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A wide range of host cellular signal transduction pathways can be stimulated by influenza virus infection. Some of these signal 
transduction pathways induce the host cell’s innate immune response against influenza virus, while others are essential for ef-
ficient influenza virus replication. This review examines the cellular signaling induced by influenza virus infection in host cells, 
including host pattern recognition receptor (PRR)-related signaling, protein kinase C (PKC), Raf/MEK/ERK and phosphatidy-
linositol-3-kinase (PI3K)/Akt signaling, and the corresponding effects on the host cell and/or virus, such as recognition of virus 
by the host cell, viral absorption and entry, viral ribonucleoprotein (vRNP) export, translation control of cellular and viral pro-
teins, and virus-induced cell apoptosis. Research into influenza virus-induced cell signaling promotes a clearer understanding 
of influenza virus-host interactions and assists in the identification of novel antiviral targets and antiviral strategies. 
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Influenza, which causes thousands of deaths and huge eco-
nomic losses every year, remains a significant public health 
problem worldwide. Influenza viruses exhibit high genetic 
variability. Rapidly generated virus variants can evade host 
acquired immunity against previously encountered strains. 
Large amounts of vaccines are produced to deal with sea-
sonal influenza every year, but these vaccines cannot com-
bat all influenza virus variants. It would be more problem-
atic if there are newly emerging variants, such as the H1N1 
variant that emerged in 2009. In influenza virus-infected 
cells, a series of signaling cascades can be stimulated at 
each stage of infection, some of which are important com-
ponents of antiviral immunity, while others are essential for 
sufficient viral replication. Therefore, intracellular signaling 
cascades might be suitable targets for new antiviral strate-
gies. 

Generally, the signaling molecules in the host cell during 
viral infection can be classified into three groups: the re-
ceptors on the cell membrane, the adaptor molecules in-
cluding kinases in the cytoplasm, and the transcription fac-
tors in the nucleus. During the infection of influenza virus, 
specific host receptors can recognize the viral proteins 
and/or genomic RNA and thus initiate a series of signal 
transductions. In this review we will discuss the main find-
ings relating to the cellular signaling induced by influenza 
virus infection. 

1  Recognition of viral components and innate 
immune signaling 

1.1  Double-stranded RNA (dsRNA)-activated protein 
kinase (PKR) and downstream signaling 

Protein kinase (PKR) which plays roles in the normal con-
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trol of cell growth and differentiation was first discovered 
for its ability to phosphorylate translation initiation factor 
eIF2 [1]. PKR can be induced by interferon (IFN) and acti-
vated by dsRNA, cytokines, growth factors and stress sig-
nals. PKR is an important sentinel kinase for viral dou-
ble-stranded RNA (dsRNA) [2]. Influenza dsRNA activates 
PKR and triggers antiviral responses. A recent study indi-
cated that the ribonucleoprotein of influenza B virus can also 
activate PKR and induce cellular antiviral responses [3]. At 
the onset of viral infection, activated PKR phosphorylates 
eukaryotic translation initiation factor 2 (eIF2), which in-
hibits cellular and viral protein synthesis [4,5]. Using 
PKR-deficient mice, Balachandran et al. [6] showed that 
PKR prevents viral replication by concomitantly assisting in 
the production of autocrine IFN. This finding indicated that 
PKR is an essential component of innate immunity that acts 
early in host defense, prior to the onset of IFN counteraction 
and the acquired immune response. PKR is also involved in 
influenza virus-induced apoptosis. Influenza virus infection 
induces augmented Fas expression; accordingly, transfect-
ing the mutant PKR suppresses the augmented Fas expres-
sion and increases cell resistance to death upon virus infec-
tion [7]. The inducible overexpression of functional PKR in 
murine fibroblasts sensitizes cells to apoptosis induced by 
influenza virus and cells expressing a dominant-negative 
variant of PKR are completely resistant to influenza vi-
rus-induced apoptosis [8]. The influenza virus NS1 protein 
can directly bind to dsRNA or PKR to block the activation 
of PKR and evade the cellular antiviral effects induced by it 
[9,10]. 

