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Graves’ disease, the production of thyroid-stimulating hormone receptor-stimulating antibodies leading to hyperthyroidism, is 
one of the most common forms of human autoimmune disease. It is widely agreed that complex diseases are not controlled 
simply by an individual gene or DNA variation but by their combination. Single nucleotide polymorphisms (SNPs), which are 
the most common form of DNA variation, have great potential as a medical diagnostic tool. In this paper, the P-value is used 
as a SNP pre-selection criterion, and a wrapper algorithm with binary particle swarm optimization is used to find the rule for 
discriminating between affected and control subjects. We analyzed the association between combinations of SNPs and Graves’ 
disease by investigating 108 SNPs in 384 cases and 652 controls. We evaluated our method by differentiating between cases 
and controls in a five-fold cross validation test, and it achieved a 72.9% prediction accuracy with a combination of 17 SNPs. 
The experimental results showed that SNPs, even those with a high P-value, have a greater effect on Graves’ disease when act-
ing in a combination. 
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Graves’ disease (GD) is one of the most common forms of 
human autoimmune disease, with an estimated frequency 
of up to 1.3% (0.5% clinical and 0.7% subclinical) in the 
United States [1] and 0.25%–1.09% in China [2]. GD is 
caused by the production of thyroid-stimulating hormone 
receptor-stimulating antibodies leading to hyperthyroidism 
[3]. DNA variations in the human genome, which alter 
physiological pathways, are considered the primary risk 
factors for many diseases. Single-nucleotide polymor-
phisms (SNPs) are the most common form of DNA varia-
tion [4]. It is estimated that there are approximately 12 
million SNPs in the human genome [5]. Although most are 

neutral, certain SNPs can affect phenotypes such as height, 
skin color, resistance to infection and susceptibility to dis-
ease [6]. 

Understanding the mechanisms underlying diseases will 
contribute to the development of future therapies. In the past 
few decades, association studies have identified some asso-
ciations between genetic variants and diseases or human 
phenotypes [7,8], but the evaluation of combinations of 
SNPs has been less commonly addressed. Studies show that 
while individual SNPs may make a very small contribution 
to disease, combinations of SNPs can be strongly associated 
with complex diseases [9]. Similarly, GD is modestly af-
fected by single SNPs, but might be greatly affected by a 
combination of SNPs. One of the major goals of association 
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studies is to identify the combinations of SNPs that lead to 
higher disease risk. The aim of this paper is to identify the 
rules for classifying the case (GD) and control (non-GD) 
groups. Because of the combinatorial explosion of the 
number of subsets, exhaustive enumeration was impractical 
for this study. 

Recently, there have been several reports examining the 
effects of SNPs on disease [10,11]. Wan et al. [9] developed 
an alternative learning approach to select the important 
SNPs for disease. Kusiak and Shah [12] identified the SNPs 
that optimally predict the risk of disease by minimizing the 
classification error. Xie et al. [13] presented an adaptation 
of the decision forest pattern recognition algorithm for eso-
phageal cancer association studies. Yasuyuki et al. [14,15] 
evaluated SNPs to predict the risk of allergic asthma. How-
ever, due to the non-deterministic polynomial-time-hard 
nature of this problem, these methods typically suffer from 
inefficiency and inaccuracy problems. In addition, the 
P-value has been seldom used in most of the previous stud-
ies. 

In this paper, we propose a wrapper algorithm with bi-
nary particle swarm optimization to analyze the association 
between combinations of SNPs and GD, whose classifier is 
a two-layer linear classifier (TLC). Binary particle swarm 
optimization (BPSO) is used as a feature selection method 
to identify the combination of SNPs, and the TLC (opti-
mized by particle swarm optimization (PSO)) is used to 
predict the susceptibility to disease. In addition, the P-value 
was used as the pre-selection criterion. In this study, we 
investigated 108 SNPs in major GD-related pathways in 384 
cases and 652 controls. We achieved a 72.9% prediction 
accuracy with a combination of 17 SNPs. Experimental 
results demonstrate the feasibility of incorporating our 
method into a case-control study. 

1  Materials and methods 

1.1  Data 

The dataset used in this paper was supplied by Dr. Dumitru 
Brinza [16]. The dataset was derived from 330 kb of human 
DNA sequence containing the genes CD28, CTLA4 and 
ICOS, which are related to GD [17]. A total of 108 SNPs 
were genotyped in 384 cases and 652 controls [17]. 

