Skip to main content
Log in

Bifunctional two-carbon reagent made from acetylene via 1,2-difunctionalization and its applications

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

There are very limited approaches to directly gluing two molecules for the production of internal alkenes using the vastly abundant acetylene via 1,2-difunctionalization. Conversion of gaseous acetylene to internal alkenes via 1,2-difunctionalization in a desired manner is not as easy as it might be expected due to the potential competition reactions between acetylene and alkene produced and the difficulty in handling this harmful reagent and controlling the regio- and stereoselectivity. In this work, we designed an efficient catalytic system for the incorporation of acetylene gas into tremendous (E)-β-bromo vinylsulfones, which are bench-stable, easy to operate, and can function as bifunctional acetylene and show a rich reactivity profile in Sonogashira coupling, Heck coupling, substituted reaction, and various desulfonylation transformations, providing numerous internal alkenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maryanoff BE, Reitz AB. Chem Rev, 1989, 89: 863–927

    Article  CAS  Google Scholar 

  2. Byrne PA, Gilheany DG. Chem Soc Rev, 2013, 42: 6670–6696

    Article  CAS  PubMed  Google Scholar 

  3. Wittig G, Geissler G. Zur JustusLiebigsAnnChem, 1953, 580: 44–57

    CAS  Google Scholar 

  4. Fürstner A. Angew Chem Int Ed, 2000, 39: 3012–3043

    Article  ADS  Google Scholar 

  5. Grubbs RH. HandbookofMetathesis:CatalystDevelopment. Weinheim: Wiley-VCH, 2003

    Google Scholar 

  6. Schrock RR, Hoveyda AH. Angew Chem Int Ed, 2003, 42: 4592–4633

    Article  CAS  Google Scholar 

  7. Bruneau C, Dixneuf PH. Angew Chem Int Ed, 2006, 45: 2176–2203

    Article  CAS  Google Scholar 

  8. Ananikov V, Tanaka M. Hydrofunctionalization. Pisa: Springer Link, 2012

    Google Scholar 

  9. Oger C, Balas L, Durand T, Galano JM. Chem Rev, 2013, 113: 1313–1350

    Article  CAS  PubMed  Google Scholar 

  10. Duan XF. Chem Commun, 2020, 56: 14937–14961

    Article  CAS  Google Scholar 

  11. Cai Y, Zhang JW, Li F, Liu JM, Shi SL. ACS Catal, 2019, 9: 1–6

    Article  Google Scholar 

  12. Heck RF. Acc Chem Res, 1979, 12: 146–151

    Article  CAS  Google Scholar 

  13. Beletskaya IP, Cheprakov AV. Chem Rev, 2000, 100: 3009–3066

    Article  CAS  PubMed  Google Scholar 

  14. Ikeda Y, Nakamura T, Yorimitsu H, Oshima K. J Am Chem Soc, 2002, 124: 6514–6515

    Article  CAS  PubMed  Google Scholar 

  15. Affo W, Ohmiya H, Fujioka T, Ikeda Y, Nakamura T, Yorimitsu H, Oshima K, Imamura Y, Mizuta T, Miyoshi K. J Am Chem Soc, 2006, 128: 8068–8077

    Article  CAS  PubMed  Google Scholar 

  16. Firmansjah L, Fu GC. J Am Chem Soc, 2007, 129: 11340–11341

    Article  CAS  PubMed  Google Scholar 

  17. Bissember AC, Levina A, Fu GC. J Am Chem Soc, 2012, 134: 14232–14237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. McMahon CM, Alexanian EJ. Angew Chem Int Ed, 2014, 53: 5974–5977

    Article  CAS  Google Scholar 

  19. Cheng X, Li T, Liu Y, Lu Z. ACS Catal, 2021, 11: 11059–11065

    Article  CAS  Google Scholar 

  20. Negishi E, Zeng X, Tan Z, Qian M, Hu Q, Huang Z. In: de Meijere F, Diederich A. Metal-Catalyzed Cross-Coupling Reactions, Weinheim: Wiley-VCH Verlag GmbH, 2008. 815

