Skip to main content

Advertisement

Log in

Azocalixarenes: a scaffold of universal excipients with high efficiency

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Excipients are important components of pharmaceutical preparations that affect their quality, safety, and efficacy. Macrocyclic receptors are a family of supramolecular excipients with several advantages, including molecular-level protection, small sizes, fast kinetics of host-guest recognition, and modular construction. With the continuous advances in the medical field, personalized and precision medicine requires the development of excipients with low dosages, integrated modifying effects, universality, and controlled release. To meet these requirements, we have developed a new family of macrocyclic excipients based on calixarenes by integrating their covalent (broad chemical design space) and noncovalent (wide range of substrates) advantages. Accordingly, azocalixarenes (AzoCAs) were designed, showing high binding affinities to a broad spectrum of active pharmaceutical ingredients (APIs), selectivity to interferents, and responsiveness to hypoxic microenvironments. Due to their highly efficient and controllable recognition, AzoCAs serve as low-dose excipients for 30 APIs. Molecular encapsulation by AzoCAs results in the integrated modification of the physicochemical properties of APIs, including solubility, stability, bioavailability, and biocompatibility. Moreover, AzoCAs can be reduced by azoreductases overexpressed in hypoxic microenvironments, leading to the controlled release of APIs. Collectively, AzoCA excipients have broad application prospects for a series of diseases such as enteritis, arthritis, stroke, cancer, bacterial infection and kidney injury, with diverse therapeutic modalities, including chemotherapy, photodynamic therapy, photothermal therapy, immunotherapy, boron neutron capture therapy, radiotherapy, fluorescence imaging, and their combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kingwell K. Nat Rev Drug Discov, 2020, 19: 823–824

    Article  CAS  PubMed  Google Scholar 

  2. Ting JM, Tale S, Purchel AA, Jones SD, Widanapathirana L, Tolstyka ZP, Guo L, Guillaudeu SJ, Bates FS, Reineke TM. ACS Cent Sci, 2016, 2: 748–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kalasz H, Antal I. Curr Med Chem, 2006, 13: 2535–2563

    Article  CAS  PubMed  Google Scholar 

  4. Braegelman AS, Webber MJ. Theranostics, 2019, 9: 3017–3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gu A, Wheate NJ. J Incl Phenom Macrocycl Chem, 2021, 100: 55–69

    Article  CAS  Google Scholar 

  6. Webber MJ, Appel EA, Meijer EW, Langer R. Nat Mater, 2016, 15: 13–26

    Article  CAS  PubMed  Google Scholar 

  7. Lehn JM. Chem Soc Rev, 2017, 46: 2378–2379

    Article  CAS  PubMed  Google Scholar 

  8. Geng WC, Zheng Z, Guo DS. View, 2021, 2: 20200059

    Article  Google Scholar 

  9. Pan YC, Wang H, Xu X, Tian HW, Zhao H, Hu XY, Zhao Y, Liu Y, Ding G, Meng Q, Ravoo BJ, Zhang T, Guo DS. CCS Chem, 2021, 3: 2485–2497

    Article  CAS  Google Scholar 

  10. Da Silva E, Lazar AN, Coleman AW. J Drug Deliver Sci Tech, 2004, 14: 3–20

    Article  CAS  Google Scholar 

  11. Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA. Chem Rev, 2015, 115: 12320–12406

    Article  CAS  PubMed  Google Scholar 

  12. Brewster ME, Loftsson T. Adv Drug Deliver Rev, 2007, 59: 645–666

    Article  CAS  Google Scholar 

  13. He S, Wu L, Sun H, Wu D, Wang C, Ren X, Shao Q, York P, Tong J, Zhu J, Li Z, Zhang J. ACS Appl Mater Interfaces, 2022, 14: 38421–38435