1.2  Particle swarm optimization 

PSO is an iterative optimization algorithm inspired by the 
observation of collective behaviors in animals (e.g., bird 
flocking) [18]. In PSO, each candidate solution to an opti-
mization problem is represented by one particle. Each parti-
cle i is described by its position xi and velocity vi. The algo-
rithm starts with random initialization of the particles. Then, 
the particles change their positions according to their ve-

locities, which update in each iteration. Given that pi is the 
best position found by particle i in all the preceding itera-
tions and pg is the best position found so far by the entire 
swarm, the velocity and position of particle i in bit j will be 
updated according to the following formulae: 

 1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( )),ij ij ij ij gj ijv t v t c r p t x t c r p t x t+ = + − + −  (1) 

 ( 1) ( ) ( 1),ij ij ijx t x t v t+ = + +  (2) 

where r1 and r2 are random numbers between 0 and 1, and 
c1 and c2 define the degree of influence of pi and pg on the 
particle’s velocity. The velocity vij is bounded within a 
range of max max[ , ]V V−  to prevent the particle from flying 

out of the solution space. 

1.3  Binary particle swarm optimization 

Because many optimization problems are set in a discrete 
space, Kennedy and Eberhart [19] extended the PSO to a 
BPSO in 1997. In BPSO, a particle moves in a state space 
restricted to 0 or 1 in each bit, where vij represents the 
probability of the bit xij taking the value 1. Therefore, vij 
must be constrained to the interval [0.0, 1.0] . A logistic 
transformation S(vij) can be used to accomplish this modifi-
cation, and the position update function is defined as fol-
lows: 
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 and rand() is a random number se-

lected from a uniform distribution in [0.0, 1.0]. 

1.4  BPSO-TLC with a P-value filter algorithm 

The proposed algorithm consists of two parts: the P-value 
filter approach and the BPSO-TLC wrapper approach. 

First, the P-value is used to filter the sub-dataset. The 
P-value filter is a preprocessing method that is used to de-
crease the size of the feature space. The smaller the P-value 
of a SNP, the more relevant it is to GD. Thus, if the P-value 
of any SNP is smaller than the threshold value, the SNP is 
selected. Otherwise, the SNP is removed. 

Next, BPSO-TLC is used to optimize the performance of 
the selected SNPs. Because combining the best individual 
SNPs may not yield the best set, BPSO-TLC is used to find 
the ‘optimal’ SNP subset. BPSO-TLC contains two main 
steps. The first step entails the selection of a set of SNPs by 
BPSO (particles in BPSO represent the features mask, 
where a bit with value ‘1’ indicates that the SNP is selected 
and ‘0’ indicates that it is not selected). Then, in the second 
step, the selected SNPs are passed to the TLC classifier to 
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acquire a fitness value for each particle of BPSO, while the 
product of the genotype and its corresponding P-value is the 
input for the TLC. The procedure for the TLC classifier is 
shown in Figure 1. 

The classification rule is defined as follows: 

 1
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Labels
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where ski is the genotype (1 and 2 represent sites homozy-
gous for the major and minor alleles, respectively, and 3 
represents the heterozygous sites) of the ith SNP in the kth 
sample; λi is the P-value of the ith SNP; wi is the weight 
value (the value of the PSO particle in bit i) of the ith SNP. 

The details of the BPSO-TLC are as follows: 
Algorithm BPSO-TLC: 
Input: 
Training samples case control[ , ];D D D=  

Class labels 1 2[ , ,..., ]ly y y y= , { 1, 1}iy ∈ − + (–1 repre-

sents the cases and +1 represents the controls). 
Initialize: 
Generate M velocity and position vectors randomly for 

PSO; 
Generate N velocity and position vectors randomly for 

BPSO; 
Repeat until the termination criteria are met (the maxi-

mum number of iterations); 
Obtain the feature subset from the BPSO and P-value 

filtering method; 
Train the TLC classifier: 

Calculate the value of the function (4); 
Calculate the fitness value (the prediction accuracy) of 

PSO; 
Update the PSO velocity and position vectors accord-

ing to (1) and (2), respectively. 
 
 

 

Figure 1  TLC classifier. 

Test the TLC classifier: 
Calculate the fitness value of BPSO; 
Update BPSO velocity and position vectors according 

to (1) and (3), respectively. 
Output: 
The best BPSO particle and corresponding weight vector 

(PSO particle). 

