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The central dogma of modern biology underscores the pivotal roles proteins play in diverse biological processes, the study of
which necessitates advanced methods to produce proteins with precision and versatility. Chemical protein synthesis, a powerful
approach utilizing chemical reactions for the de novo construction of structurally accurate proteins, has emerged as a trans-
formative tool for studying proteins and generating protein derivatives/mimics inaccessible by natural biological machinery,
including post-translationally modified proteins, proteins comprised of unnatural amino acids, as well as mirror-image proteins.
This review summarizes recent strides in synthetic method developments for chemical protein synthesis, including innovative
techniques in solid-phase peptide synthesis, the challenges presented by difficult sequences in either synthesis or folding and the
exploration of novel ligation reactions using both chemical and enzymatic methods. Furthermore, the review also delves into
newly developed protocols for site-selective protein modifications and the generation of stapled or macrocyclized peptides/mini-
proteins, highlighting the power of chemical methods to make structurally diverse proteins. Recent applications of synthetic
proteins in investigating post-translational modifications (phosphorylation, lipidation, glycosylation, ubiquitination, etc.),
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mirror-image biological processes and drug development are further discussed. Together, these topics provide a comprehensive
overview of the current landscape of chemical protein synthesis.

chemical protein synthesis, solid-phase peptide synthesis, ligation reactions, post-translational modifications, mirror-
image proteins, peptide drugs
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1 Introduction

Proteins are essentially large-sized organic molecules that
connect chemistry to life. They are intensively studied to
understand how life works at the molecular level and are also
increasingly being developed as diagnostics and ther-
apeutics. In addition, proteins are receiving growing atten-
tion in the development of advanced materials. While
advancements in biological techniques and technologies
have enabled researchers to better study and understand the
functions and structures of proteins, the complexity and di-
versity of the proteome require more powerful methods to
produce proteins with increasingly structural precision and
versatility. One such powerful approach is chemical protein
synthesis [1–6], wherein synthetic chemistry is used to
construct structurally defined proteins in a de novo fashion,
and which has emerged as a transformative tool to study
proteins, particularly those bearing posttranslational mod-
ifications (PTMs) [7–12]. As a complementary strategy to
protein biosynthesis, chemical protein synthesis can lead to
proteins of any chirality with exquisite control over se-
quence, structure, and functionality and enables the genera-
tion of proteins that would otherwise be difficult or
impossible to obtain [13–17]. Beyond interrogating the
structure-function relationships of naturally occurring pro-
teins, chemical protein synthesis also enables the production
of proteins incorporating non-canonical amino acids and
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unnatural modifications and even mirror-image proteins
entirely made of D-amino acids, opening doors to applica-
tions in fields from pharmaceuticals and materials to syn-
thetic biology [18–27].
New chemistry (i.e., new chemical reactions and new

synthetic strategies) is the fundamental driver of chemical
protein synthesis and vital for the development of the field.
Compared with the pioneering synthetic studies on relatively
small proteins such as insulin [28–30], ground-breaking new
chemistry, such as solid-phase peptide synthesis (SPPS) [31],
has revolutionized chemical protein synthesis, allowing
many important and increasingly sophisticated proteins to be
produced. However, there is still a strong need for innovative
methods of chemical protein synthesis, especially new che-
mical reactions, and synthetic strategies, to obtain proteins
with more complex structures and to continuously improve
the efficiency of synthesis. This review describes recent
advancements in chemical protein synthesis, including novel
chemical and enzymatic ligation reactions and strategies,
site-selective protein modification methods, and the appli-
cation of chemically synthesized proteins in different areas
of biomedical studies. These new advancements have greatly
reshaped the field and supported the development of modern
biomedicine, demonstrating the importance, power, and va-
lue of synthetic chemistry. By surveying these advance-
ments, we will provide an overview of the current state of the
field and illuminate potential avenues for future exploration.

2 Recent method developments for chemical
protein synthesis

2.1 Peptide synthesis

SPPS technology [31,32] greatly simplifies the preparation
of peptides by enabling the iterative coupling of protected
amino acids onto insoluble polymer support to give peptide
chains without the need for complex purification procedures
at the end of every step (Figure 1). The initial Boc (t-buty-
loxycarbonyl) based protocol has now been largely sup-
planted by the Fmoc (9-fluorenylmethyloxycarbonyl) based
method [33], which is preferred due to its milder reaction
conditions, simpler reaction operations and greater amen-
ability to automation. More recently, new Fmoc-based SPPS
methods [34–36] have been developed, including the 4,6-
dithiocyano-5-nitropyrimidine (NDTP, Figure 1b) coupling
reagent [37] and the 2,4-dinitro-6-phenyl-benzene sulfenyl
(DNPBS, Figure 1c) α-amino protecting group to suppress α-
carbon racemization in peptide synthesis [38].
Other recent SPPS innovations include improvements in

coupling reagents, such as the ynamide [39] and allenone
[40] reagents developed by Zhao et al. (Figure 1c), which
accomplish highly efficient amino acid coupling under mild
conditions. These coupling reagents, as well as their derived

α-carbonyl vinyl esters of amino acids, can be easily pre-
pared and stored for months. The synthetic application of the
ynamide- and allenone-mediated peptide bond formation has
been showcased in the syntheses of linear peptides [41],
cyclic peptides [42], cyclodepsipeptides [43], peptide
thioesters [44], and thioamide-containing peptides [45,46],
and peptide segment condensation [21–23].
The operational simplicity of Fmoc SPPS has led to the

development of automatic peptide synthesizers. Early mod-
els required 1–2 h per coupling and deprotection cycle [47];
more recent developments, including the use of microwaves,
have shortened cycle times to as short as four minutes [48].
Recently, Pentelute et al. [49] invented the automated fast-
flow peptide synthesizer for the rapid synthesis of peptides
with real-time quantitative monitoring, allowing for the
stepwise total chemical synthesis of peptides up to 164
amino acids in length with a cycle time of ~2.5 min per
amino acid. This flow-based SPPS technique enabled the
synthesis of several mirror-image targets used for mirror-
image screening to discover D-peptide drugs [50].
One shortcoming of Fmoc SPPS is its inherent unsuit-

ability to synthesize peptides incorporating hydrophobic
sequences or those prone to aggregation on the resin [51];
attempts to access such “difficult peptides” using SPPS often
result in truncated products and/or those incorporating de-
letions. To obviate this problem, various innovative back-
bone modification strategies to inhibit hydrogen-bonded
interchain association and disrupting peptide conformation
have been developed, such as those based on the introduction
of a pseudoproline dipeptide [52], 2-hydroxy-4-methox-
ybenzyl [53] or O-acyl isopeptide [54] group (Figure 2) [55].

Figure 1 (a) Solid-phase peptide synthesis. (b) DNPBS, a recent α-amino
protecting group. (c) Recently developed coupling reagents (color online).
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Zheng et al. [56] developed an improved method of instal-
ling a 2-hydroxy-4-methoxybenzyl group at any primary
amino acid, including highly sterically hindered ones (e.g.,
Val, Ile), and Li et al. [57] reported a kinked backbone
modification strategy using N,O-benzylidene acetal dipep-
tides as building blocks.

2.2 Chemical ligation methods

2.2.1 Native chemical ligation
The convergency of peptide synthesis can be improved by
native chemical ligation (NCL) [58], wherein a C-terminal
peptide thioester reacts with an N-terminal cysteinyl peptide
to give a larger peptide incorporating a native amide bond at
the ligation site. The initial capture step in NCL is a thiol-
thioester exchange reaction between the thioester of one
peptide and the cysteine thiol functionality of a second to
give a thioester-linked intermediate which undergoes a
spontaneous intramolecular S,N-acyl transfer to give a larger
peptide with a native peptide bond to cysteine (Figure 3a)
[59]. NCL was invented by Kent et al. [58] in 1994 and is a
ground-breaking method for chemical protein synthesis that
has been widely used [3,8,60–63].
Although the low abundance of Cys residues in natural

proteins has limited the application of NCL, the method has
been extended using a thiolated amino acid-mediated liga-
tion followed by desulfurization [64]. Several thiol-con-
taining amino acids have been used in this ligation-
desulfurization sequence, including the recently developed
β-thiolysine derivatives (Figure 3b) [65–67]. Alternatives to
the original radical-based desulfurization (tris(2-carbox-
yethyl)phosphine (TCEP)/VA-044/tBuSH) protocol have
been developed as well. For example, Li et al. reported a P-B
peptide desulfurization using TCEP/NaBH4 [68], finding
that tetraethylborate (NaBEt4) can mediate superfast radical-
based desulfurization within 15–30 s without the need for
heating, irradiation, an inert atmosphere, mercaptan ad-
ditives, or complicated equipment [69]. In addition, Stockdill
et al. [70] reported a phosphine-only photodesulfurization
using phosphine and near-ultraviolet light.
Removable thiol-based auxiliaries that mimic a Cys pep-

tide in NCL, such as the acid-sensitive 1-aryl-2-mercap-
toethyl auxiliary, have also been developed (Figure 3c),
though they are often limited to ligations at glycine [71,72].

Becker et al. [73,74] reported a PEGylated photocleavable
auxiliary mediated ligation at glycine for the synthesis of
complex glycosylated peptides. Auxiliaries capable of li-
gating at residues other than glycine include the new aux-
iliaries developed by Seitz et al. [75,76], which can even be
used at junctions containing proline or valine.

2.2.2 Peptide hydrazide ligation
A long-standing problem of native chemical ligation is that
peptide thioesters are challenging to make due to their labi-
lity in the Fmoc-based solid-phase peptide synthesis. To
circumvent this problem, a plethora of methods have been
explored to prepare peptide thioester equivalents or surro-
gates compatible with the reaction conditions of Fmoc-SPPS
[38,77–81]. In this context, peptide hydrazide ligation, which
was originally developed by Liu et al. [82–87] becomes a
transformative method for chemical protein synthesis. Pep-
tide hydrazide ligation relies on two counterparts that are
both nucleophilic in nature and chemically inert to each
other, namely, a C-terminal peptide hydrazide and an N-Cys
peptide. To enable the ligation between these two nucleo-
philes, the hydrazide is first activated through a highly
chemoselective oxidative reaction using sodium nitrite to
give a high-energy intermediate of acyl azide, which is im-
mediately subjected to thiolysis in situ to give the corre-
sponding thioester that can ligate with the N-terminal Cys
peptide (Figure 4) [54].
An important feature of the peptide hydrazide ligation is

that peptide hydrazides can be very easily prepared by Fmoc
SPPS, ideally starting from freshly-prepared (2-Cl)-Trt-
NHNH2 resin, which can be obtained from commercially

Figure 2 Structures of several representative backbone modifications.

Figure 3 (a) Native chemical ligation. (b) Non-native thiolated amino
acids. (c) Auxiliaries (color online).
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available (2-Cl)-Trt-Cl resin [88,89]. Alternatively, the hy-
drazine-modified resin can be prepared as a Fmoc-protected
form for long-term storage and better loading quantification
[90]. Peptide hydrazides can also be prepared from re-
combinantly expressed proteins, such as those obtained using
intein fusion, allowing for convenient chemical synthesis of
large-sized proteins. Liu et al. [91] reported the generation of
protein α-hydrazides through hydrazinolysis of a protein
bearing a genetically incorporated α-oxoester in its back-
bone. A small molecule reagent to chemically activate a
cysteine in a recombinant protein has also been developed;
this activated cysteine is then converted into the corre-
sponding peptide hydrazide by hydrolysis [92,93]. Other
enzymatic methods to obtain peptide hydrazides include the
sortase and peptidyl-α-hydroxyglycine amidating lyase/
peptide amidase approaches [94–96].
A modified NaNO2 activation protocol compatible with an

N-terminal thiazolidine group has also been developed to
convert the corresponding peptide hydrazide into the thioe-
ster in trifluoroacetic acid (TFA) [97]. In this method, acet-
ylacetone was used to convert the peptide hydrazide into the
corresponding acyl pyrazole. Then, thiolysis was carried out
to give a peptide thioester for ligation. Acyl pyrazoles are
mild acylating agents and are compatible with the N-terminal
Thz moiety, enabling multiple sequential ligations without
intermediate purification steps [98].
Peptide hydrazide ligation has become the most popular

ligation method in modern chemical protein synthesis due to
its flexibility and the relative ease with which the ligation
partners can be prepared and activated. It has been used to
prepare numerous small to large proteins, including those
bearing post-translational modifications, mirror-image pro-
teins, protein probes, and isotope-labeled proteins for
structural and functional proteomics studies. Recent appli-
cations of peptide hydrazide ligation methods include the
total chemical synthesis of targets comprised of ca. 500
amino acids [99–104] (e.g., 441-residue Tau, 456-residue
hexa-Ub, 472-residue tetra-Ub-α-globin, and 467-residue N-
terminal Pfu).