1.2  Toll-like receptors (TLRs) and downstream sig-
naling 

Toll-like receptors (TLRs) are type I integral membrane 
glycoproteins and play crucial roles in early host defense 
against invading pathogens [11]. Currently, 11 members of 
the TLR family have been identified in mammals. TLR3/7/8, 
which are localized to the endosome membrane, are in-
volved in viral pathogen recognition and the induction of 
type I IFNs [12]. TLR3 mediates dsRNA recognition and 
TLR7/8 mediates single-stranded RNA (ssRNA) recogni-
tion. The TLR family signaling cascades involve numerous 
downstream molecules, including MyD88, TAK1, TAB1, 
TAB2, TRAF6 and NF-κB [13,14]. In lung epithelial cells, 
the expression of TLR3 can be positively regulated by in-
fluenza A virus and dsRNA [15]. The TLR/TRIF pathway is 
essential for dsRNA and influenza A virus-induced NF-κB 
and IRF/ISRE activation [15]. Mitogen-activated protein 
kinase (MAPK) family members, especially Jun-N-terminal 
kinase (JNK) and p38 MAPK function importantly for anti-
viral immunity in influenza-infected cells. It has been 
shown that p38 MAPK and/or JNK are critical for the ex-
pression of several proinflammatory cytokines as well as 
apoptosis regulation [16–19]. Treatment with dsRNA and 

influenza A virus infection strongly upregulates the phos-
phorylation of three MAPK family members, JNK, p38, and 
extracellular signal regulated kinase (ERK)1/2, and en-
hances interleukin (IL)-8 as well as RANTES production 
[18]. In infected MDCK cells, the accumulation of viral 
RNA strongly activates JNK, which correlates with the in-
duction of AP-1-dependent gene expression. Blockage of 
JNK signaling results in the reduction of AP-1 activity and 
the impairment of IFN-β gene expression [19]. Recent stud-
ies found that the MAPK-activated kinase RSK2 also plays 
a role in the cellular antiviral responses. The knockdown of 
RSK2 enhanced viral polymerase activity, the production of 
influenza virus, and reduced the activity of NF-κB and β 
IFN-dependent promoters [20]. p38 MAPK and/or JNK are 
showed to be activated by viral RNA, but whether and how 
TLRs interacts with them is still to be elucidated. Some in 
vivo experiments have shown that influenza virus infection 
upregulates TLR2 expression, but its function remains un-
clear [21,22]. TLR signaling can be negatively regulated by 
activating transcription factor-3 (ATF-3) [23]. When chal-
lenged with a sublethal dose of PR8 influenza virus, ATF3-     
knock-out mice were found to be delayed in body weight 
recovery and showed higher titers of the serum neutralizing 
antibody against PR8 five months postinfection compared 
with wild type mice. 

1.3  Retinoic acid-inducible gene-I-like receptors 
(RLRs) and downstream signaling 

The retinoic acid-inducible gene-I-like receptors (RLRs) are 
another major receptor system for detecting RNA viruses. 
RLRs consist of three members: RIG-I, MDA5 and LGP2. 
RIG-I and MDA5 are important cytoplasmic viral RNA 
sensors that play important roles in antiviral innate immu-
nity. RIG-I and MDA5 recognize different viral RNAs. 
Along with the adaptor protein MAVS, they induce the ac-
tivation of IRF-3/7 and NF-κB, which leads to the induction 
of IFNs and proinflammatory cytokines [24–26]. RIG-I is 
considered the central regulator of influenza A virus-     
induced expression of antiviral cytokines in human lung 
epithelial cells [27]. The overexpression of RIG-I gene con-
structs leads to a dramatic enhancement of IFN-β pro-
moter-driven transcription in influenza A virus-infected 
epithelial cells. Dominant-negative RIG-I gene constructs 
inhibit influenza A virus-induced IFN-β promoter activity. 
IFN-α and Tumor Necrosis Factor (TNF)-α can enhance the 
expression of the components of RIG-I signaling pathways 
and enhance the expression of antiviral cytokines [28,29]. 

1.4  Non-structural protein and the innate immune re-
sponse 

Influenza infection induces IFN gene expression and other 
innate immune responses, but influenza viruses have also 
evolved numerous strategies for evading host immunity. 
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Non-structural proteins play important roles in these proc-
esses. 