    Article  CAS  PubMed  Google Scholar 

  14. Selinger AJ, Cavallin NA, Yanai A, Birol I, Hof F. Angew Chem Int Ed, 2022, 61: e202113235

    Article  CAS  Google Scholar 

  15. Zeng Y, Zhou Z, Fan M, Gong T, Zhang Z, Sun X. Mol Pharm, 2017, 14: 81–92

    Article  CAS  PubMed  Google Scholar 

  16. Li JJ, Hu Y, Hu B, Wang W, Xu H, Hu XY, Ding F, Li HB, Wang KR, Zhang X, Guo DS. Nat Commun, 2022, 13: 6279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang Q, Hu ZY, Guo S, Guo DS, Wang R. SupraMolMater, 2022, 1: 100020

    Google Scholar 

  18. Hou X, Chang YX, Yue YX, Wang ZH, Ding F, Li ZH, Li HB, Xu Y, Kong X, Huang F, Guo DS, Liu J. Adv Sci, 2022, 9: e2104349

    Article  Google Scholar 

  19. Cheng YQ, Yue YX, Cao HM, Geng WC, Wang LX, Hu XY, Li HB, Bian Q, Kong XL, Liu JF, Kong DL, Guo DS, Wang YB. J Nanobiotechnol, 2021, 19: 451

    Article  CAS  Google Scholar 

  20. Hua B, Shao L, Li M, Liang H, Huang F. Acc Chem Res, 2022, 55: 1025–1034

    Article  CAS  PubMed  Google Scholar 

  21. Du X, Ma M, Zhang Y, Yu X, Chen L, Zhang H, Meng Z, Jia X, Chen J, Meng Q, Li C. Angew Chem Int Ed, 2023, 62: e202301857

    Article  CAS  Google Scholar 

  22. Kwong CHT, Mu J, Li S, Fang Y, Liu Q, Zhang X, Kam H, Lee SMY, Chen Y, Deng F, Zhou X, Wang R. Chin Chem Lett, 2021, 32: 3019–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu JJ, Chen FY, Han BB, Zhang HQ, Zhao L, Zhang ZR, Li JJ, Zhang BD, Zhang YN, Yue YX, Hu HG, Li WH, Zhang B, Chen YX, Guo DS, Li YM. CCS Chem, 2023, 5: 885–901

    Article  CAS  Google Scholar 

  24. Pan YC, Yue YX, Hu XY, Li HB, Guo DS. Adv Mater, 2021, 33: e2104310

    Article  PubMed  Google Scholar 

  25. Zheng Z, Geng WC, Li HB, Guo DS. SupraMol Chem, 2020, 33: 80–87

    Article  Google Scholar 

  26. Wang H, Xu XX, Pan YC, Yan YX, Hu XY, Chen RW, Ravoo BJ, Guo DS, Zhang T. Adv Mater, 2021, 33: e2006483

    Article  PubMed  Google Scholar 

  27. Pan YC, Barba-Bon A, Tian HW, Ding F, Hennig A, Nau WM, Guo DS. Angew Chem Int Ed, 2021, 60: 1875–1882

    Article  CAS  Google Scholar 

  28. Hazarika B, Singh VP. Chin Chem Lett, 2023, 34: 108220

    Article  CAS  Google Scholar 

  29. Kuok KI, Li S, Wyman IW, Wang R. Ann New York Acad Sci, 2017, 1398: 108–119

    Article  CAS  Google Scholar 

  30. Yin H, Bardelang D, Wang R. Trends Chem, 2021, 3: 1–4

    Article  CAS  Google Scholar 

  31. Yao SY, Cai K, Guo DS. ActaPolym Sin, 2022, 53: 1271–1278

    CAS  Google Scholar 

  32. Petitjean M, Garcia-Zubiri IX, Isasi JR. Environ Chem Lett, 2021, 19: 3465–3476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saokham P, Muankaew C, Jansook P, Loftsson T. Molecules, 2018, 23: 1161

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang TX, Zhang ZZ, Yue YX, Hu XY, Huang F, Shi L, Liu Y, Guo DS. Adv Mater, 2020, 32: e1908435

    Article  PubMed  Google Scholar 

  35. Ma X, Zhao Y. Chem Rev, 2015, 115: 7794–7839

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Z, Yue YX, Xu L, Wang Y, Geng WC, Li JJ, Kong XL, Zhao X, Zheng Y, Zhao Y, Shi L, Guo DS, Liu Y. Adv Mater, 2021, 33: e2007719