2.2.3 Seleno-mediated chemical ligation
NCL can be accelerated using peptide selenoesters in place
of peptide thioesters due to the enhanced reactivity of sele-
noesters compared with thioesters—for example, a
C-terminal peptide prolyl selenoester ligated nearly 350

times faster than its corresponding thioester [105]. The N-
terminal Cys in NCL can also be changed to the N-terminal
selenocysteine (Sec) amino acid for ligation (Figure 5). In
Sec-based ligation, deselenization of a Sec residue can be
performed by reduction with TCEP and a hydrogen donor,
such as dithiothreitol (DTT). Deselenization was compatible
with unprotected Cys residues [106].
The diselenide selenoester ligation (DSL) invented by

Payne et al. [107] involves the chemoselective ligation of an
unprotected peptide selenoester and an unprotected dis-
elenide peptide. The high reactivity of the C-terminal sele-
noester and N-terminal Sec enables ligation to proceed
rapidly, even at low concentrations (e.g., μM and even nM)
and between sterically hindered junctions [108]. DSL is also
useful for ligating poorly soluble peptides to afford hydro-
phobic proteins, such as lapidated proteins, without the need
for any solubility tags or hybridizing templates [109]. Li-
gation at Sec has also been accomplished using an N-term-
inal Sec-containing segment expressed in E. coli [110].

2.2.4 Chemical ligation based on peptide salicylaldehyde
esters
The Ser/Thr ligation (STL), developed by Li et al. [111–
114], relies on a reaction between a C-terminus salicylalde-
hyde ester and a peptide bearing an N-terminal Ser or Thr
residue (Figure 6). The ligation generates an N,O-benzyli-
dene-acetal-linked intermediate, which transforms into the
desired ligated peptide under acidic conditions. The β-hy-
droxyl amine unit of the N-terminal Ser/Thr can chemose-
lectively form an oxazolidine with the aldehyde to generate
the N,O-benzylidene acetal after irreversible 1,5 O-to-N acyl
transfer.
Furthermore, Li et al. [115] reported the cysteine/peni-

cillamine ligation (CPL) using the reaction between a pep-
tide salicylaldehyde ester and either cysteine or
penicillamine (Figure 7). The reaction generates the N,S-
benzylidene acetal intermediate after irreversible 1,5 O-to-N
acyl transfer. Subsequent acidolysis released the ligated
peptide, which can be converted into the peptide with Xaa-
Ala/Val ligation sites by desulfurization. One unique feature
of CPL is that the ligation can be performed at highly hin-
dered ligation sites, including “Pro-Val”.
The requisite peptide salicylaldehyde esters for STL and

CPL can be chemically synthesized via both Fmoc-SPPS and
Boc-SPPS [97–100]. Recently, He et al. [116] reported a
facile and general approach to prepare peptide salicylalde-
hyde esters from peptide hydrazides via a sequential nitrite
oxidation and phenolysis sequence using 3-(1,3-dithian-2-
yl)-4-hydroxy-benzoic acid. Ubiquitinated Gadd45a, ubi-
quitin-like protein 5 (UBL-5) and a myoglobin variant were
successfully synthesized using this new strategy—the first
synthesis of expressed protein salicylaldehyde esters that
significantly expands the synthetic toolbox of STL/CPL for

Figure 4 Peptide hydrazide ligation (color online).
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chemical protein synthesis.

2.2.5 KAHA ligation and others
Another ligation useful for chemical protein synthesis is the
KAHA ligation technique developed by Bode’s group
[117,118], which involves the coupling of peptide α-keto
acids and hydroxylamine peptides, generating an amide bond
under aqueous acidic conditions without the need for a
protecting group or coupling agent [119]. Furthermore, the
Staudinger ligation has been demonstrated as another ef-
fective strategy for constructing native amide bonds
[120,121]. This chemoselective reaction involves the inter-
action between the phosphine component and the azide
moiety, resulting in the formation of an iminophosphane
intermediate. This intermediate spontaneously undergoes
rearrangement, leading to the generation of the native pep-
tide through acyl migration and hydrolysis. However, the
Staudinger ligation has not been widely used for chemical
protein synthesis due to its intrinsic limitation. The historical
development and contemporary applications of the Stau-
dinger ligation have been comprehensively reviewed re-
cently [122].

2.3 Enzymatic peptide ligation

Peptide ligation can also be accomplished using enzymes
[123], such as sortase A [124], butelase-1 and OaAEP1
[125]. These enzymes typically cleave a recognition se-
quence and form a peptide acyl-enzyme intermediate [126],
which undergoes nucleophilic attack by the N-terminal
amine of the second substrate to create a peptide bond
(Figure 8) [127]. However, far fewer natural peptide ligases
than proteases are known, and proteases often favor hydro-
lysis over aminolysis, making them less efficient for liga-
tions [128]. Efforts have been made to engineer proteases
into ligases with better aminolysis-to-hydrolysis ratios [129].
These engineered ligases have been widely used in protein
synthesis, cyclization, N-terminal modification, and C-
terminal modification [130,131].

2.3.1 Peptidyl asparaginyl ligases
Peptide asparaginyl ligases (PALs) can catalyze transpepti-
dation reactions involving a consensus Asx-Xaa1-Xaa2 tri-
peptide motif [132], but these reactions are reversible [133].
Strategies to address this reversibility include a cascade en-
zymatic reaction by Xia et al. [134], wherein the PAL is
combined with glutaminyl cyclase to give a leaving group
incompatible with PAL-mediated transpeptidation (Figure
9a). An alternative quenching approach was proposed by
Rehm et al. [135], who disabled the reversibility of the li-
gation reaction by complexing the cleaved tripeptide with a
metal (Figure 9b).
PALs have also been used to introduce the C-terminal Leu-

ethylenediamine into synthetic peptides and recombinant
proteins, thereby enabling the sequential C-to-C ligation of
up to three proteins (Figure 10a) [136], and accomplishing
the site-specific modification of target proteins at internal
locations incorporating an isopeptide-linked glycylglycine
moiety (Figure 10b) [137], or incorporate various small nu-
cleophiles such as cysteamine at C-termini (Figure 10c)
[138]. PALs can also be used to cyclize bioactive peptides,
especially disulfide-rich peptides, with minimal ligation
scars and simplified formation of precise disulfide bonds
[139]. Noteworthy targets for cyclization include anti-
microbial peptides and angiotensin I-converting enzyme in-
hibitory peptides [140]. Other research in the field of PALs
has focused on discovering novel PAL variants [141].

2.3.2 Sortase A
Sortase A (SrtA)-mediated ligation is widely used for se-
lective ligation in complex cellular environments [84],
though limited by the requisite C-terminal LPXTG motif and
incomplete substrate conversion due to its reversibility. To
address these issues, Zuo et al. [142] demonstrated an effi-
cient and irreversible ligation method using SrtA, involving a
protein with C-terminal thioester bonds and a protein bearing

Figure 7 Cysteine/penicillamine ligation (color online).

Figure 6 Serine/threonine ligation (STL) (color online).

Figure 5 Seleno-mediated ligation (color online).

1065Dong et al. Sci China Chem April (2024) Vol.67 No.4



an N-terminal Gly (Figure 11a). This approach exhibited
broad sequence compatibility, even with unconventional li-
gation sites. In addition, Podracky et al. [143] evolved a
sortase variant with a preference for LMVGG substrates

(Figure 11b). However, the wild-type SrtA exhibits reactivity
solely towards the N-terminal oligoglycine moiety, typically
composed of tri-/penta-glycines. To expand the substrates
scope of SrtA, Chen et al. [144] evolved a “promiscuous”
SrtA variant (mgSrtA) capable of labeling the exposed N-
terminal monoglycine residue, which is much more abundant
in nature.
More recently, Thompson et al. [145] introduced trans-

peptidase-assisted intein ligation (TAIL), using SrtA-medi-
ated ligation to construct an active split-intein fusion for
protein modifications in the chromatin environment (Figure
11c). Hofmann et al. [146] explored lysine acylation using
conjugating enzymes (LACE) with SrtA, yielding dual-
modified Fab fragments in near-quantitative yield (Figure
11d). Fottner et al. [147] developed a chemoenzymatic
strategy for ubiquitylating and SUMOylating proteins (Fig-
ure 11e).

2.3.3 Subtiligase and peptiligase
Subtiligase was introduced by Wells et al. [129a] and is a
versatile tool for protein synthesis. Peptiligase, a Ca2+-in-
dependent subtilisin variant, was subsequently developed by
Janssen et al. [129b]. This breakthrough marked a significant
stride towards the industrial production of pharmaceutical
peptides [148]. To enhance substrate versatility, Janssen et
al. [149] designed omniligase-1 through rational design and
mutagenesis. Concurrently, Weeks and Wells [150] proposed
an alternative strategy in which peptide ligase specificity for
N-termini is accomplished through proteome-derived pep-
tide libraries. These broad-spectrum ligases have expanded
the range of possible enzymatic ligation sites and enabled the
large-scale production of important biomacromolecules
[151].
Despite these advancements, the preparation of protein

ester substrates suitable for peptiligase-mediated ligation
remains challenging [60]. Wu et al. [152] engineered a
peptide amidase to functionalize C-terminal amide groups

Figure 10 PAL examples. (a) C-to-C protein ligation. (b) Site-specific
ubiquitylation using genetic-code expansion and OaAEP1. (c) Protein C-
terminal modification with diverse amines (color online).

Figure 9 Favouring PAL-catalysed peptide conjugation by introducing
(a) glutaminyl cyclase and (b) nickel ions (color online).

Figure 8 Peptide ligation catalysed by (a) peptide asparaginyl ligases, (b) sortase A, and (c) subtiligase or peptiligase (color online).
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selectively. Subsequently, peptidyl-glycine hydroxylating
monooxygenase and peptidyl-α-hydroxyglycine amidating
lyase were introduced to process recombinant proteins
bearing C-terminal glycine residues. Combined with omni-
ligase-1, these enzymatic components gave rise to PALME
(Figure 12), a platform that enables enzymatic protein
synthesis without ligation site restrictions [153].

2.4 Templated ligation strategies

Templated ligation strategies can enable ligation at low
concentrations by increasing the effective concentration of
the reactive partners. The first templated native chemical
ligation used secondary structure interactions between pep-
tides to bring them into proximity [154,155]. Base-pairing

noncovalent interactions between nucleic acids and peptide
nucleic acids can also bring the reactive partners into
proximity and mediate ligation at nM concentrations [156–
158]. Other strategies include those of Melnyk et al. [159],
which relies on phosphate-guanidinium electrostatic inter-
actions, and Bode’s group [160], who reported a templated
amide-forming ligation between acylboronate and hydro-
xylamine groups using streptavidin-desthiobiotin as the
template.
Although ligation templated by noncovalent interactions is

effective in many contexts, it cannot be used with the
strongly chaotropic solvents typically required for peptide
solubilization, and such methods may leave their interaction
pairs as a “ligation scar” in the product. To address these
issues, covalent bond-mediated ligation strategies such as
traceless click-assisted NCL [161] and backbone-installed
split intein-assisted NCL [162] have been developed. These
methods can be performed smoothly at micromolar con-
centrations in strongly chaotropic conditions.

2.5 Solubilizing-tag strategies

An ongoing challenge in the chemical synthesis of proteins is
their hydrophobicity, which often leads to very low ligation
yields due to the poor solubility of the proteins and their
tendency to aggregate [163–165]. Various strategies to ad-
dress this problem have been reported, which can be divided
into two main categories: (1) adding organic solvents,
chaotropic agents, or surfactants to the reaction mixture
[166]; and (2) modifying the peptide backbone or side chain
[167].

Figure 12 The PALME platform for traceless protein synthesis. Peptidyl-
glycine hydroxylating monooxygenase (PHM), peptidyl-α-hydroxyglycine
amidating lyase (PAL), peptide amidase (PAM) and omniligase-1 are used
sequentially for the C-terminal activation and ligation of both proteins
(prepared by recombinant expression) and peptides (prepared by SPPS)
(color online).

Figure 11 Sortase A examples. (a) Thioester-assisted sortase-A-mediated ligation. (b) Modification of amyloid-β (Aβ) protein by an engineered sortase
variant. (c) Combination of intein-mediated protein splicing and sortase-mediated peptide ligation. (d) Dual modification of trastuzumab antigen-binding
fragment by using sortase A and E2 small ubiquitin-like modifier conjugating enzyme Ubc9. (e) Site-specific ubiquitylation using genetic-code expansion and
sortase (color online).
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Temporary solubilizing modifications such as hydrophilic
tags have revolutionized the use of chemical ligation on
“difficult sequences” by improving the handling and pur-
ification of poorly-soluble peptides during ligation (Figure
13). Tags can be installed onto the N-terminus, C-terminus,
amino acid side chains, or backbone amide. Disotuar et al.
[168] used an N-terminal solubilizing tag for the insulin A
chain, and several examples of C-terminal tags have been
reported [169–171]. More recently, side-chain or backbone
solubilizing tags have attracted attention. Kay et al. [172]
reported the use of polylysine tags connected to a Ddae-
linker to synthesize the 97-residue co-chaperonin GroES.
Side chain thiol groups can also bear tags, such as the
polyarginine tag used for the chemical synthesis of SUMO-
2-Lys63-linked diubiquitin hybrid chains and HMGB1 pro-
tein [173,174]. Tsuda et al. [175,176] described a method
using trityl-Lys (Trt-K) solubilizing tags to assist NCL. The
enzyme or photo-removable solubilizing tag at Gln/Asn was
developed for the synthesis of hydrophobic proteins
[65,66,177]. Removable backbone modification strategies
have been developed and used to prepare a series of hydro-
phobic membrane proteins not readily accessible by re-
combinant protein expression, such as the core
transmembrane domain Kir5.1 (64−179), the influenza A
virus M2 with phosphorylation or S-palmitoylation, the ca-
tion-specific ion channel p7 with site-specific NMR isotope
labels, S-palmitoylated interferon-induced transmembrane
protein 3 and even mirror-image proteins for phage display
(Figure 14) [146,178–186]. Additionally, Li et al. [187–189]
reported the ligation embedding aggregation disruptor to
prepare interleukin-2, PD-1 immunoglobulin and extra-
cellular domains.

2.6 Multiple-segment ligations

Chemical ligation is usually carried out using short 30–50
amino acid peptides obtained by solid-phase peptide synth-
esis, and therefore, the sequential ligation of multiple peptide
segments is usually needed if a 100–150 amino acid protein
functional domain is the target. Tremendous efforts have
been devoted to developing sequential N-to-C and/or C-to-N
NCL, STL, DSL, or KAHA ligations by temporarily mask-
ing or precisely controlling the reactivity of the C- or N-
terminal reactive groups of the middle peptide segments.
However, the need for intermediate purification and handling
steps, both of which lower the overall yield, is severely
limiting. Solutions to this problem include the one-pot
multiple-segment ligation and solid-supported chemical li-
gation [190,191].

2.6.1 Solution-phase one-pot ligation
The C-to-N one-pot ligation requires that the N-terminal Cys
of the middle peptide segment be protected with a group such

as a thiazolidine (Thz), which can be removed after a one-
pot, three-segment ligation using Pd [192], and after a one-
pot, four-segment ligation using a 2-aminobenzamide-based
aldehyde scavenger [193]. Other protecting groups include
the trifluoroacetamidomethyl (Tfacm) group [194], acet-
amidomethyl (Acm) group [195], and 7-(piperazin-1-yl)-2-
(methyl)quinolinyl (PPZQ) group [196] for thiol group
protection, which can be removed by pH change, Pd(II) and
photolysis, respectively. N-terminal amino protecting groups
such as p-borobenzyloxycarbonyl group (Dobz) [197], al-
lyloxycarbonyl (Alloc) [198a], and 9-fluorenylmethylox-
ycarboyl (Fmoc) [198b] have all been used for one-pot
multiple segment ligation (Figure 15).
N-to-C sequential ligation studies have yielded interesting

findings. For instance, NCL can be kinetically controlled by
exploiting the different reactivities of highly reactive aryl
thioester or fluoroalkyl thioesters and alkyl thioesters
[199,200]. Additionally, the orthogonal thioester precursors
cysteinyl valine ester (CPE) and N-alkylcysteine (NAC)
were used for a one-pot N-to-C ligation [201]. Recently,

Figure 14 Removable backbone modification (color online).

Figure 13 Examples of removable solubilizing tags (color online).
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Dawson et al. [98] reported that C-terminal peptide hy-
drazides could be converted into their corresponding thioe-
sters with stoichiometric acetyl acetone (acac), allowing one-
pot multiple ligations.
The toolbox of chemical protein synthesis can be further

expanded by combining different peptide ligation techni-
ques. For example, Li et al. [202] reported that a peptide
bearing a C-terminal thioester and N-terminal Ser or Thr as
the middle peptide segment can undergo one-pot STL and
NCL, as showcased in their synthesis of GlcNAcylated in-
terleukin-25. Another example is the convergent synthesis of
trifunctional Ubc9 variants by combining STL, NCL and
KAHA ligation [203]. Recently, Zheng et al. [204] used a
combined N-to-C sequential NCL and STL strategy to pre-
pare complex protein samples such as S-palmitoylated pro-
teins.
Metanis et al. [205] accessed proteins bearing non-strate-

gically placed Cys residues via a sequential, C-to-N NCL
and Sec-mediated ligation, the key to which is the use of a
masked selenazolidine and selective deselenization. Human
enzyme phosphohistidine phosphatase was accessed using
this method. Another DSL and NCL combination strategy
was developed by Hanna et al. [206] to access di- and tri-
palmitoylated variants of the Mycobacterium tuberculosis-
associated antigen protein ESAT6.

2.6.2 Solid-phase chemical ligation
Solid-phase chemical ligation (SPCL), where the nascent
peptide is attached to a solid support via a linker at either the
N or C terminus, can, in principle, speed the ligation process
because the purification of ligation intermediates to remove
unreacted peptides, reagents and by-products can be easily
accomplished by simple washing and filtration, without the
need for multiple high performance liquid chromatography
(HPLC) purification and lyophilization steps which can
lower yields and are time-consuming. Chemical ligation on a

solid support can be conducted in either N-to-C or C-to-N
directions and requires a suitable linker to release the desired
product once the ligation steps have been completed (Figure
16). SPCL was first reported by Kent et al. [207], who de-
scribed the chemoselective assembly of unprotected peptide
segments on water-compatible solid support. Since then, a
variety of linkers have been developed, facilitating cleavage
of the final ligated peptide using acids [189,208], bases
[209,210], nucleophiles [211], translation-metals [212],
photolysis [213], or enzymes [214]. The total synthesis of
proteins such as C5a, MIF, ubiquitin derivatives, thior-
edoxin-1, histone H2B, and truncated MUC1 VNTRs have
been accomplished by SPCL. However, the performance of
SPCL must be improved before it can be used to synthesize
larger proteins.

2.7 Protein folding

Protein folding is another major synthetic challenge. Many
proteins can be folded via direct dilution or gradient dialysis
strategies, where the linear synthetic peptide is dissolved
under denaturing conditions such as guanidine or urea, then
dialyzed or diluted into a refolding buffer. However, some
proteins are difficult to fold, such as disulfide-rich proteins,
which are prone to misfold, and those having complex
conformations. Such difficult-to-fold proteins are prone to
aggregation and precipitation, lowering fold efficiency; a
few cannot be folded in vitro at all.
Several new strategies have been developed for protein

folding. For example, a single cystine-to-diaminodiacid re-
placement can significantly improve the folding of disulfide-
rich proteins [215,216], as can small molecules, ultraviolet-
light, and palladium, which have enabled the ultrafast fold-
ing of disulfide-rich proteins with high chemo- and regio-
selectivity [217].
Protein folding methods used by cells have also inspired

new in vitro protein folding strategies. For example, inspired
by the observation that molecular chaperones such as
GroEL/ES mediate folding by preventing protein aggrega-
tion, Kay’s group [218] developed a GroEL/ES-assisted
protein folding strategy (Figure 17), which enabled the
folding of both L-type and D-type chaperone-dependent
protein (DapA). Cells sometimes also attach saccharides
onto full-length protein sequences to facilitate protein fold-
ing in cells; Liu et al. [219] developed a removable glyco-
sylation-assisted folding strategy to fold disulfide-bonded
proteins. This strategy utilizes chemical protein synthesis
techniques to introduce the O-linked β-N-acetylglucosamine
(O-GlcNAc) groups at the serine/threonine (Ser/Thr) sites of
a target protein. The O-GlcNAc groups on the protein im-
proved the folding of disulfide-bonded proteins by increas-
ing the stability of the folding intermediates. After folding,
theO-GlcNAc groups were completely detached by usingO-

Figure 15 Representative Cys protecting groups for one-pot sequential
ligations in the C-to-N direction (color online).
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GlcNAc glycosidase (OGA) to give the desired correctly
folded protein. This study shows that biomimetic glycosy-
lation modification can effectively assist in the folding of
disulfide-bound proteins. Glycosylation also assisted the
folding of difficult-to-fold proteins, including interleukin-
17A [220] and SARS-CoV-2 spike receptor-binding domain
[221], which cannot be folded in vitro using conventional
folding strategies.

3 Protein synthesis through chemical mod-
ifications

Chemical modification of proteins is another approach for
the generation of functional proteins [222–225]. Here, we
survey recent representative advancements in the field of
chemical protein modification, subcategorized by the prop-
erties of target amino acids.

3.1 Modification of nucleophilic residues

3.1.1 Cysteine as the target residue
Cysteine (Cys) is one of the most targeted residues due to its
low natural abundance and high nucleophilicity [226,227].
Beier et al. [228] reported trifluoromethyl benziodoxol(on)es
reagents, which have enhanced water solubility and enabled
the conjugation of a range of functional groups to cysteine
thiols. Subsequently, the same reagent was used to target less
surface-exposed Cys residues, leading to stable vi-
nylbenziodoxolone (VBX) products [229] amenable to fur-
ther modification. Also, amphiphilic hypervalent iodine
reagents were introduced for the lipidation of cysteine re-
sidues [230] (Figure 18a).
Reversible bioconjugation of Cys residues can be bene-

ficial for certain applications. Wong et al. [231] reported the
use of isoxazoliniums, which form stable phenylacyl thioe-
ther linkages with Cys residues and can be efficiently re-
moved under UV irradiation. Another thiol-specific and
traceless bioconjugation tool is 5-methylene pyrrolone
moiety (5MP), which can undergo traceless cleavage under
basic conditions through retro-Michael addition [232]. Zhou
et al. [233] introduced a bromo substitution onto 5-methy-
lene pyrrolones to improve its reactivity towards cysteine
and allow multi-functionalization of a single cysteine as well
as disulfide bridging bioconjugation (Figure 18b).

Figure 18 (a) Functionalization of hypervalent iodine reagents. (b) Thiol specific bioconjugation viaMichael addition to 5-methylene pyrrolones. (c) SET-
mediated ligand-directed labelling (color online).

Figure 17 Biomimetic strategies for protein folding in vitro (color on-
line).

Figure 16 Solid-phase chemical ligation in N-to-C or C-to-N directions
(color online).
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Bernardes et al. introduced azabicyclic vinyl sulfones
[234] and azanorbornadiene bromovinyl sulfones as thiol-
selective Michael acceptors [235]. The obtained protein
conjugates were stable in human plasma, even in the pre-
sence of elevated levels of glutathione. Matos et al. [236]
harnessed electrophilic-unsaturated motifs to convert vinyl-
pyridines and alkynyl-pyridines into highly reactive cysteine
labeling reagents by quaternizing the nitrogen of the pyr-
idine. Walsh et al. [237] heightened the electrophilicity of a
vinylpyridine by replacing the pyridine scaffold with a pyr-
imidine. In addition to these examples, Becker et al. [238]
reported a Pd-catalyzed Tsuji-Trost allylation method to
chemoselectively prenylate proteins.
Finally, Hong et al. [239] introduced the first visible-light

mediated thiol-ene click (TEC) strategy, utilizing a water-
soluble, alkene-functionalized quinolinone (QPEG) as both
the photocatalyst and cysteine labeling reagent. The elec-
trophilic cysteine thiyl radical could be captured by electron-
rich arenes. The reaction was employed in a ligand-directed
cysteine labeling approach by the Wilson group (Figure 18c)
[240].

3.1.2 Lysine as the target residue
Common Lys bioconjugation reagents such as activated es-
ters, sulfonyl chlorides, and isothiocyanates [241] are often
susceptible to hydrolysis in neutral buffers. Li et al. [242a]
reported that ortho-phthalaldehyde (OPA) and its derivatives
could chemoselectively and rapidly react with amino groups
on peptides and proteins under physiological conditions
(Figure 19a). Yao et al. [242b] reported that azaphilones have
a high specificity for primary amine groups in a variety of
peptides, proteins and lipids (Figure 19b). These activation-
free azaphilone probes were remarkably stable and ex-
quisitely chemo-selective. Chen et al. [243] pioneered the
development of a light-induced cyclization reaction between
the primary amine of lysine and o-nitrobenzyl alcohols (o-
NBAs), which serves as a photoclick reaction (Figure 19c).

3.1.3 Methionine as the target residue
As milestone methionine bioconjugation methods, oxazir-
idine reagents [244] and hyper-valent iodine reagents [245]
have been successfully developed and employed for me-
thionine-specific modification of proteins. These methodol-
ogies have found applications in various down-stream
biological studies, including proteomic investigations. Re-
cently, MacMillan et al. [246] developed a photocatalytic
method to deliver a stable conjugation product by converting
the Met side chain to a carbon-centered α-thio radical, which
is then trapped by alkylating reagents (Figure 19d).

3.1.4 Serine as the target residue
Serine and threonine residues are rarely selected as chemo-
selective bioconjugation sites primarily due to the weak

nucleophilicity of their hydroxyl side chains and the chal-
lenge of distinguishing them from other nucleophilic re-
sidues, especially under aqueous conditions. Addressing this
issue, a collaborative effort involving the Eastgate, Dawson,
Bernardes, and Baran’s groups has led to the development of
a platform based on a new class of phosphorus P(V)-based
bioconjugation reagents. This study provides chemoselec-
tive, rapid and robust P(V) reagents designed for the direct
functionalization of serine residues in peptides and proteins
[247].

3.2 Modification of aromatic amino acid and glycine

3.2.1 Tyrosine as the target residue
Several methods have been developed to leverage the unique
reactivity of the phenol side chain of Tyr residues for mod-
ification [222]. Lei et al. [248] introduced an electro-
chemical-based labeling strategy for proteins (insulin and
myoglobin) containing Tyr residues using phenothiazine
derivatives (Figure 20a). Francis et al. [249] discovered that
tyrosine residues present at the N- or C-terminus (tyrosine
tags or -GGY) of proteins can be readily oxidized by tyr-
osinase enzyme (abTYR) for subsequent reaction with a
secondary amine. This work has expanded oxidative cou-
pling chemistry through enzyme-mediated reactions (Figure
20b). MacMillan et al. [250] proposed that the surface ac-
cessibility and π-electronic properties of the multiple tyr-
osine residues present in a protein structure are different,

Figure 19 (a) Lys bioconjugation of proteins by ortho-phthalaldehyde
(OPA). (b) Lys bioconjugation of proteins by azaphilones; (c) Light-in-
duced labeling of Lys residues. (d) The alkylation of methionine with a
lumiflavin photocatalyst (color online).
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allowing for their selective modification by a phenoxazine
dialdehyde under photocatalytic conditions (Figure 20c).

3.2.2 Histidine as the target residue
Classical strategies for site-selective histidine modifications
rely on N-substitution reactions of the histidine imidazole
group [251]. In 2019, Gopalakrishnan et al. [252] used sul-
finate salts as radical precursors to accomplish the selective,
late-stage modification of the histidine residues of un-
protected peptides and introduced a wide range of aliphatic
substituents at the C2 position of histidine (Figure 20d). In
the same year, Wang et al. [253] reported a visible light-
promoted histidine bioconjugation method by the chemose-
lective C–H alkylation of histidine residues using
C-4-alkylated Hantzsch ester reagents (Figure 20e). Subse-
quently, Nakamura et al. [254] presented a histidine-selec-
tive modification using MAUra reagents previously
developed for reactions involving tyrosyl radicals (Figure
20f).

3.2.3 Tryptophan as the target residue
Taylor et al. [255] employed an N-carbamoylpyridinium salt
to transfer relevant reporter handles to the Trp residue of a
protein upon irradiation with 302 nm light, a reaction fast
and selective for tryptophan (Figure 21a). Later, Taylor et al.
[256] extended this with a modified reacting agent, amenable
to activation upon exposure to blue LEDs, that featured an
electron-rich 6-methoxynaphthyl ring attached at the 4-po-
sition to the cationic pyridinium moiety (Figure 21b). In
addition, Davis et al. [257] described a three-step sequence
for producing functionalized tryptophan constructs using a
ruthenium photocatalyst.

3.2.4 Glycine as the target residue
Glycine-specific C(sp3)–H functionalization can enable the
late-stage incorporation of unnatural amino acid residues. Xu
et al. [258] reported a selective alkylation method of the N-α-
arylated glycine residues of short peptides using redox-active
esters and Katritzky salts as radical precursors.
It is noteworthy that beyond the conventional natural

amino acid residues, a noncanonical amino acid, dehy-
droalanine (Dha), has been harnessed as a distinct handle for
site-selective protein modification. A recent representative
work comes from Davis’s group [259], presenting a visible-
light-mediated method for modifying dehydroalanine re-
sidues with a wide range of labels (Figure 22a). Moreover, Li
et al. [260] pioneered a versatile approach for the late-stage
modification of diverse Dha-containing peptides and pro-
teins using a photo-initiated 1,3-dipolar cycloaddition reac-
tion between Dha and tetrazoles under 302 nm photo-
irradiation. The incorporation of Dha and derivatives in
proteins, along with its applications, have been reviewed
elsewhere [261,262].

3.3 Peptide termini

Ethynylbenziodoxole (EBX) reagents have been employed
for the decarboxylative photoredox-catalyzed alkynylation
of amino acids [263]. In 2019, Waser et al. [264] introduced
the first photo-mediated C-terminal decarboxylative alky-
nylation method using the iso-phthalonitrile organic dye
4CzIPN in combination with an EBX reagent to achieve C-
terminal functionalization (Figure 22b). The same group
subsequently reported the C-terminal decarboxylative mod-
ification of short peptide using visible light to generate N–O

Figure 20 (a) Electrochemical oxidative tyrosine bioconjugation. (b) Tyrosinase-mediated oxidative coupling of tyrosine. (c) The photoredox-catalyzed
tyrosine modification. (d) The modification of peptides at the C2 position of His. (e) Histidine-specific peptide modification via radical-mediated chemo-
selective C−H functionalization. (f) 1O2-mediated histidine labeling (color online).
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acetal conjugates (Figure 22c) [265].
Significant advancements have been made in the mod-

ification of the N-terminus of peptides. In 2021, Wang et al.
[266] demonstrated a selective and rapid method for mod-
ifying the N-termini of proteins via the quinone-mediated
oxidation of the N-terminal α-amine of complex peptides and
proteins under physiological conditions (Figure 22d).

4 Peptide stapling and macrocyclization

Peptides can have a greater binding affinity and specificity
for a target protein than small molecules but may also de-
monstrate poor proteolytic stability and membrane perme-
ability, and the extra entropy associated with their flexible
secondary structures can impede target binding. Macro-

cyclization is an important chemical strategy to overcome
these limitations, and cyclic peptides are often less suscep-
tible to proteolysis and more membrane permeable compared
with their linear counterparts. [267–271]. Various strategies
for peptide macrocyclization have been developed, including
ring-closing metathesis [272,273], lactamization [274], thiol-
ene chemistry [275], thiol/nitrogen-arylation/alkylation
[276–281], azide-alkyne cycloaddition [282], metal cata-
lyzed C–H activation [283] and the diaminodiacid (DADA)
method [284–286] (Figure 23).

4.1 Ring-closing metathesis between olefinic side
chains

In 2000, Schafmeister et al. [272] reported the synthesis of
various α,α-disubstituted olefinic amino acids of different

Figure 22 (a) Dha modification through the photocatalyzed generation of carbon-centered radicals. (b) Decarboxylative alkynylation using EBX reagents.
(c) Decarboxylative introduction of proteinogenic indoles and phenols on the C-terminus of peptides. (d) Site-specific N-terminal protein modification via
quinone-mediated transamination (color online).

Figure 21 (a) Pyridinium salt reagents for Trp-selective protein modification. (b) Donor-acceptor pyridinium salts for photo-induced electron-transfer-
driven modification of and proteomes of tryptophan in peptides, proteins (color online).
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lengths and stereochemistries [254], which could be stapled
using a solid-phase Grubbs catalyst at the i, i+4 and i, i+7
positions, starting from S5-S5 and R8-S5 paired residues,
respectively (Figure 24a). This chemistry has been success-
fully used to design various peptide inhibitors with improved
proteolytic stability, membrane permeability, and biological
activity [287–293]. One notable example is ALRN-6924, a
hydrocarbon-stapled peptide antagonist of the oncogenic
protein MDM2 and its homolog MDMX that functionally
inhibits the tumor suppressor protein p53, and is now in
clinical trials for advanced solid tumors and lymphomas
[294–297].
Other types of stapling structures have also been devel-

oped. Speltz et al. [298] developed the olefinic-terminated
amino acids bearing a methyl group in the γ-position and
successfully applied them in the synthesis of stapled peptides
(Figure 24b). Wilson and coworkers [299,300] removed the
α-substituted methyl group previously incorporated to avoid
the intrinsic helix-destabilizing effect and obtained the
monosubstituted olefinic-terminated stapling amino acid
(Figure 24c). This amino acid could be applied efficiently in
Fmoc peptide synthesis and the resulting staple may lead to
fewer steric clashes with the target compared with the staple
it replaced [301].
Hu et al. [302] designed amino acids incorporating both

the native side chain and the alkenyl arms needed for ring-
closing stapling chemistry (Figure 24d). Introducing these
amino acids into the β-catenin-binding domain of axin (469–

482) led to new stapled peptides with high α-helicity, strong
proteolytic stability and good cell permeability. Oba et al.
[303] introduced cyclic α,α-disubstituted olefinic-terminated
amino acids into arginine-rich peptides and provided an extra
staple (Figure 24e). Hu et al. [304,305] designed the stapled
peptide-based PROTAC, which consisted of a stapled pep-
tide motif specifically targeting the protein and another
peptide recruiting E3 ligase. These peptides were double-
stapled for improved helical content and proteolytic
stability [306].

4.2 Lactamization

Lactamization-based peptide stapling also calls for selective
protecting and deprotecting groups for the amino and car-
boxyl groups [307]. Li et al. [308,309] developed a strategy
for helix nucleation using an N-terminal cross-linked as-
partic acid via facile macro lactamization in high yield and
purity (Figure 24f). The group also designed a strategy to
stabilize the peptide in the N-terminal sulfonium salt center
[310] and developed peptides to degrade ERα [311,312].
Wan et al. [313] have reported reversible peptide stapling,
which involves macrocyclization between two amino groups
and decyclization via dual 1,4-elimination.
Wang et al. [314] reported a peptide macrocyclization and

stapling strategy based on a fluorine thiol displacement re-
action (Figure 24g). This peptide stapling strategy was in-
itiated from benzyl thiol and an α-fluoroacetamide and led to
lactamized peptides, the cellular uptake of which was higher
than peptides stapled using all-hydrocarbon methods.

4.3 Thiol-ene and thiol-yne hydrothiolation

Cysteine is well suited to biocompatible cross-linking reac-
tions due to its nucleophilic sulfydryl group. In 2015, Wang
and Chou [315] reported a peptide stapling and macro-
cyclization methodology using thiol-ene reactions between
two cysteine residues and a diene (Figure 25a).
In 2016, Li et al. [316] synthesized peptides with a chiral

center in the stapling bridge using the thiol-ene reaction. The
cell permeability, serum stability, and binding affinity toward
ER-α of the products were found to depend on the stereo-
chemistry of this chiral center (Figure 25b), the introduction
of which increased the rigidity of the peptide and stabilized it
to an α-helix [317].
Li et al. [318] also developed a UV irradiation-based thiol-

yne method for stabilizing peptides in an α-helical con-
formation. An alkyne group introduced at an appropriate site
in the form of an unnatural amino acid underwent the thiol-
yne reaction with cysteine at the i, i+4 site when exposed to
365 nm UV irradiation (Figure 25c). This strategy could
stabilize the peptide into a regular α-helical conformation at

Figure 23 Several peptide stapling strategies [56] (color online).
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Figure 24 (a–e) Ring-closing metathesis (RCM) mediated peptide stapling of olefinic-terminated residues. (f) i, i+3 TD stapling strategy. (g) Fluorine thiol
displacement reactions (FTDRs).