Non-structural protein 1 (NS1), a viral antagonist of IFN 
expression and its downstream effects, is the most important 
non-structural protein of influenza virus [30]. NS1 binds to 
dsRNA and sequesters dsRNA from recognition by pattern 
recognition receptors (PRRs) [9,10,31]. Furthermore, NS1 
interferes with viral ssRNA that contains free 5′ triphos-
phate groups, a pattern recognized by PRRs [32]. It was also 
reported that NS1 affects viral RNA recognition by directly 
binding to RIG-I and suppresses IFN-β production conse-
quently [33–35]. NS1 can also specifically block TRIM25-    
mediated RIG-I ubiquitination and repress RIG-I signaling 
[36]. In addition, NS1 can interact with the molecules in-
volved in the transcription and translation of type I IFNs, 
repressing type I IFN production [37]. 

The PB1-F2 protein, another non-structural protein of in-
fluenza virus, has several functions in influenza virus infec-
tion. PB1-F2 can affect influenza virus-induced apoptosis. 
PB1-F2 localizes at the inner and outer mitochondrial 
membranes and mediates higher susceptibility to influenza 
virus-induced apoptosis [38]. PKC-mediated PB1-F2 phos-
phorylation enhances the induction of apoptosis in mono-
cytes [39], which may be caused by the interaction of 
PB1-F2 with the mitochondrial membrane proteins ANT3 
and VDAC1. This interaction leads to cytochrome C release 
via holes in the mitochondrial membrane [40]. PB1-F2 is 
important for the pathogenicity of influenza virus, as indi-
cated by the results of previously reported animal experi-
ments [41,42]. PB1-F2 can upregulate the expression of 
cytokines in infected lungs. This upregulation may be in-
duced by the interaction between PB1 and PB1-F2, which 
leads to high viral polymerase activity and viral RNA ac-
cumulation in the infected cells [43]. 

2  Protein kinase C (PKC) and influenza virus 
entry 

Protein kinase C (PKC) is part of a large family of ser-
ine/threonine kinases activated by many extracellular sig-
nals. PKCs are involved in a multitude of physiological 
processes [44]. The close relationship between PKC and 
sodium ion transport, important for maintaining the low pH 
in the endosome, has been confirmed by the findings of 
numerous studies [45–48]. PKC has also been shown to be 
critical for the entry of enveloped viruses (receptor-medi-     
cated endocytosis) [49]. Upon influenza virus infection, the 
hemagglutinin rapidly activates PKC [46,50] and it has been 
shown that a specific inhibitor of PKC prevents influenza 
virus replication by inhibiting the entry of the virus [51]. 
Similar results have also been reported in cells expressing a 
phosphorylation-deficient form of PKC [52]. Taken to-
gether, these studies demonstrate that PKC plays an impor-
tant role in influenza virus entry. 

3  The Raf/MEK/ERK pathway and ribonu-
cleoprotein (RNP) export 

The Raf/MEK/ERK signal transduction cascade belongs to 
the family of MAPK cascades. Raf/MEK/ERK signaling 
leads to stimulus-specific changes in gene expression, al-
terations in cell metabolism, or the induction of pro-
grammed cell death. Thus, Raf/MEK/ERK signaling con-
trols cell differentiation and proliferation [53]. Ribonucleo-
protein (RNP) formation and nuclear export are important 
steps in the life cycle of influenza virus. Influenza virus 
matrix protein and temperature both play important roles in 
these processes [54,55]. Among the different signalings 
activated by influenza virus, Raf/MEK/ERK cascade is re-
quired for an efficient nuclear RNP export as indicated by 
several studies [56,57]. Inhibition of Raf signaling results in 
nuclear retention of viral RNP and the concomitant inhibi-
tion of virus production [57]. Influenza virus hemagglutinin 
(HA) membrane accumulation and its tight association with 
lipid-raft domain trigger the activation of MAPK cascades 
via PKC-α activation and RNP export [58]. HA membrane 
accumulation is enhanced by the higher polymerase activity 
of influenza virus, resulting in upregulation of the MAPK 
cascade and more efficient nuclear RNP-export, along with 
virus production [59].  

4  Eukaryotic translation initiation factor 4e 
(eIF4E) and viral protein translation 

Influenza virus can efficiently shut off host cell protein 
synthesis and selectively translate viral RNA. The synthesis 
of viral mRNA is primed by short capped oligonucleotides 
which are scavenged from host pre-mRNAs [60,61]. 
De-capped host mRNA would probably be more susceptible 
to degradation. The NS1 protein of influenza virus can also 
inhibit the nuclear export of host mRNA and the splicing of 
pre-mRNA [62,63]. Sequences within the 5′ untranslated 
regions (UTRs) play a critical role in the selective transla-
tion of influenza viral mRNA [64]. The NS1 protein func-
tions to increase the initiation rate of translation of viral 
mRNAs by interacting with the 5′-terminal conserved se-
quences of viral mRNAs [65–68]. Eukaryotic translation 
initiation factor (eIF) 4GⅠ, a subunit of cap-binding com-
plex eIF4F, and poly(A) binding protein 1 (PABP1) are 
identified to be cellular targets of NS1 that support the role 
of NS1 in protein translation [69,70]. By binding to eIF4GⅠ, 
NS1 recruits eIF4F to the 5′ UTR of viral mRNA and acti-
vates translation of viral mRNA. eIF4E which is another 
subunit of eIF4F is dephosphorated during influenza infec-
tion. eIF4E dephosphorylation which may lead to a decrease 
of its cap-binding activity may contribute to the influenza 
viruses-induced inhibition of the cellular mRNA translation 
[71]. In virus-infected cells, activation of PKR, an inter-
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feron-induced kinase, may induce global inhibition of 
translation initiation through phosphorylation of the eIF2α. 
To maintain a certain level of cellular protein translation, 
influenza viruses utilize at least two strategies, involving 
cellular p58IPK (Protein Kinase Inhibitor p58) and viral pro-
tein NS1, to block PKR activity [72,73].   

Influenza viruses carry out temporal regulation of their 
own viral gene expression [74,75]. Nucleoprotein (NP) and 
NS1 protein are highly expressed at early times after infec-
tion, while HA, neuraminidase (NA) and matrix protein 
(M1) are expressed mainly at late times after infection. It is 
proposed that the translational efficiency of viral mRNA is 
subjected to regulation and the 5′ UTR of influenza virus 
mRNAs may be important for this translation control. 
However, the exact mechanisms have not been identified 
[76]. 

5  Phosphatidylinositol-3-kinase (PI3K)/Akt sig-
naling pathway and viral infection 

The activation of phosphatidylinositol-3-kinase (PI3K)/Akt 
signaling is a hallmark of cell survival [77,78], and plays 
important roles in a wide range of physiological processes. 
Recent studies found that PI3K/Akt signaling is a strategy 
employed by viruses to slow down apoptosis and prolong 
viral replication during acute and persistent infections [79]. 
In influenza A virus-infected cells, activation of PI3K is 
mediated by the viral NS1 protein, which binds directly to 
the p85β regulatory subunit and causes the PI3K-dependent 
phosphorylation of Akt [80–84]. Akt directly phosphorylates 
caspase 9, thereby inhibiting the activation of this apoptotic 
protease. Glycogen synthase kinase (GSK)-3β, another 
apoptosis modulator, is also phosphorylated and inactivated 
by Akt. Consequently, viral-induced apoptosis is suppressed 
by activated Akt signaling [83,85]. Akt signaling also pro-
tects influenza-infected cells from fast apoptosis through the 
p53-dependent pathway. In influenza-infected CV-1 and 
MDCK cells, nuclear accumulation and phosphorylation of 
p53 show low constitutive levels at early time of infection, 
whereas both are markedly elevated at the late infection 
stage (17–20 h postinfection) [86]. The PI3K/Akt pathway 
was recently reported to negatively regulate the JNK path-
way via ASK1, thereby inhibiting JNK-dependent, Bax-     
mediated apoptosis during influenza A virus infection [87].  

Besides promoting efficient viral replication by sup-
pressing apoptotic signaling, the PI3K/Akt pathway has 
other important roles in influenza A virus propagation 
[79,88]. Before influenza A virus NS1 protein was found to 
activate PI3K/Akt signaling, PI3K was reportedly activated 
in response to dsRNA and mediated the activation of tran-
scription factor IFR-3. Blocking PI3K signaling has been 
shown to impair the dimerization of IRF-3 and reduce 
IRF-3-dependent promoter activity. Furthermore, PI3K 

regulates an early step of viral entry [89]. In A549 cells, it 
was reported that the PI3K/Akt signaling pathway is acti-
vated independently of viral attachment and entry, and spe-
cific inhibitors of the PI3K/Akt pathway significantly sup-
press viral RNA synthesis and protein expression [90]. 
PI3K/Akt signaling includes many downstream effector 
molecules associated with cell survival, proliferation, dif-
ferentiation, morphology and apoptosis. The suppressed 
viral propagation caused by blocking PI3K/Akt signaling 
may be a composite effect, and further studies focusing on 
the downstream processes of the PI3K pathway are neces-
sary. 

6  The complexity of the influenza virus–host 
interaction 

Influenza virus-induced signaling involves a complex net-
work of signaling and effector molecules (Figure 1). Some 
signaling pathways play multiple roles in viral infection. 
NF-κB, generally considered a key transcription factor in 
the production of type-I IFN and other antiviral cytokines 
[6,15,91–95], has been identified as a prerequisite for in-
fluenza virus infection [96]. NF-κB signaling can regulate 
influenza virus RNA synthesis. Knocking-down of p65 
NF-κB molecule reduces influenza virus replication and 
viral RNA synthesis [97]. In addition, the NF-κB-dependent 
induction of tumor necrosis factor-related apoptosis-induc-      
ing ligand (TRAIL) and Fas/FasL is crucial for efficient 
influenza virus propagation [98]. Similarly, the viral RNA 
recognition receptor RIG-I, important for the production of 
antiviral cytokines [28,99–101], is also involved in the 
SOCS1- and SOCS3-mediated negative regulation of the 
innate immune response [102]. The RIG-I/MAVS signaling 
pathway activates caspase-3, suggesting a role for this re-
ceptor beyond the innate cytokine response [103].  

7  Conclusion  

Influenza viruses afflict millions of people each year and 
cause serious medical complications. Because of the high 
genetic variability of influenza viruses, the development of 
effective vaccines against pandemic influenza is still an 
ongoing challenge. Some mutant influenza viruses are re-
sistant to conventional antiviral reagents. In recent years, 
the highly pathogenic avian influenza A virus H5N1 and 
influenza A virus H1N1 have presented new threats. In in-
fected cells, viral-induced signaling pathways are required 
for effective antiviral responses or for sufficient viral repli-
cation. Receptor-mediated viral RNA recognition by the 
host plays a central role in antiviral signaling responses. It 
activates a series of kinases and important transcription 
factors, as well as induces the expression of antiviral genes,  
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Figure 1  Host cellular signaling induced by influenza virus. Akt, protein kinase B (PKB); ATF, activating transcription factor; ASK, apoptosis sig-
nal-regulating kinase; IκB, inhibitor of κB; IRF, interferon regulatory factor; MDA5, melanoma differentiation associated gene 5; MKK, mitogen-activated  

kinase kinase; mTOR, mammalian target of rapamycin; Raf, rapid accelerating fibrosarcoma; TBK, TANK-binding kinase; TRIM, tripartite motif. 

including IFNs and other cytokines. Besides viral RNA, 
some viral proteins can also induce the innate immune re-
sponse through antiviral signaling pathways. On the other 
hand, influenza virus takes advantage of cell signaling for 
its propagation at almost all stages of its life cycle. For ex-
ample, activated PKC is required for viral entry. Raf/MEK/   
ERK signaling is essential for viral RNP export. The NS1 
protein activates several signaling pathways to ensure effi-
cient influenza virus replication, including the suppression 
of the innate immune response, the enhancement of viral 
RNA synthesis, increased viral protein expression and 
regulation of host cell apoptosis.  

A persistent problem in viral-induced signaling research 
is the widespread use of tumor cell lines. Their changed 
physiological and biochemical properties may cause dis-
crepancies between in vitro studies and in vivo studies. In-
fluenza virus-induced signaling involves a complex network 
of different overlapping molecules and signal cascades. Re-
search on a single molecule or pathway cannot, therefore, 
provide a comprehensive description of virus–host interac-
tions. Combining genome, transcriptome and proteome re-
search methods may prove helpful in obtaining a clearer 
understanding of virus–host interactions. Recently, two re-
search groups have used large-scale RNAi screening to 
analyze these interactions, and got some important new 
discoveries [104,105]. Greater insight into viral-induced 
signaling will not only increase our understanding of the 
interaction between influenza viruses and host cells, but will 
also potentially provide novel antiviral therapeutic targets. 
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