    Article  PubMed  Google Scholar 

  37. Webber MJ, Langer R. Chem Soc Rev, 2017, 46: 6600–6620

    Article  CAS  PubMed  Google Scholar 

  38. Ferreira L, Campos J, Veiga F, Cardoso C, Paiva-Santos AC. Eur J Pharm BioPharm, 2022, 178: 35–52

    Article  CAS  PubMed  Google Scholar 

  39. Yao SY, Yue YX, Ying AK, Hu XY, Li HB, Cai K, Guo DS. Angew Chem Int Ed, 2023, 62: e202213578

    Article  CAS  Google Scholar 

  40. Kumar R, Sharma A, Singh H, Suating P, Kim HS, Sunwoo K, Shim I, Gibb BC, Kim JS. Chem Rev, 2019, 119: 9657–9721

    Article  CAS  PubMed  Google Scholar 

  41. Kim HJ, Lee MH, Mutihac L, Vicens J, Kim JS. Chem Soc Rev, 2012, 41: 1173–1190

    Article  CAS  PubMed  Google Scholar 

  42. Wheate NJ, Limantoro C. SupraMol Chem, 2016, 28: 849–856

    Article  CAS  Google Scholar 

  43. Conceição J, Adeoye O, Cabral-Marques HM, Lobo JMS. Drug Discov Today, 2018, 23: 1274–1284

    Article  PubMed  Google Scholar 

  44. Yue YX, Zhang Z, Wang ZH, Ma R, Chen MM, Ding F, Li HB, Li JJ, Shi L, Liu Y, Guo DS. Small Struct, 2022, 3: 2200067

    Article  CAS  Google Scholar 

  45. Verwilst P, Han J, Lee J, Mun S, Kang HG, Kim JS. Biomaterials, 2017, 115: 104–114

    Article  CAS  PubMed  Google Scholar 

  46. Ma R, Zheng YD, Tian HW, Chen MM, Yue YX, Bian Q, Li HB, Guo DS. Pest Manag Sci, 2023, 79: 3133–3140

    Article  CAS  PubMed  Google Scholar 

  47. Zhang TX, Li JJ, Li HB, Guo DS. Front Chem, 2021, 9: 710808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang Z, Yue YX, Li Q, Wang Y, Wu X, Li X, Li HB, Shi L, Guo DS, Liu Y. Adv Funct Mater, 2023, 33: 2213967

    Article  CAS  Google Scholar 

  49. DeMatteo MP, Snyder NL, Morton M, Baldisseri DM, Hadad CM, Peczuh MW. J Org Chem, 2004, 70: 24–38

    Article  Google Scholar 

  50. Yu G, Chen X. Theranostics, 2019, 9: 3041–3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zheng Z, Geng WC, Gao J, Wang YY, Sun H, Guo DS. Chem Sci, 2018, 9: 2087–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu Z, Jia S, Wang W, Yuan Z, Jan Ravoo B, Guo DS. Nat Chem, 2019, 11: 86–93

    Article  CAS  PubMed  Google Scholar 

  53. Biedermann F, Uzunova VD, Scherman OA, Nau WM, De Simone A. J Am Chem Soc, 2012, 134: 15318–15323

    Article  CAS  PubMed  Google Scholar 

  54. Li S, Ma R, Hu XY, Li HB, Geng WC, Kong X, Zhang C, Guo DS. Adv Mater, 2022, 34: e2203765

    Article  PubMed  Google Scholar 

  55. Hauss DJ. Adv Drug Deliver Rev, 2007, 59: 667–676

    Article  CAS  Google Scholar 

  56. Zhao Y, Buck DP, Morris DL, Pourgholami MH, Day AI, Collins JG. OrgBiomol Chem, 2008, 6: 4509–4515

    CAS  Google Scholar 

  57. Mokhtari B, Pourabdollah K. Drug Chem Toxicol, 2013, 36: 119–132

    Article  CAS  PubMed  Google Scholar 

  58. Lu X, Isaacs L. Angew Chem Int Ed, 2016, 55: 8076–8080

    Article  CAS  Google Scholar 

  59. Ghosh I, Nau WM. Adv Drug Deliver Rev, 2012, 64: 764–783

    Article  CAS  Google Scholar 

  60. Ivanov AI, Christodoulou J, Parkinson JA, Barnham KJ, Tucker A, Woodrow J, Sadler PJ. J Biol Chem, 1998, 273: 14721–14730