Figure 25 (a–c) Thiol-ene and thiol-yne hydrothiolation peptide stapling. (d–h) Thiol/Nitrogen-arylation/alkylation via nucleophilic substitution (SN).
(i) Click-based azide-alkyne cycloaddition (color online).
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different temperatures and pH, and the reaction proceeded
cleanly and was complete within about 10 min. The thioether
cross-linker increased the serum stability and cell penetration
of the stabilized peptide, as demonstrated by serum stability
assay and confocal microscopy.

4.4 Thiol/nitrogen-arylation/alkylation via nucleophilic
substitution (SN)

Thioether staples can be formed by reacting bis-alkylators
with paired Cys side chains at the i, i+4 position [248].
Alternatively, thiol-arylation can be applied to construct
thioether staples of unprotected peptides bearing Cys re-
sidues using the perfluoroaromatic staples (Figure 25d)
[259,260]. Zhang et al. [319,320] reported the peptide sta-
pling of amphiphilic anti-microbial peptides via the
N-alkylation reaction of two tethered ε-amino groups of a
Lys residue (Figure 25e) [261]. N-arylation stapling reac-
tions between decafluoro-diphenylsulfone (DFS) and a di-
chlorotriazine-based aromatic electrophile (DCT) with Lys-
Lys pairs at the unprotected peptides were investigated, and
i, i+7 stapled peptides successfully obtained (Figure 25f)
[262].
Lu et al. [321] developed a peptide stapling strategy based

on dithiocarbamate chemistry, linking the side chains of Lys
and Cys paired residues at the i, i+4 position of unprotected
peptides in solution (Figure 25g). Treatment of the Cys-
containing peptide with 2,5-dibromohexadiamide afforded a
DHA moiety, which undergoes a three-component reaction
with the amino group of Lys residue and exogenous CS2 to
yield a stapled peptide. Chen et al. [322] revealed that OPA
readily condensed with two alkyl amino side chains of the
lysine residues to form a class of underexplored isoindolin-1-
imine stapled peptides under mild aqueous conditions (Fig-
ure 25h).
Thiol/nitrogen-arylation/alkylation reactions biocompa-

tible with phage-display systems have also been successfully
developed and shown to facilitate the convenient selection of
functional peptides derived from the phage-produced ran-
dom peptide libraries. One early example was reported by
Heinis et al. [323], who established bicyclic peptide libraries
using a phage display system. Recently, Wu et al. [324]
developed a bioorthogonal strategy relying on the con-
densation of 2-((alkylthio)(aryl)methylene)malononitrile
with N-terminal cysteine for the site-specific peptide cycli-
zation on the surface of phages, which has been effectively
employed to select protein binders. Gao et al. [325] reported
a cysteine-directed proximity-driven amine-selective cycli-
zation strategy to construct bicyclic peptide libraries. In ad-
dition, Derda et al. [326] introduced a strategy involving the
cyclization of peptides with two cysteine residues on the
phage surface with 1,5-dichloropentane-2,4-dione for the
late-stage modifications of unnatural fragments, which in-

creased the diversity of phage-display libraries.

4.5 Click-based azide-alkyne cycloaddition

Spring et al. [327] developed an i, i+7 double-click-based
peptide stapling technique and used it to synthesize peptide
inhibitors of the p53-MDM2 interaction. The “click” reac-
tion could trigger either one-component or two-component
peptide stapling, with one-component initiated from a com-
bination of both ω-azido- and ω-yl-α-amino acids, and two-
component stapling using two repeated ω-azido- or ω-yl-α-
amino acids (Figure 25i) [328–331].

4.6 Metal-catalyzed C–H activation

Transition metals have been used to staple peptides by cat-
alyzing an intramolecular C−H activation [253,332]. The
first example of this reaction was published by Lavilla et al.
[333] in 2015 (Figure 13). Albericio, Wang and others
[334–343] developed Pd-catalyzed late-stage peptide mac-
rocyclization methods through N-terminal of amino acid
β-C(sp3)–H arylation, aryl-aryl crosslinking via arylation of
C(sp2)–H, aryl-alkene crosslinking, etc. (Figure 26).
External groups, such as 8-aminoquinoline, pyrimidine,

pyridine, picolinamide and N-PtBu2, have been used to direct
the late-stage modification and macrocyclization of peptides
in C–H activation reactions (Figure 27) [344–361]. C–C
crosslinked peptide macrocycles, which exhibit diverse
structural and functional properties, have been successfully
synthesized by these methods. For example, Chen et al.
[349] reported the synthesis of a highly constrained peptide
macrocycle via Pd-catalyzed C–H activation. Other groups
have reported C–C crosslinked cyclic peptides that are cy-
totoxic and capable of self-assembly and those that are cy-
totoxic [339].
In 2017, Albericio et al. [283] applied this technique to

staple peptides by the C–H activation of a terminal alanine
residue followed by cross-coupling with an iodo-phenylala-
nine derivative. Zheng et al. [362] constructed a new kind of
stapled peptide using late-stage peptide substitution-cycli-
zation via maleimidation on C(7)–H Trp. Moreover, trypto-
phan-substituted maleimide served as an effective click
functional group capable of rapidly reacting with sulfhydryl
groups [363].

5 Biological applications of chemical protein
synthesis

5.1 Semi-synthetic methods and applications of site-
specifically phosphorylated proteins

Protein phosphorylation occurs in almost every process of
the cell life cycle and regulates the function of more than 1/3
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of cellular proteins [364–367]. Abnormal phosphorylation,
notably of protein kinases, can lead to disease [368–371].
Despite its extensive study, however, many regulatory me-
chanisms that include phosphorylation, particularly those
that work in cooperation with other post-translational mod-
ifications, are still unclear.
α-Synuclein [372] is an important phosphorylated target

due to its role in the pathogenesis of Parkinson’s disease
(Figure 28), and several in vitro chemical synthetic strategies
have been developed to generate synuclein phosphorylated at
specific positions [373,374]. In general, these strategies split
the sequence into multiple fragments, with the peptides
containing the phosphorylated position synthesized by solid-
phase peptide synthesis (SPPS), and the rest of the native
sequence generated through expression in E. coli. The liga-
tion between the two protein/peptide segments requires one
coupling partner to have a (mutated) cysteine at the N
terminal, and the other to be a thioester protein/peptide. The
synthesized thioester peptide can be generated using the N-
acylurea [375] or hydrazide methods [55,57]. The expressed
thioester protein is generated via protein splicing, a naturally
occurring thiolysis reaction in which an intein fragment is
excised from the sequence [376].
The following procedure for semi-synthesizing pSer129 α-

synuclein comprises three main stages. Throughout the dif-

ferent stages, the S-N acyl transfer reaction is crucial for the
removal of temporally required fragments from the sequence
by producing a thioester or a native amide bond, as specific
requirements dictate. In the first stage, recombinant protein
(sequence 1–106) bearing a purification tag and intein
fragment is expressed. The purification tag is subsequently
removed via protein splicing, resulting in a recombinant
thioester protein. Meanwhile, the phosphorylated peptide
(sequence A107C-140, containing pS129) is synthesized
using standard Fmoc SPPS. Native chemical ligation be-
tween the thioester protein and the synthesized peptide led to
a ligated product, from which the sulfhydryl group on
Cys107 was removed to get the Ala107 needed for the native
α-synuclein sequence, and hence a chemically well-defined
homogeneous α-Syn with PTMs.
Ras is a family of phosphorylated proteins associated with

more than 20% of cancers [378], the activities of which are
significantly impacted by phosphorylation and lipidation
modifications, which affect their membrane and/or chaper-
one binding ability. Studying the physiological function of
PTMs of Ras can guide the development of targeted anti-
cancer drugs against Ras. In 2017, Chen’s group [379] suc-
cessfully synthesized a fully functional, phosphorylated,
farnesylated, and methylated K-Ras4B protein through
chemical synthesis and protein ligation (Figure 29). Methyl

Figure 27 AQ-directed C–H activation for peptide macrocyclization (color online).

Figure 26 Backbone-directed C–H activation for peptide macrocyclization (color online).
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peptides were synthesized beginning with Fmoc-Cys-OMe
via standard SPPS, while phosphorylation was introduced
using phosphorylated serine building blocks. Afterward, the
crude peptide was removed from the resin using a TFA
cocktail and an S-farnesyl modification installed by direct
reaction trans,trans-farnesyl bromide. After purification, the
peptide was ligated with expressed protein to obtain the fully
modified protein. Using this semi-synthesized protein, Chen
et al. [380] found that Ser181 phosphorylation weakened the

interaction between K-Ras4B and the plasma membrane but
did not affect its binding to the chaperone protein PDEδ.
Chen et al. [380] also designed and synthesized a K-Ras4B-
targeting peptide inhibitor, memrasin, which weakens the
activity of K-Ras4B selectively by directly inhibiting the
interaction between K-Ras4B and plasma membrane.
Phosphorylation and adjacent farnesylation of protein

Rnd3 are known to enhance its binding to 14-3-3ζ [381], but
the impact of polyphosphorylation on multivalent interac-

Figure 28 Schematic depiction of the pathological transmission of α-synuclein [377]. The pS129 fibril, wild-type fibril and monomer of α-synuclein exhibit
different affinities on binding membrane receptors, such as LAG3 and APLP1. Among these, the pS129 fibril demonstrates the highest affinity, while the
monomer exhibits the lowest affinity due to the structural instability at the C-terminus. Fibrils taken up by the cell are degraded, resulting in the generation of
C-terminus-truncated seeds. These seeds are responsible for triggering the formation of intracellular α-synuclein fibrils and subsequent exocytosis of fibrils,
ultimately leading to the formation of Lewy body-like inclusions and neuronal dysfunction (color online).

Figure 29 Synthesis and application of phosphorylated and farnesylated proteins. (a) Synthesis of phosphorylated and farnesylated K-Ras4B Protein-OP-
SF [379]. (b) Membrane binding of K-Ras4B simultaneously bearing phosphate, farnesyl, and methyl modifications [379]. (c) Proposed multivalent binding
models between Rnd3 with phosphorylation and farnesylation and 14-3-3ζ [382] (color online).
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tions and the cooperative mechanism between phosphor-
ylation and farnesylation remains to be elucidated. Chen et
al. [382] used SPPS followed by late-stage biorthogonal
modification of the C-terminal domain of Rnd3 bearing
various phosphorylation and lipidation modifications, which
were used to elucidate the influence of multiply charged
phosphates and hydrophobic lipids on the multivalent bind-
ing thermodynamics and kinetics between Rnd3 protein and
its chaperon 14-3-3ζ. Remote multi-phosphate modifications
mediate this multivalent protein-protein interaction (PPI)
through a gatekeeper-triggered additive mechanism, whereas
adjacent phosphate and farnesyl modifications cooperatively
contribute to the PPI via an induced fit mechanism. This
study investigated the thermodynamic and kinetic processes
of the interaction between Rnd3 and 14-3-3ζ and clarified the
impact of phosphorylation and farnesylation on the binding
mechanism. This study also establishes a useful new model
to determine the effect and contribution of multiple syner-
getic modifications on the multivalent interactions
[383,384].
Liu et al. [385] synthesized homogeneously phosphory-

lated and/or ubiquitinated H2AX proteins via expressed
protein hydrazinolysis followed by DBA coupling. In con-
trast to methods used in cell biology and genetics, the effects
of each post-translational modification of histone on the
binding of 53BP1 with nucleosomes were quantitatively
analyzed by chemical biology methods.
Scheffner et al. [386] used genetic codon expansion

technology to obtain phosphorylated and non-hydrolyzable
phosphorylated Ub and NEDD8. Ubiquitin is a well-known
covalent modifier of proteins, and the diversity of ubiquiti-
nation is expanded by its phosphorylation [387,388]. How-
ever, there are many ubiquitin-like proteins (Ubls) whose
phosphorylation effect remains unclear. This study eluci-
dated the function of phosphorylated NEDD8, a Ubl. Parkin,
a ubiquitin E3 ligase, can be allosterically activated by
phosphorylated NEDD8 (pNEDD8) via protein interactomes
differently to phosphorylated ubiquitin. Additionally,
pNEDD8 preferentially interacts with Hsp70 family and
significantly stimulates the activity of the Hsp70 ATPase.
Deshmukh et al. [389] utilized an in vitro kinase-catalyzed

phosphorylation modification method to prepare tyrosine
phosphorylation apoptosis-linked gene 2-interacting protein
X (ALIX) for a study that demonstrated that PTM can reg-
ulate ALIX condensates such that tyrosine hyperpho-
sphorylation leads to decondensation of the condensates,
whereas dephosphorylation allows their reformation. These
results suggest that the phase separation of PTM-mediated
ALXI has an impact on cellular ACBs’ biogenesis and sta-
bility and even governs abscission timing.
The reversibility and instability of natural phosphorylated

proteins or peptides greatly complicate the study of abnormal
phosphorylation in vitro. One approach is to develop phos-

phatase-stable, non-hydrolyzable phosphorylated protein or
peptide mimics, for example, by inserting into proteins and
peptides phosphorylated amino acid mimics. Chen et al.
[390] synthesized an N-Fmoc protected CH2-pThr mimic
suitable for use in peptide synthesis using a palladium-
catalyzed γ-methyl C–H activation reaction and the Appe-
land Michaelis-Becker reactions. A peptide containing a
CH2-pThr mimic binds more strongly with 14-3-3ζ than its
phosphorylated counterpart and is, therefore, a powerful tool
for biological research and further drug design in the cellular
environment [391].
Chen et al. [392] also incorporated a phosphine ligand into

proteins using P3BF, a borane-protected non-canonical
amino acid capable of overcoming the sensitivity of phos-
phine to oxygen. Using this protein, they successfully es-
tablished a novel one-pot deprotection and metal
coordination strategy to allow for facile synthesis of palla-
dium-bound protein phosphine under aerobic conditions and
solved the first high-resolution structure of a protein con-
taining a unique P–B bond. Genetic engineering methods are
expected to be combined with this extraordinary phosphine-
metal chemistry to enable the rational design of novel arti-
ficial enzymes or functional metalloproteins in the future.

5.2 Chemical glycoprotein synthesis and applications
in exploring glycan functions

Glycosylation is another common posttranslational mod-
ification (PTM) in eukaryotes [393] and plays fundamental
roles in protein quality control and stabilization and cellular
adhesion, recognition, and signaling [363,394]. However,
our understanding of glycan functions at the molecular level
is lacking, in part due to the microheterogeneity of the ap-
pended carbohydrate motifs [395]. Chemical synthesis can
help surmount these challenges by enabling the preparation
of homogeneous glycoproteins, [396,397], usually by the
ligation of glycosylated peptide segments. A glycoamino
acid, usually bearing a monosaccharide, is incorporated to
the designated site through SPPS [398] (Figure 30a), then
elaborated to the desired glycan chain using enzymatic
methods prior to its ligation into the final protein (Figure
30b, c). After reconstitution under suitable folding condi-
tions, a series of proteins with varied glycan structures can be
obtained (Figure 30d). Using this approach, Kajihara et al.
[399] investigated the effect of an N83-triantennary sia-
lylglycan in erythropoietin compared with the biantennary-
modified counterpart (Figure 30e). Payne et al. [400] syn-
thesized four differentially glycosylated variants of human
interferon γ and evaluated their antiviral activities. Un-
verzagt et al. [401] prepared a small library of nine inter-
leukin 6 glycoforms and assessed the protein’s serum
clearance rate in mice.
One recent illustrative example involves the exploration of
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N-glycosylation in interleukin-17A [220]. In a synthetic
strategy that integrates SPPS, chemoenzymatic glycan
modification and chemical ligation, three homogenously
glycosylated IL-17A proteins were prepared. The mono- and
di-saccharide-modified forms were derived from glycopep-
tide segments were prepared by submitting a glycosylated
Asn building block to SPPS, while the undecasaccharide-
modified form was prepared from the corresponding glyco-
peptide, in turn, derived from the monosaccharide-modified
precursor. Through a comparative analysis of these three IL-
17A glycoforms in a normal human dermal fibroblast
(NHDF) assay, dose-dependent interleukin-6-inducing ac-
tivities were observed in all instances. Notably, the sialyl
undecasaccharide-modified IL-17A exhibits a considerably
weaker stimulatory effect than its GlcNAc- or GlcNAc(β1→4)
GlcNAc-modified counterparts. Subsequent surface plasmon

resonance (SPR) and hydrogen/deuterium exchange mass
spectroscopic experiments further validate that the complex
type N-glycan hinders the binding between IL-17A and its
receptor IL-17RA, while the proteins with smaller-sized
glycan display stronger binding affinities.
Another representative example is the synthesis and

structure-activity relationship (SAR) exploration of glyco-
sylated receptor binding domains (RBDs) derived from the
SARS-CoV-2 spike protein [221,402–404]. Six distinct
glycoforms of RBDs were generated, each incorporating
homogeneous N-glycans at N331 and N343, complemented
by an O-linked glycan at T323. The synthesis was achieved
by employing the expressed protein ligation (EPL) strategy.
Glycopeptide hydrazide segments corresponding to the RBD
(319–360) and integrating the requisite N/O-glycans were
chemically synthesized. Subsequent ligation with a re-

Figure 30 General strategies and recent examples of homogeneous glycoproteins prepared through chemical synthesis (color online).
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combinant N-cysteinyl segment, RBD II (361–537), fol-
lowed by refolding, facilitated the production of the desired
glycoproteins. The binding affinity of the synthetic RBDs
with ACE2 was assessed through SPR experiments. Results
indicate that all synthetic RBDs exhibit a comparable bind-
ing affinity to wt-RBD. Moreover, when evaluating the
binding of the anti-SARS-CoV-2 RBD monoclonal anti-
bodies (mAbs) CB6 and AS35, the glycosylation pattern
appeared to have minimal impact. In contrast, the binding
affinities of these RBDs to mAb S309 displayed a distinct
SPR profile: the synthetic RBDs lacking core fucose in the
N343 glycosylation had significantly reduced affinity
(1,000–6,000 fold) compared with wt-RBD.
O-glycan functions can also be probed using chemically

prepared samples. By far, the most studied intracellular
glycosylation is O-GlcNAcylation, a monosaccharide that
attaches to Ser/Thr [405]. SeveralO-glycoproteins have been
synthesized, including α-synuclein [406], heat shock pro-
teins [407], and high mobility group box 1 [408], all of which
were investigated for the roles of their O-GlcAcylations
(Figure 30f). More recently, in SynGAP, a protein abundant
in the postsynaptic density (PSD) of neurons, O-GlcNAcy-
lation was found capable of regulating the liquid-liquid
phase separation (LLPS) of SynGAP and PSD-95 [409]. Two
homogeneously GlcNAcylated SynGAP CC-PBM domains
(A1150-W1302) bearing definitive modifications at either
S1159 or T1306 were synthesized by EPL. Compared with
the non-O-GlcNAcylated and the S1159-O-GlcNAcylated
SynGAP CC-PBM, which form sphere-shaped liquid dro-
plets when mixed with PSD-95 PSG, the T1306-O-GlcNA-
cylated SynGAP CC-PBM could not induce liquid droplet
formation. Further experiments confirmed that SynGAP
T1306 O-GlcNAc could suppress LLPS of SynGAP/PSD-95
in a dominant-negative manner. Therefore, using synthetic
glycoproteins, the ability of O-GlcNAcylation of SynGAP at
T1306 to block its interaction with PSD-95 and, therefore,
serve as a suppressor of LLPS of the SynGAP/PSD-95
complex was demonstrated.
Noticeably, atypical protein O-glycosylation could also be

probed using chemical synthesis, such as the investigation by
Li et al. [410a] on the lysine O-glycosylation of adiponectin
collagenous domains. Moreover, in the neuronal protein-
derived peptide amyloid β (Aβ), a Tyr-O-glycosylation was
found to be capable of modulating Aβ aggregation into fi-
brils. To understand the mechanistic role of this unusual
O-glycosylation in the aggregation process, three homo-
geneously modified isoforms of Aβ (1–42) bearing Tyr10
O-GalNAc, Galβ1-3GalNAc, and sialyl Galβ1-3GalNAc
modifications were chemically synthesized and their fibril-
forming abilities compared [410b]. It was discovered that the
O-glycans significantly affected the aggregation rate of
Aβ42, with larger O-glycans, slowing fibril formation. The
homogeneous glycopeptides also enabled the 3D structures

of the Aβ fibrils to be determined. Specifically, cryo-electron
microscopy (cryo-EM) structure of fibrils derived from
Galβ1-3GalNAc-modified Aβ42 indicates that this
O-glycosylation redirects Aβ peptide to form a new fibril
polymorphic structure that is less stable. Results from var-
ious biochemical assays further demonstrated that this
Galβ1-3GalNAc modified fibril was more vulnerable to an
Aβ-degrading enzyme, insulin-degrading enzyme (IDE).

5.3 Chemical synthesis and biological application of
mirror-image proteins

Chemical protein synthesis is the only way to prepare mirror-
image proteins, which are composed entirely of D-amino
acids instead of the canonical L-amino acids and cannot be
produced by recombinant protein expression. The linear se-
quence of the mirror-image protein is usually assembled
through native chemical ligation of multiple peptide frag-
ments and then folded in vitro to form the biologically active
mirror-image protein. L-proteins composed of L-amino acids
are easily degraded by naturally occurring proteases. In
contrast, mirror-image proteins are difficult to recognize and
degrade by natural proteases. This unique biochemical
property makes mirror-image proteins a useful biological
tool with applications in drug discovery, protein crystal-
lography, and the development of mirror-image biochemical
systems [411,412].
The original studies on mirror-image proteins began with

Kent et al. who pioneered the chemical synthesis of mirror-
image enzymes to develop and explore the biochemical
systems based on biomolecules of opposite chirality. As
early as 1992, Kent et al. [413] accomplished the first
synthesis of a biologically active mirror-image enzyme
(D-HIV-1 protease), and this research opened the studies on
mirror-image biological systems. The linear sequence of D-
HIV-1 protease consisting of 99 amino acid residues was
directly assembled by Boc SPPS and then folded in vitro to
generate the bioactive D-HIV-1 protease. Kent et al. used
this mirror-image protease to show that mirror-image en-
zyme can only cleave D-peptide ligands, but not the en-
antiomeric L-peptide ligands, laying the principles for
mirror-image biology that subsequent studies have amply
demonstrated in various examples. For instance, in 2016
using the method of peptide hydrazide ligation, Liu and Zhu
[9] synthesized a mirror-image of African swine fever virus
polymer X (ASFV pol X) composed of 174 amino acid re-
sidues. D-ASFV pol X was assembled by a three-segment
peptide hydrazide ligation strategy in a total separation yield
of 1.8%, in which the key peptide thioesters were generated
by nitrite oxidation of peptide hydrazides. D-ASFV pol X
used L-DNA as a template for mirror genetic replication and
transcription, orthogonal to the natural L-ASFV pol X.
D-ASFV pol X lacks heat resistance and thus cannot be used
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for high-temperature PCR. To address this shortcoming,
Klussmann et al. [414] prepared D-Dpo4-3C composed of
352 residues by a four-segment peptide hydrazide ligation
strategy with a total separation yield of 0.07%. Note that
D-Dpo4-3C can be used for standard PCR and has been
successfully used to construct a mirror-image gene of the
protein Sso7d [415]. Furthermore, Zhu et al. recently suc-
cessfully synthesized high-fidelity mirror-image Pfu DNA
polymerase [24a] and T7 RNA polymerase [24b] using the
technology of peptide hydrazide ligation and split-protein
assembly. In addition, Jiang et al. [416] prepared a mirror-
image PET hydrolase through five-segment peptide hy-
drazide ligation, which could effectively degrade plastics
such as PET, polybutylene terephthalate, and polybutylene
succinate.
Another use for mirror-image proteins is mirror-image

screening to discover D-peptide ligands as drug candidates.
L-peptides composed of L-amino acids are easily degraded
by proteases in vivo, have poor plasma stability, are usually
unsuitable for oral administration, and can easily activate the
human immune system, leading to an immune response. In
contrast, D-peptides or proteins are barely recognized by
proteases in vivo, have high plasma stability, and do not elicit
an immune response. To accelerate the discovery of
D-peptide ligands, Kim et al. [417] proposed a mirror-image
phage display system using chemically prepared D-Src-SH3,
the mirror image of the Src kinase domain SH3, which they
used to discover a D-cyclic peptide ligand capable of binding
Src-SH3 with a KD value of 63 μM.
Such early mirror-image phage display studies were gen-

erally restricted to small proteins due to the difficulties of
accessing large D-proteins. More recently, however, the
emergence of native chemical ligation has greatly expanded
the technique. In 2012, Kent et al. [418] prepared D-VEGF
via a three-segment native chemical ligation and oxidative
folding, which they then used to discover a D-peptide ligand,
RFX001, capable of binding L-VEGF with a KD value of 85
nM. Similarly, Liu and Gao prepared DIgVPD-L1 consisting of
124 residues [185] and DIgVTIGIT consisting of 111 residues
[184] by a four-segment peptide hydrazide strategy. Through
mirror-image phage display, they found a DPPA-1 with a KD

value of 0.51 μM to hPD-L1 and DTBP-1 with a KD value of
2.79 μM to hTIGIT. Finally, a mirror-image protein-based
information barcoding and storage technology wherein
D-amino acids are used to encode information into mirror-
image proteins that are chemically synthesized has also been
developed [419].

5.4 Development and application of cell-permeable
ubiquitin (Ub) probes for the analysis of Ub-related
enzyme activity in live cells

Ubiquitination is a highly conserved post-translational

modification in which the 76-amino-acid protein ubiquitin
(Ub) is covalently attached to the lysine side-chain amino
group of the substrate protein by E1-E2-E3 enzymes (Figure
31a) [420,421]. Deubiquitinating enzymes (DUBs) reverse
this process by removing Ub or polyUb chains from substrate
proteins, and regulating various biological processes [422–
424]. DUB and E1-E2-E3 enzymes regulate almost all cel-
lular processes in eukaryotes, and dysregulation of their ac-
tivity can lead to various diseases. They are potential targets
for drug development, especially in autoimmune disorders
and cancer. Ub-based chemical probes have been developed
to monitor DUB and E1-E2-E3 activity, most of which
comprise a Ub conjugate module [425], reporting group and
warhead. The Ub conjugate module of the probe is re-
cognized by the enzymes, the warhead covalently captures
the active cystine, and the reporter group is for the identifi-
cation of substrate [426–429]. These probes, which can be
constructed in a chemically flexible and atomically tailored
manner, have been widely used in in vitro settings, but their
application requires lysis of cells, which typically leads to
dilution of the cytoplasmic and nuclear proteins, leading to
potential dissociation of protein complexes necessary for
Ub-related enzymatic activity [430–435]. To address this
problem, the most modern probes use protein cell delivery
vehicles such as cell-penetrating peptide (CPP) and phase-
separating peptide to analyze Ub-related enzymes in live
cells (Figure 31b, c) [436–446].
Zhuang et al. [447] developed the first membrane-pene-

trating Ub probes by coupling a CPP containing TAT se-
quence, a widely used cationic transmembrane peptide
derived from the trans activator of transcription protein of
human immunodeficiency virus, or cyclic polyarginine
(cR10), an engineered cell-penetrating peptide with cyclic
polyarginine structure, to the N-terminal of Ub-propargyla-
mide (Ub-PA) or Ub-vinyl methyl ester (Ub-VME) probes.
The cR10-modified probe exhibited enhanced intracellular
delivery efficiency. Subsequently, the authors showed, using
chemical proteomics techniques, that the cR10 probe cap-
tured nearly three times as much DUB in live cells as in
lysates.
To further analyze the activity of Ub-related enzymes in

specific cellular processes, probes capable of penetrating live
cells and being activated on-demand have been developed.
Brik et al. [448] reported a Thz-protected Ubv2.3-aldehyde
probe incapable of labeling DUBs in vitro until Pd-mediated
cleavage of Thz. The authors found that the activated Ubv2.3
probe inhibited the enzymatic activity of USP2a, promoting
the degradation of USP2a’s substrate MDM2. Zhuang et al.
[449] developed another class of caged Ub probes that could
be activated by UV irradiation. A tetrazole-derived warhead
and cR10 were installed onto the C and N termini of Ub,
respectively. Upon activation by 365 nm UV light, the inert
tetrazole group was converted to nitrilimine intermediate,
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which then captured the active cysteine of DUBs. Compared
with no UV treatment, 15 DUBs were significantly enriched
in live cells after activation. The authors also used this probe
to study DUB activity in different phases of the cell cycle.
The above on-demand activation probes enable the time-

resolved monitoring of DUB activity through masking ac-
tivity of the warhead, but more widely used probes such as
Ub-PA and diUb-Dha are difficult to temporarily mask using
this strategy. To solve the problem, Li et al. [450] tempora-
rily blocked the activity of the probe by replacing the glycine
at position 75 of Ub with sterically bulky 2-ni-
trobenzylglycine (Nbg) to impede the entry of Ub into the
active pocket of DUBs. A cell-permeable photocaged Ub-PA
synthesized based on this backbone modification strategy
capable of labeling DUBs in vitro only after activation by
365 nm UV light was used in conjunction with chemical
proteomics techniques to analyze fluctuations in DUB ac-
tivity in live cells under oxidative stress. DUB activity was
found to be reversibly deactivated under these conditions. To

further demonstrate the versatility of the strategy, the authors
synthesized a photocaged K48/63 diUb-Dha probe and
achieved Ub chain-specific DUBs labeling in live cells. Fi-
nally, Li et al. [451] also prepared cell-permeable photo-
caged SUMO2-PA probes to monitor the activity of Sentrin-
specific proteases in real time.
In contrast to deubiquitination, ubiquitination involves

several enzymes and therefore, the temporary masking of
newly occurring ubiquitination events in living cells is dif-
ficult. Li et al. [452] prepared cell-permeable photocaged Ub
to screen newly occurred ubiquitination events using a
backbone modification strategy. The authors loaded a 2-ni-
trobenzyl group on the amide backbone of the Ub C-terminus
75 or 76 glycine by chemical synthesis, such that the Ub
variant could be loaded onto substrates by E1-E2-E3 only
after light activation. Fluorescence imaging and im-
munoblotting showed that the cell-permeable photocaged Ub
could be activated in live cells. The authors then used the
probe to investigate levels of newly ubiquitinated substrates

Figure 31 (a) Ub catalysis system, actions of E1, E2, E3 and DUB. (b) The main components of cell-permeable Ub probes. (c) Application of cell-
permeable Ub probes. 1 and 2 are cell-permeable Ub probes, 3-6 are on-demand activation Ub probes (color online).
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in cells under oxidative stress; 264 proteins, mainly those
involved in RNA splicing, RNA/protein translocation, and
protein translation, were found to be significantly enriched.
These studies show that the backbone modification strategy
can be used to synthesize probes capable of the time-resolved
profiling of DUBs and ubiquitinated substrates in different
cellular states.

5.5 Development of adjuvant-protein conjugate as a
potent protein-based vaccine

Protein-based conjugates have witnessed broad applications
in biomedical research and pharmaceutical developments,
exemplified by innovations like antibody-drug conjugates
and various lysosome-targeting protein degraders [453,454],
extensively reviewed elsewhere [455,456]. In this review,
constrained by length considerations, our discussion is spe-
cifically centered on protein-based vaccines.
Vaccines incorporating protein subunits as antigens have

attracted attention due to their favorable safety profiles and
the relative ease with which they can be produced, stored and
transported [457]. However, the weak immunogenicity of
protein antigens is challenging and can necessitate the use of
an adjuvant to enhance the immune response (Figure 32a)
[458–460]. Adjuvants used in protein vaccines include alu-
minum-containing adjuvants [461], toll-like receptor (TLRs)
agonists [462], stimulator of interferon genes (STING)
agonists [463], and invariant natural killer T (iNKT) cell
agonists [464]. These adjuvants act as “danger signals” that
can effectively activate the innate immune system and
greatly enhance the immunogenicity of antigen proteins
[465,466]. Nevertheless, the co-administration of adjuvants

and proteins as a physical mixture might cause adjuvant
dispersion from the injection site.
The covalent conjugation of adjuvants and antigens is a

highly promising strategy for developing vaccines that ef-
fectively promote targeted immune responses against spe-
cific antigens without additional safety concerns [467,468].
Advantages associated with such conjugate vaccines include
chemical controllability, reproducibility, uniform composi-
tion, and the co-delivery of antigen and immunostimulant to
the same antigen-presenting cell (APCs), effectively acti-
vating APC-mediated antigen presentation [442]. Li et al.
[469] prepared a construct with covalently conjugated iNKT
cell agonist αGalCer and MUC1 antigen, demonstrating a
significantly enhanced immunogenicity of the vaccine. Zhao
et al. [470] coupled the TLR2/6 agonist fibroblast stimulat-
ing lipopeptide 1 (FSL-1) to the antigen, inducing a robust
antigen-specific immune response. This strategy is particu-
larly effective for amphiphilic or hydrophobic adjuvants,
such as the iNKT cell agonist αGalCer [444]. The amphi-
philic structure of the adjuvant-antigen conjugate can ef-
fectively promote the self-assembly of antigen and adjuvant,
improve the transmembrane capacity of adjuvant, and en-
hance antigen uptake by APCs [442,443]. For hydrophilic
adjuvants that need to function intracellularly, such as the
STING agonist cycllic di-GMP [471], the high water solu-
bility of the resulting adjuvant-antigen conjugates hinders
their transmembrane transport and functionalization.
Three strategies to construct adjuvant-protein conjugates

are in current use: (1) random coupling based on protein
residues; (2) site-specific conjugation; and (3) conjugation
based on glycans on glycoproteins. In the random coupling
strategy (Figure 32b), covalent bonds are formed directly

Figure 32 Protein vaccine design and adjuvant-protein conjugating strategies. (a) Conventional protein vaccine with add-mixed adjuvant. (b) Random
conjugation of adjuvant to the protein side chain, represented by lysine residue. (c) Site-specific conjugation of adjuvant to protein terminus and disulfide
bond. (d) Glycan-based conjugation of adjuvant to sialic acid of glycoprotein (color online).
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between the adjuvant and certain reactive amino acid side
chains (such as lysine amino groups) of the protein [472]. For
instance, Guo et al. [473] conjugated a TLR7 agonist to
lysine residues on the SARS-CoV-2 Spike S1 protein via an
N-hydroxysuccinimide ester strategy to give a vaccine that
elicited robust humoral and cellular immune responses, and
high-titer neutralizing antibodies against SARS-CoV-2 and
its variants of concern (VOCs). This adjuvant-protein con-
struction strategy has also been applied to carrier proteins to
enhance the immunogenicity of haptens [474,475].
The site-specific conjugation strategy can address the de-

ficiencies due to random conjugation (Figure 32c). Moyle et
al. [476,477] used the EPL strategy to attach three distinct
TLR2 ligands onto recombinant protein antigens via en-
zymes, leading to a potent antigen-specific immune re-
sponse. Payne et al. [478] covalently coupled immune
adjuvants to the terminus of a synthetic peptide, thereby
eliciting a potent immune response [188]. Utilizing a pyr-
idoxal 5′-phosphate mediated transamination reaction to ef-
ficiently introduce built-in adjuvant into specific sites [479],
Guo et al. conjugated TLR1/2 agonist Pam3CSK4 [480],
TLR4 agonist GAP112 [481], and iNKT cell agonist αGal-
Cer [482] to the N-terminus of the SARS-CoV-2 spike RBD
protein, respectively. In addition, Boons et al. [483] devel-
oped an approach for the site-selective derivatization of the
protein based on the selective reduction of a disulfide bridge
of protein followed by a reaction with functionalized di-
bromopyridazinediones to form adjuvant-protein conjugate.
Conjugating the adjuvant to the protein via its glycan

moieties is another method (Figure 32d). Guo et al. [484]
reported a vaccine platform that involves the covalent link-
age of adjuvants to sialic acid residues on the glycan chains
of glycoproteins. The aldehyde structures generated by per-
iodate oxidation of the N-glycans on the receptor-binding
domain (RBD) could enhance antigen uptake by antigen-
presenting cells (APCs) via scavenger receptors [485]. Fur-
thermore, Boons et al. [486] developed a conjugation
method to covalently link TLR7/8 agonists to N-glycans
located on viral glycoproteins.