  21. Vougioukalakis GC, Grubbs RH. Chem Rev, 2010, 110: 1746–1787

    Article  CAS  PubMed  Google Scholar 

  22. Cho SH, Kim JY, Kwak J, Chang S. Chem Soc Rev, 2011, 40: 5068–5083

    Article  CAS  PubMed  Google Scholar 

  23. Kambe N, Iwasaki T, Terao J. Chem Soc Rev, 2011, 40: 4937–4947

    Article  CAS  PubMed  Google Scholar 

  24. Meek SJ, O’Brien RV, Llaveria J, Schrock RR, Hoveyda AH. Nature, 2011, 471: 461–466

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  25. Liu Q, Dong X, Li J, Xiao J, Dong Y, Liu H. ACS Catal, 2015, 5: 6111–6137

    Article  CAS  Google Scholar 

  26. Yoshimatsu M, Hayashi M, Tanabe G, Muraoka O. Tetrahedron Lett, 1996, 37: 4161–4164

    Article  CAS  Google Scholar 

  27. Zhang R, Xu P, Wang SY, Ji SJ. J Org Chem, 2019, 84: 12324–12333

    Article  CAS  PubMed  Google Scholar 

  28. Doerksen RS, Meyer CC, Krische MJ. Angew Chem Int Ed, 2019, 58: 14055–14064

    Article  CAS  Google Scholar 

  29. Voronin VV, Ledovskaya MS, Bogachenkov AS, Rodygin KS, Ananikov VP. Molecules, 2018, 23: 2442

    Article  PubMed Central  PubMed  Google Scholar 

  30. Cheng T, Liu B, Wu R, Zhu S. Chem Sci, 2022, 13: 7604–7609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Yang B, Lu S, Wang Y, Zhu S. Nat Commun, 2022, 13: 1858

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  32. Kong JR, Krische MJ. J Am Chem Soc, 2006, 128: 16040–16041

    Article  CAS  PubMed  Google Scholar 

  33. Skucas E, Ngai MY, Komanduri V, Krische MJ. Acc Chem Res, 2007, 40: 1394–1401

    Article  CAS  PubMed  Google Scholar 

  34. Wang Z, Lu X, Lei A, Zhang Z. J Org Chem, 1998, 63: 3806–3807

    Article  CAS  Google Scholar 

  35. Scharnagel D, Escofet I, Armengol-Relats H, de Orbe ME, Korber JN, Echavarren AM. Angew Chem Int Ed, 2020, 59: 4888–4891

    Article  CAS  Google Scholar 

  36. Williams VM, Kong JR, Ko BJ, Mantri Y, Brodbelt JS, Baik MH, Krische MJ. J Am Chem Soc, 2009, 131: 16054–16062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Hou J, Xie J, Zhou Q. Angew Chem Int Ed, 2015, 54: 6302–6305

    Article  CAS  Google Scholar 

  38. Tang S, Wang D, Liu Y, Zeng L, Lei A. Nat Commun, 2018, 9: 798

    Article  PubMed Central  ADS  PubMed  Google Scholar 

  39. Alabugin IV, Gold B. J Org Chem, 2013, 78: 7777–7784

    Article  CAS  PubMed  Google Scholar 

  40. Wille U. Chem Rev, 2013, 113: 813–853

    Article  CAS  PubMed  Google Scholar 

  41. Alabugin IV, Timokhin VI, Abrams JN, Manoharan M, Abrams R, Ghiviriga I. J Am Chem Soc, 2008, 130: 10984–10995

    Article  CAS  PubMed  Google Scholar 

  42. Vasilyev AV. Russ Chem Rev, 2013, 82: 187–204

    Article  ADS  Google Scholar 

  43. Wang X, Lim YN, Lee C, Jang H, Lee BY. Eur J Org Chem, 2013, 2013(10): 1867–1871

    Article  CAS  Google Scholar 

  44. Ledovskaya MS, Voronin VV, Rodygin KS, Ananikov VP. Synthesis, 2022, 54: 999–1042

    Article  CAS  Google Scholar 

  45. Vollhardt KPC. Acc Chem Res, 1977, 10: 1–8

    Article  CAS  Google Scholar 

  46. Xue F, Deng H, Xue C, Mohamed DKB, Tang KY, Wu J. Chem Sci, 2017, 8: 3623–3627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Hosseini A, Pilevar A, Hogan E, Mogwitz B, Schulze AS, Schreiner PR. Org Biomol Chem, 2017, 15: 6800–6807