1.5  Cross-validation 

The k-fold method [20] was employed in the experiments, 
with the value of k set to five. For five-fold cross-validation, 
the whole dataset was divided into five subsets with ap-
proximately equal size. Then, the classifier was trained five 
times––each time, one subset was used as the testing data to 
validate the classifier. 

2  Results 

Based on previous research [21,22], the parameters of PSO 
and BPSO are as follows: 

Vmax 4 
c1 2 
c2 2 

PSO 100 Number of particles 
BPSO 50 
PSO 100 Maximum number of 

iterations BPSO 200 
The evaluation criteria include sensitivity (Sn), specific-

ity (Sp) and accuracy (Acc), which are defined as follows: 
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where TN, TP, FN, and FP refer to true negative (TN), 
number of controls that were correctly classified as control; 
true positive (TP), number of cases that were correctly clas-
sified as case; false negative (FN), number of cases that 
were wrongly classified as control; and false positive (FP), 
number of controls that were wrongly classified as case, 
respectively. 

We performed our algorithm to identify the combination 
of SNPs most highly associated with GD (Table 1). The 
accuracy of classification was 70.6% with the entire set of 
108 SNPs, and better results were obtained when the 
P-value filter was used. However, the SNP subset with the 
lowest P-value (P<0.001) did not yield the best result. This 
might be attributable to the different effects of a single SNP 
and a combination of SNPs. That is, the P-value filter method  
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Table 1  Performance of BPSO-TLC with a P-value filtera) 

P-value range 
Number of SNPs for 
each P-value range 

Sn (%) Sp (%) Acc (%) 
Number of SNPs for 

each combination 
<1 108 66.0 78.0 70.6 19 

<0.9 107 64.1 82.9 71.2 21 
<0.8 105 64.4 82.1 71.1 20 
<0.7 96 65.7 78.4 70.4 23 
<0.6 93 65.4 78.3 70.3 16 
<0.5 86 70.8 74.8 72.3 19 
<0.4 81 69.4 77.5 72.4 22 
<0.3 77 70.7 76.3 72.9 17 
<0.2 68 70.2 76.3 72.6 18 
<0.1 63 65.7 81.5 71.7 16 

<0.05 58 74.9 61.9 70.2 20 
<0.01 46 66.0 79.7 71.2 14 
<0.005 42 68.6 71.5 69.8 15 
<0.001 34 66.7 72.3 68.9 8 

a) Sn=sensitivity; Sp=specificity; Acc=accuracy. 

 
can reduce the search space from a large number of all pos-
sible combinations to a manageable one; however, the in-
terdependence among SNPs is ignored. Figure 2 shows the  

 

 

Figure 2  Classification accuracies and SNPs selected with different 
P-values. A, P-value range vs. accuracy. B, P-value range vs. number of  

SNPs selected. 

classification accuracy and SNPs selected with different 
P-values. 

The highest prediction accuracy obtained by our method 
was 72.9%, with a combination of 17 SNPs, each with 
P<0.3. The details of these SNPs are shown in Table 2. 
Figure 3 shows the number of iterations vs. prediction ac-
curacy and the number of iterations vs. SNPs selected. The 
number of SNPs selected converges at the later stages; 
however, the prediction accuracy keeps improving. The 
reason for this is that the actual SNPs selected can be dif-
ferent even if the total number is the same. The prediction 
accuracy of our method is higher than that of some previous 
studies, for example, 69% in Listgarten et al.’s study [23] or 
67.5% in Uhmn et al.’s study [24]. Although these previous 
studies used different disease samples, and it is, therefore, 
difficult to compare the prediction accuracy directly, the  

Table 2  Details of the selected SNPs 

SNP name P-value Allele Odds ratio Weight 

CTAF322 0.002 CT 1.33 4.0251 

CTAF343 0.000025 CT 1.61 –3.6333 

Rs1863800 0.000045 CT 1.47 4.3863 

CTAF450_1 0.00027 CT 1.41 –10.0000 

CTAF450_4 0.0001 AT 1.44 –10.0000 

MH30 0.000025 GC 1.49 –4.0715 

MH13_1 0.011 GA 1.28 7.8697 

CT55 0.00063 TC 1.39 1.9708 

CT60 0.0000016 GA 1.56 –1.8483 

JO37_2 0.00074 GA 1.38 –2.2434 

JO36 0.00095 GA 1.39 3.6163 

JO34 0.00012 GA 1.47 –1.2719 

JO18 0.00072 TC 1.38 10.0000 

JO13 0.00057 TC 1.42 5.4304 

JO3 0.00047 CA 1.39 –4.0771 

CTBC053 0.0012 TC 1.42 –5.9207 

CTIC065 0.27 CT 1.13 6.3882 
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performance of our algorithm is acceptable. 
To verify the effectiveness of our algorithm, we com-