5.6 Applications of synthetic ubiquitin-modified nu-
cleosomes

Chromatin is the complex of DNA and protein responsible
for integrating genetic information and maintaining genome
stability in eukaryotes [487–489]. The primary protein
components of chromatin are four types of histones (H2A,
H2B, H3, and H4) and the linker histone (H1), which un-
dergo dynamic decoration with a multitude of post-transla-
tional modifications, such as acetylation, methylation,
phosphorylation, and ubiquitylation. Notably, ubiquitylation
stands out as a particularly intriguing PTM due to its larger
size and increased complexity compared with the other

modifications. Histone ubiquitination modification can serve
as a signal integration platform, mediating different down-
stream biochemical events by recruiting different effector
proteins [490–492]. For example, K13 or K15 ubiquitination
of histone H2A, namely H2AK13/15Ub, can recruit
BRCA1/BARD1 and 53BP1 in response to DNA double-
strand damage repair, initiate the DNA repair process and
maintain genome stability [493,494]; H2AK119Ub can re-
cruit the polycomb repressive complex PRC2 to mediate
transcription repression and gene silencing processes
[495,496]; H2AK125/127/129Ub can recruit the chromatin
remodeling enzyme SMARCAD1 to promote DNA damage
repair by homologous recombination [497]; H2BK120Ub
can recruit the methyltransferase COMPASS complex and
Dot1L and activate its effects on methylation of H3K4 and
H3K79, thereby activating transcription [498,499]. One of
the main difficulties in studying post-translationally mod-
ified nucleosomes is the acquisition of pure samples having a
precise structure [500–502]. Traditional protein expression
technology is poorly suited to the synthesis of site-specific
modified proteins, and chemoenzymatic methods are often
limited by difficulties in reassembling enzyme complexes
[503–505].
A hallmark of epigenetic modifications, H2B mono-

ubiquitylation (H2Bub; modified on K123 in yeast or K120
in mammals), plays essential roles in regulating assorted
nuclear processes, including gene transcriptional activation,
higher-order chromatin organization, and the DNA damage
response. Cellular levels of H2Bub are precisely and dyna-
mically regulated and depend on a balance in the activities of
ubiquitin (Ub) installation by Ub-modifying enzymes (Bre1-
Rad6 [506] in yeast or RNF20/RNF40-hRAD6A [507] in
humans), and its removal by deubiquitylating enzymes
(Ubp8 and Ubp10 in yeast [508], and USP22 [509,510] in
mammals). Morgan et al. [511] used a semi-synthetic strat-
egy to obtain a Xenopus laevis nucleosome core particle
(NCP) containing two copies of H2B with ubiquitin attached
to K120 of H2B via a nonhydrolyzable dichloroacetone
(DCA) linkage and study the catalytic mechanism of Spt-
Ada-Gcn5 acetyltransferase (SAGA) deubiquitinating mod-
ule containing Ubp8. The crystal complex structure of a
nucleosome with H2BK120Ub bound by the SAGA revealed
the mechanism by which it excises H2Bub by recognizing
the H2A-H2B acidic patch, H2B C-terminal helix, and Ub in
the nucleosome core particle (NCP).
Nonetheless, the elucidation of the structural mechanism

for the site-specific ubiquitylation on H2B has long been
hindered by the challenges associated with the capture of the
transient and dynamic protein complexes formed during this
unique ubiquitylation event. Deng et al. [512,513] developed
a chemical trapping strategy integrating mechanism-inspired
conjugation and split-intein splicing technology and suc-
cessfully captured the transient cryo-EM structures of Bre1-
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or RNF20/RNF40-mediated Ub transfer from Rad6 or
hRAD6A to nucleosomal H2B. This work revealed a critical
role of nucleosomal DNA in mediating E3 ligase recognition
for H2Bub and established a framework for understanding
the oncogenic mutations of human RNF20/RNF40 (Figure
33).
H2BK120 monoubiquitination (H2BK120ub1) is a pre-

requisite for the efficient methylation of H3K79 by the un-
ique non-SET domain-containing histone methyltransferase
DOT1L in vitro. The essential histone H3 lysine 79 me-
thyltransferase Dot1L regulates transcription and genomic
stability and is deregulated in leukemia, but the mechanism
by which Dot1L is stimulated by H2BK120Ub is not un-
derstood. Chatterjee et al. [514] developed a synthetic route
that directly attaches the Ub protein onto the H2B proteins
with a disulfide linkage (H2BssUb, ss represents disulfide
linkage). The expressed full-length Ub was modified with a
C-terminal aminoethanethiol linker, which could join H2B
with K120C mutation through a disulfide linkage. The same
strategy was used to prepare the NCP with H2BK120Ub
(UbNCP) and yield the cryo-EM structure of the DOT1L-
UbNCP complex which revealed the crosstalk mechanism
between H2BK120Ub H3K79 methylation [515,516]. Fur-
ther replacing H3K79 with norleucine to trap DOT1L in the
active state, Worden et al. [515] reported the cyro-EM
structure of DOT1L revealed that DOT1L and H4 tail induce
conformation change of H3 and make H3K79 accessible to
DOT1L. Xue et al. [517] also used DCA to obtain a cryo-EM
structure of H2BK120Ub and reported that H2BK120Ub
promoted H3K4 methylation through complex formation
with MLL proteins and their regulatory factors (WDR5,
RBBP5, ASH2L and DPY30).
Histone PTMs like H2BK34Ub can also stimulate

DOT1L. Chu et al. [518] developed two strategies to prepare
the H2BK34Ub and independently obtained the rough cryo-
EM structure of H2BK34Ub-NCP. Ai et al. [519] further
optimized the synthesis strategy with lysyl auxiliary-medi-
ated site-specific ubiquitination to prepare natural

H2BK34Ub and H2BK120Ub more efficiently. The authors
reconstituted the DOT1L stimulation effect of both
H2BK34Ub-NCP and H2BK120Ub-NCP. Further cryo-EM
structure studies showed that H2BK34Ub-NCP induces the
DOT1L orientation closer to the H3K79, which is similar to
the mechanism of H2BK120Ub. An in vitro assay comparing
H2BK34Ac-NCP, H2BK34Sumo-NCP and H2BK34-aeea-
Ub-NCP (aeea, 2-(2-aminoethylamino)ethanol) showed the
ubiquitin fold and linking mode are important for the DOT1L
activation effect.

5.7 Revealing the mechanism of the modulation of
membrane proteins using synthetic peptide ligands

Most naturally occurring peptides target the proteins located
on the cell surface, including ion channels, transporters, and
receptors. Venomous creatures deploy a wide array of toxic
peptides active against a range of targets for prey capture or
defense; most of the toxic peptides are disulfide-rich poly-
peptides composed of 10–80 amino acid residues that adopt
highly ordered 3D structures and potently modulate the ac-
tivity of specific classes of cell membrane targets. A variety
of disulfide-rich peptide toxins with different structure
scaffolds have been prepared by chemical synthesis and used
to study the mechanism by which ion channels are modu-
lated. Combined with technologies such as cryo-EM, a
variety of channels complexed with peptide toxins have been
determined (Figure 34). Sun et al. [520,521] determined the
cryo-EM structure of human acid-sensing ion channel sub-
type 1a (ASIC1a) complexed with the synthetic snake toxin
mambalgin-1, revealing the inhibited conformation of hA-
SIC1a upon toxin binding [522]. Moreover, mabaligin-1
incorporated with 19F-labeled L-4-trifluoromethyl-pheny-
lalanine (19F-tfmF) was synthesized and used for structural
and physiological studies, revealing that mambalgin-1 pre-
ferentially binds ASIC1a in a closed state and inhibits the
channel through a closed-state trapping mechanism, causing
an analgesic effect. Additionally, μ-conotoxin KIIIA bound

Figure 33 Synthetic ubiquitinated nucleosomes enable the elucidation of mechanistic insights into nucleosome ubiquitination or deubiquitination. Site-
specific ubiquitination adding, reading, or removing processes on nucleosome play critical roles in epigenetic regulation. However, studying the molecular
mechanisms of these processes is challenging because it is difficult to capture complexes of ubiquitinated nucleosomes having precise structures. Chemical
protein synthesis strategies have resulted in precise structures of ubiquitinated histones, facilitating the generation of ubiquitin-conjugated nucleosome
complexes and elucidation of the final complex structures (color online).
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to voltage-gated sodium channel 1.2 (Nav1.2) [523], spider
toxin ProTx-II bound to Nav1.7 [524], DkTx bound to
transient receptor potential cation channel subfamily V
member 1 (TRPV1) [525] have also been reported. Gao et al.
[526] revealed the molecular basis for the specific pore
blockage of ziconotide by solving the structure of the U.S.
Food and Drug Administration (FDA)-approved, venom-
derived painkiller bound to its target human Cav2.2 channel.
More than a hundred G protein-coupled receptors

(GPCRs) activated by endogenous peptide ligands have been
characterized in humans and are recognized as drug targets
[527], and the structures of several peptide ligands bound to
GPCRs have been solved. The endogenous cyclic peptide
SST14 was reported to stimulate somatostatin receptors
(SSTRs) for hormone release, cell growth arrest and cancer
suppression. Bo et al. [528] determined the cryo-EM struc-
tures of human SSTR2 bound with SST14 and its short cyclic
SST analogues (octreotide or lanreotide), revealing that in-
teractions between β-turn residues in SST analogues and
transmembrane SSTR2 residues in the ligand-binding pocket
are crucial for receptor binding and functional stimulation of
the two SST14-derived cyclic octapeptides.

Tachykinins are a family of neuropeptides distributed in
the mammalian nervous system. The tachykinin peptides
substance P (SP), neurokinin A (NKA) and neurokinin B
(NKB) share a conserved C-terminal motif. NKA pre-
ferentially activates NK2R, while SP and NKB preferentially
bind the tachykinin receptors NK1R and NK3R, respec-
tively. Sun et al. [529,530] determined the cryo-EM struc-
tures of the NK3R bound to NKB, SP and senktide, as well as
NK2R bound to NKA. Gao et al. [531] reported the struc-
tures of active-state calcium-sensing receptor (CaSR) in
complex with clinically used peptide drug etelcalcetide, an
octapeptide composed of D-amino acids, providing a de-
tailed structural framework for CaSR activation and the ra-
tional design of therapeutics targeting this receptor. Repre-
sentative structural studies of peptide ligands and GPCR also
include neurotensin at the NTS1R [532]; synthetic en-
dorphin-derivatives at the μ-opioid receptors [533]; glucagon
and glucagon-like peptide 1 (GLP-1) analogues at the glu-
cagon receptor [534,535] and GLP1R [536,537], respec-
tively; parathyroid hormone at the PTH1R [538]; and
thyrotropin-releasing hormone (TRH) and its analogue tal-
tirelin at thyrotropin-releasing hormone receptor [539].

Figure 34 Representative structures of membrane proteins resolved using synthetic peptides as modulators or ligands. The sequences of peptides are
indicated. The structures of peptide ligands are shown in magenta. (a) Disulfide bond rich peptides derived from venom and used to study the structure and
function of ion channels: snake toxin mambalgin1 targeting human acid-sensing ion channel subtype 1a (hASIC1a) (PDB: 7CFT) [521]. Cone snail toxin
KIIIA targeting voltage-gated sodium channel 1.2 (Nav1.2) (PDB: 6J8E) [523]. (b) Ribbon diagram representation of the cryo-EM structures of SST14 and
octreotide bound to somatostatin receptor 2 (SSTR2) (PDB: 7XAT, 7XAU). (c) Cryo-EM structure of class C GPCR calcium-sensing receptor (CaSR)
complexed with peptide drug etelcalcetide (PDB: 7M3J) (color online).
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6 Conclusions and perspectives

To summarize, synthetic organic chemistry enables access to
proteins that are not attainable through biology. Chemical
synthesis of proteins tests the limits of what can be rationally
synthesized by modern chemistry and how we can develop
biochemical systems that go beyond the biological limits.
Using the methods developed over the past years, we can
now chemically synthesize proteins containing up to 500
amino acids in single-chain protein molecules and even
larger proteins containing over 1,000 amino acids in multi-
component protein complexes. The ability of chemical pro-
tein synthesis to engineer proteins with unprecedented
precision and diversity sets the stage for researchers to un-
ravel the mysteries of biology and design solutions for
pressing challenges in medicine, biotechnology, and beyond.
Although much progress has been made, an infinite number
of massively complex proteins having many unknown
functions remain to be explored, calling for even more in-
novative strategies. Moreover, while chemical protein
synthesis plays a vital role in elucidating protein functions
and interactions and has already aided in the unraveling of
intricate cellular mechanisms, the extent to which synthetic
proteins in vitro can represent their native forms in a live
organism remains an open question—the answer to which
may require a new perspective and even a new research
paradigm, such as chemical protein synthesis in living cells.
Finally, with the potential to create proteins that push the
boundaries of natural diversity, chemical protein synthesis
should play more significant roles in drug discovery and
development, creating therapeutic proteins with tailored
properties, enhancing efficacy, and minimizing side effects.
Overall, the integration of chemically synthesized proteins
into biomedical research will foster new frontiers in drug
discovery, diagnostics, and therapeutic interventions, sti-
mulate new discoveries and development from bioorganic
chemistry and chemical biology, and demonstrate the im-
portance, power, and value of synthetic chemistry in solving
cutting-edge problems in molecular biology and biomedi-
cine.
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