    Article  CAS  PubMed  Google Scholar 

  48. Matake R, Niwa Y, Matsubara H. Org Lett, 2015, 17: 2354–2357

    Article  CAS  PubMed  Google Scholar 

  49. Fu R, Li Z. EurJOrgChem, 2017, 2017: 6648–6651

    CAS  Google Scholar 

  50. Potapov VA, Musalov MV, Panov VA, Musalova MV, Amosova SV. Russ J Org Chem, 2013, 49: 1834–1835

    Article  CAS  Google Scholar 

  51. Skucas E, Kong JR, Krische MJ. J Am Chem Soc, 2007, 129: 7242–7243

    Article  CAS  PubMed  Google Scholar 

  52. Holmsen MSM, Nova A, Balcells D, Langseth E, Øien-Ødegaard S, Heyn RH, Tilset M, Laurenczy G. ACS Catal, 2017, 7: 5023–5034

    Article  CAS  Google Scholar 

  53. Liu B, Lin Z, Wang Y, Cheng T, Cao T, Zhu S. CCS Chem, 2023, 5: 1077–1085

    Article  CAS  Google Scholar 

  54. Prenzel D, Kirschbaum RW, Chalifoux WA, McDonald R, Ferguson MJ, Drewello T, Tykwinski RR. Org Chem Front, 2017, 4: 668–674

    Article  CAS  Google Scholar 

  55. Trofimov BA, Gusarova NK. Russ Chem Rev, 2007, 76: 507–527

    Article  CAS  ADS  Google Scholar 

  56. Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE. Angew Chem Int Ed, 2011, 50: 8510–8537

    Article  CAS  Google Scholar 

  57. Maki Y, Mori H, Endo T. Macromolecules, 2007, 40: 6119–6130

    Article  CAS  ADS  Google Scholar 

  58. Lin Z, Liu B, Wang Y, Li S, Zhu S. Chem Sci, 2023, 14: 1912–1918

    Article  CAS  PubMed  Google Scholar 

  59. Semina E, Tuzina P, Bienewald F, Hashmi ASK, Schaub T. Chem Commun, 2020, 56: 5977–5980

    Article  CAS  Google Scholar 

  60. Sitte NA, Menche M, Tužina P, Bienewald F, Schäfer A, Comba P, Rominger F, Hashmi ASK, Schaub T. J Org Chem, 2021, 86: 13041–13055

    Article  CAS  PubMed  Google Scholar 

  61. Yoshimura A, Saga Y, Sato Y, Ogawa A, Chen T, Han LB. Tetrahedron Lett, 2016, 57: 3382–3384

    Article  CAS  Google Scholar 

  62. Lü S, Wang Z, Zhu S. Nat Commun, 2022, 13: 5001

    Article  PubMed Central  ADS  PubMed  Google Scholar 

  63. Li K, Deng J, Long X, Zhu S. Green Chem, 2023, 25: 7253–7258

    Article  CAS  Google Scholar 

  64. Lü S, Wang Z, Gao X, Chen K, Zhu S. Angew Chem Int Ed, 2023, 62: e202300268

    Article  Google Scholar 

  65. Li K, Long X, Zhu S. ACS Catal, 2023, 13: 2422–2431

    Article  CAS  Google Scholar 

  66. Liu B, Lin Z, Cheng T, Cao T, Zhu S. Org Lett, 2023, 25: 3573–3577

    Article  CAS  PubMed  Google Scholar 

  67. El-Awa A, Noshi MN, du Jourdin XM, Fuchs PL. Chem Rev, 2009, 109: 2315–2349

    Article  CAS  PubMed  Google Scholar 

  68. Alba ANR, Companyó X, Rios R. Chem Soc Rev, 2010, 39: 2018–2033

    Article  CAS  PubMed  Google Scholar 

  69. Petrini M. Chem Rev, 2005, 105: 3949–3977

    Article  CAS  PubMed  Google Scholar 

  70. Chu XQ, Ge D, Cui YY, Shen ZL, Li CJ. Chem Rev, 2021, 121: 12548–12680

    Article  CAS  PubMed  Google Scholar 

  71. Ilardi EA, Vitaku E, Njardarson JT. J Med Chem, 2014, 57: 2832–2842

    Article  CAS  PubMed  Google Scholar 

  72. Feng M, Tang B. H. Liang S, Jiang X. Curr Top Med Chem, 2016, 16: 1200–1216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Dounay AB, Overman LE. Chem Rev, 2003, 103: 2945–2964

    Article  CAS  PubMed  Google Scholar 

  74. Stanforth SP. In: Katritzky AR, Taylor RJK, eds. ComprehensiveOrganicFunctionalGroupTransformationsII. Oxford: Elsevier, 2005. 1025

    Google Scholar 

  75. Zeng X, Ilies L, Nakamura E. Org Lett, 2012, 14: 954–956

    Article  CAS  PubMed  Google Scholar 

  76. Gao Y, Wu W, Huang Y, Huang K, Jiang H. Org Chem Front, 2014, 1: 361–364

    Article  CAS  Google Scholar 

  77. Sun Y, Abdukader A, Lu D, Zhang H, Liu C. Green Chem, 2017, 19: 1255–1258

    Article  CAS  Google Scholar 

  78. Palmer JT, Rasnick D, Klaus JL, Bromme D. J Med Chem, 1995, 38: 3193–3196

    Article  CAS  PubMed  Google Scholar 

  79. Liu S, Hanzlik RP. J Med Chem, 1992, 35: 1067–1075

    Article  CAS  PubMed  Google Scholar 

  80. Meadows DC, Sanchez T, Neamati N, North TW, Gervay-Hague J. BioOrg Medicinal Chem, 2007, 15: 1127–1137

    Article  CAS  Google Scholar 

  81. Meadows DC, Gervay-Hague J. Med Res Rev, 2006, 26: 793–814

    Article  CAS  PubMed  Google Scholar 

  82. Forristal I. J Sulfur Chem, 2005, 26: 163–185

    Article  CAS  Google Scholar 

  83. Nie X, Xu T, Hong Y, Zhang H, Mao C, Liao S. Angew Chem Int Ed, 2021, 60: 22035–22042

    Article  CAS  Google Scholar 

  84. Noble A, MacMillan DWC. J Am Chem Soc, 2014, 136: 11602–11605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Zhou QQ, Düsel SJS, Lu LQ, König B, Xiao WJ. Chem Commun, 2019, 55: 107–110

    Article  CAS  Google Scholar 

  86. Paul S, Guin J. Green Chem, 2017, 19: 2530–2534

    Article  CAS  Google Scholar 

  87. Luo J, Zhang J. ACS Catal, 2016, 6: 873–877

    Article  CAS  Google Scholar 

  88. Handa S, Fennewald JC, Lipshutz BH. Angew Chem Int Ed, 2014, 53: 3432–3435

    Article  CAS  Google Scholar 

  89. Ning Y, Ji Q, Liao P, Anderson EA, Bi X. Angew Chem Int Ed, 2017, 56: 13805–13808

    Article  CAS  Google Scholar 

  90. Ansari MY, Kumar N, Kumar A. Org Lett, 2019, 21: 3931–3936

    Article  CAS  PubMed  Google Scholar 

  91. Xu Z, Liu Y, Liu X, Fu R, Hao W, Tu S, Jiang B. Adv Synth Catal, 2022, 364: 2666–2672

    Article  CAS  Google Scholar 

  92. Wang YB, Chen F, Li M, Bu Q, Du Z, Liu J, Dai B, Liu N. Green Chem, 2023, 25: 1191–1200

    Article  CAS  Google Scholar 

  93. Wang L, Xu T, Rao Q, Zhang TS, Hao WJ, Tu SJ, Jiang B. Org Lett, 2021, 23: 7845–7850

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22001079, 22271096, 22071062, 21871096) and the China Postdoctoral Science Foundation (2020M682694). Mr. Yue Huang was appreciated for his kind help in the mechanism investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifa Zhu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Li, K., Wang, Y. et al. Bifunctional two-carbon reagent made from acetylene via 1,2-difunctionalization and its applications. Sci. China Chem. 67, 936–944 (2024). https://doi.org/10.1007/s11426-023-1871-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1871-y

Navigation