pared its performance with that of other current methods 
(Table 3). It is clear that our algorithm outperforms other 
methods. The accuracy obtained by our method was 72.9%, 
whereas C4.5, RandForest, NB and SVM obtained only 
61.2%, 62.3%, 58.4% and 66.4%, respectively. 

For further comparison, we used two published methods, 
IBPSO and HPG [21,22] on our GD dataset. The parameters 
used were as in [21,22], respectively. Table 4 shows the 
sensitivity, specificity and accuracy obtained by these algo-
rithms. It can be seen that our algorithm yielded a higher 

 

 

Figure 3  A, Number of iterations vs. prediction accuracy. B, Number of 
iterations vs. the number of SNPs selected. 

Table 3  Performance of our algorithm compared with that of other clas-
sifier methodsa) 

Method Sn (%) Sp (%) Acc (%) 

C4.5 61.6 60.4 61.2 

RandForest 68.9 50.9 62.3 

NB 64.4 48.1 58.4 

SVM 64.8 69.1 66.4 

Our algorithm 70.7 76.3 72.9 

a) Sn=sensitivity; Sp=specificity; Acc=accuracy. 

accuracy (72.9%) than that obtained by IBPSO [21] or HPG 
[22] (70.5% and 72.2%, respectively). 

Although a combination of 17 SNPs contributed most 
highly to the prediction accuracy, the importance of the in-
dividual SNPs varies. Table 2 shows the weights (impor-
tance) of those 17 SNPs. Those same values are shown in 
Figure 4 after normalization. CTAF450_1, CTAF450_4 and 
JO34 strongly correlate with GD. 

The frequencies of the three genotypes of the 17 selected 
SNPs in the case and control datasets are shown in Figure 5. 
The frequencies of genotype 1 (homozygosity for the major 
allele) at SNPs MH13_1, CT60, JO36 and JO18 1 are much 
higher in the control group than in the case group. Therefore, 
these SNPs may exert protective effects against GD. The 
frequency of genotype 2 (homozygosity for the minor allele) 
at CTAF343 is clearly different between the two groups. 
The frequencies of genotype 3 (heterozygosity) at JO37_2, 
JO13, JO3, CTBC053 and CT_C065 are much higher in the 
case group than their corresponding control group frequen-
cies. When the genotype frequencies in cases are greater 
than those in the controls, that combination of SNPs is re-
garded as a risk factor; the opposite implies a protective 
factor. 

3  Conclusion 

The large number of SNPs makes disease association stud- 

Table 4  Performance of our algorithm compared with two other pub-
lished methodsa) 

Method Sn (%) Sp (%) Acc (%) 
IBPSO 64.0 81.8 70.5 
HPG 68.1 79.1 72.2 

Our algorithm 70.7 76.3 72.9 

a) Sn=sensitivity; Sp=specificity; Acc=accuracy. 
 

 

Figure 4  Weights (importance) of the 17 selected SNPs after normaliza-
tion. 
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Figure 5  Frequencies of the three genotypes in the 17 selected SNPs. 1 represents homozygosity for the major allele; 2 represents homozygosity for the 
minor allele; 3 represents heterozygosity. The data for each SNP are shown in pairs of bars; hatched bars indicate controls and non-hatched bars indicate  

cases. 

 
ies difficult to conduct. In this paper, we have proposed a 
wrapper algorithm with a P-value filter to detect multiple 
disease-associated SNPs. For a single SNP, it is commonly 
agreed that the smaller its P-value, the more relevant it is to 
disease. However, this is not always true for combinations 
of SNPs. Our study shows that a SNP in a combination, 
whose P-value is smaller than an optimal threshold (not a 
very small value), has a greater effect on GD than the single 
SNP with the lowest P-value. In addition, we have demon-
strated that our method is an effective tool for the identifi-
cation of combinations of SNPs in association studies of 
GD. 
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