    Article  CAS  PubMed  Google Scholar 

  61. Li B, Meng Z, Li Q, Huang X, Kang Z, Dong H, Chen J, Sun J, Dong Y, Li J, Jia X, Sessler JL, Meng Q, Li C. Chem Sci, 2017, 8: 4458–4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang L, Xiao Y, Yang QC, Yang LL, Wan SC, Wang S, Zhang L, Deng H, Sun ZJ. Adv Funct Mater, 2022, 32: 2201542

    Article  CAS  Google Scholar 

  63. Guo DS, Uzunova VD, Su X, Liu Y, Nau WM. Chem Sci, 2011, 2: 1722

    Article  CAS  Google Scholar 

  64. Geng WC, Sessler JL, Guo DS. Chem Soc Rev, 2020, 49: 2303–2315

    Article  CAS  PubMed  Google Scholar 

  65. Lutka A. Acta Pol Pharm, 2002, 59: 45–51

    CAS  PubMed  Google Scholar 

  66. Tao G, Huang J, Moorthy B, Wang C, Hu M, Gao S, Ghose R. Expert Opin Drug Metab Toxicol, 2020, 16: 1109–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hain BA, Waning DL. Curr Osteoporos Rep, 2022, 20: 433–441

    Article  PubMed  Google Scholar 

  68. Cucinotta V, Mangano A, Nobile G, Santoro AM, Vecchio G. J Inorg Biochem, 1993, 52: 183–190

    Article  CAS  PubMed  Google Scholar 

  69. Li JJ, Rong RX, Yang Y, Hu ZY, Hu B, Zhao YY, Li HB, Hu XY, Wang KR, Guo DS. Mater Horiz, 2023, 10: 1689–1696

    Article  CAS  PubMed  Google Scholar 

  70. Shao L, Pan Y, Hua B, Xu S, Yu G, Wang M, Liu B, Huang F. Angew Chem Int Ed, 2020, 59: 11779–11783

    Article  CAS  Google Scholar 

  71. Gao J, Li J, Geng WC, Chen FY, Duan X, Zheng Z, Ding D, Guo DS. J Am Chem Soc, 2018, 140: 4945–4953

    Article  CAS  PubMed  Google Scholar 

  72. Gray VA, Rosanske TW. Chapter 18 - Dissolution. In: Riley CM, Reid G, Rosanske TW, Eds. Specification of Drug Substances and Products (Second Edition). Development and Validation of Analytical Methods. Amsterdam: Elsevier, 2020. 481–503

    Chapter  Google Scholar 

  73. Shanmuga Priya A, Sivakamavalli J, Vaseeharan B, Stalin T. Int JBiol Macromol, 2013, 62: 472–480

    Article  CAS  Google Scholar 

  74. Badr-Eldin SM, Elkheshen SA, Ghorab MM. Eur J Pharm Biopharm, 2008, 70: 819–827

    Article  CAS  PubMed  Google Scholar 

  75. Webb SD, Koval CA, Randolph CM, Randolph TW. Anal Chem, 2001, 73: 5296–5301

    Article  CAS  PubMed  Google Scholar 

  76. Wang L, Zhao X, Yang F, Wu W, Wu M, Li Y, Zhang X. Int J Biol Macromolecules, 2019, 138: 207–214

    Article  CAS  Google Scholar 

  77. Arias MJ, Moyano JR, Ginés JM. Int J Pharm, 1997, 153: 181–189

    Article  CAS  Google Scholar 

  78. Mura P, Faucci MT, Parrini PL. Drug Dev Industrial Pharmacy, 2001, 27: 119–128

    Article  CAS  Google Scholar 

  79. Mao D, Liang Y, Liu Y, Zhou X, Ma J, Jiang B, Liu J, