancy in these functions, has a dis-
tinctive role in the development of the septae, ovules, and 
stigmas [132]. In tobacco and Petunia hybrida plants, many 
flower development related genes, such as flowering time 
determine genes (FCA and FY), floral organ identity genes 
(AP3 and DEFICIENS) [40,133,134] and flower develop-
ment genes (NbMADS4-1, NbMADS4-2, PhPHB1 and 
PhPHB2) [135,136] have been identified by VIGS. In a 
study of leaf and shoot development, Kang et al. [137] 
showed that the silencing of the NbBPS1 gene resulted in 
growth retardation, abnormal leaf development, and cell 
death. This phenotype is different from the case of the Ara-
bidopsis bps mutant. Bouvier et al. [138] used VIGS to 
suppress the expression of SAMT1 in N. benthamiana. The 
severe growth retardation phenotype in silenced plants sug-
gested that this methylation-related protein has an important 
role in plant development. The plant vascular development 
gene (RPN9 [93]), Retinoblastoma-related gene (RBR 
[139]), a plant root development gene [140] and some genes 
in meristem, such as Dt1 [141] and ML1 [140] have been 
functionally characterized by VIGS. These results suggest 
that VIGS is one of the most powerful tools for the analysis 
of genes whose loss-of-function mutants cause embryonic 
and seedling-lethality [4–6]. 

3.3  Cellular functions and metabolism 

VIGS has been used to study plant cellular functions and 
metabolic pathways, such as biotin, enzyme biosynthesis, 
and organic identity. Burton et al. and Held et al. used PVX 
and BSMV vectors, respectively, to study the function of 
Cellulose synthase (CesA) [142,143]. VIGS was also used 
to determine the genes involved in the biosynthesis of cap-
saicinoids (AT3, Comt, pAmt, and Kas) [69,144], D-apiose 
(UDP-D-apiose/UDP-D-xylose synthase, and AXS1) [145], 
flavin [146], histone H3 [147], and key proteins in the RNA 
silencing pathway, such as Argonaute1- and Argonaute 
4-like genes [148]. In addition, genes involved in the regu-
latory functions of PCD have been recently identified using 
VIGS, for example, the mitochondrial-associated hexoki-
nase Hxk1 gene [149], 20S proteasome, the 19S regulatory 
complex of the 26S proteasome [150] and a regulatory gene 
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of PCD (CDC5 [151]). VIGS has also been used to charac-
terize cellular functions of genes involved in chloroplasts 
and mitochondria biogenesis [129,150,152157], plastid 
biogenesis [138,150], peroxisome biogenesis [158], alkaloid 
biosynthesis [159–161], isoprenoid biosynthesis [162,163], 
ascorbic acid biosynthesis [164], sterol biosynthesis 
[36,165], and membrane biogenesis [166]. 

4  Pros and cons of VIGS 

Compared with other genomic techniques, VIGS has several 
advantages: (i) VIGS is much faster. A notable characteris-
tic of VIGS is that it can induce loss-of-function phenotype 
of a specific gene in a short period. Therefore, the gene 
function can be characterized quickly, obviating the tedious 
process of plant regeneration [5,6]. (ii) Plant transformation 
is avoided, which means that studies of gene function in 
plants that are difficult to transform (e.g., cotton and soy-
bean) would be more productive once the VIGS system is 
established. (iii) VIGS permits the study of genes that are 
vital for plant viability. VIGS can be used at the seedling or 
early development stages, and has been proved a powerful 
tool in the analysis of genes whose mutations cause embry-
onic and seedling-lethality. VIGS is the only technique that 
permits the study of such plant genes that are involved in 
plant development. (iv) The expression of multiple genes 
with functional redundancy can be silenced simultaneously 
through VIGS using conserved domains. On the other hand, 
a specific region can be used for VIGS if just one gene 
among a gene family is intended to be silenced. (v) It allows 
quick comparison of the functions of homologous genes 
among different plant species at the same time, producing 
more accurate gene function identification [5,6].  

VIGS also has some disadvantages or limitations. For 
example, (i) in most cases, the expression of gene cannot be 
completely inhibited through VIGS. Although the expres-
sion of the target gene is reduced, the residual expression of 
the target gene can be enough for its function. Therefore, for 
those genes, the loss-of-function phenotype cannot be ob-
served through VIGS. (ii) VIGS requires prior knowledge 
of target gene sequence information. The efficiency of si-
lencing may be compromised by redundant genes, unless 
the full genome or sufficient EST sequences are available. 
(iii) Genes expressed during germination or the early seed-
ling stage cannot be analyzed by VIGS, because VIGS is 
usually performed on adult plants and most of the VIGS 
phenotype is not inherited. (iv) The efficiency may vary and 
the phenotype of VIGS is not very stable. Results may not 
be consistent among different experiments or different 
plants. To resolve this problem, it is common to use a 
marker gene that shows a visible silencing phenotype as a 
positive control.  

5  Conclusion and outlook 

Over the last 15 years, VIGS has been successfully used to 
discover and confirm gene functions in many plants, in-
cluding both dicotyledonous and monocotyledonous plants. 
Further understanding of the mechanism of gene silencing 
and development of vectors for VIGS will lead to more 
plant species being studied by newly constructed VIGS 
systems, especially those that are hard to analyze by con-
ventional approaches. Recently, more plant genomes have 
been sequenced, and new molecular biology techniques 
have been established for VIGS. For example, artificial 
miRNA silencing vectors have been used in VIGS, and a 
VIGS cDNA library was constructed using the gateway 
system [135,167,168]. With further technical improvements, 
VIGS will continue to be widely used in plant functional 
genomics. 
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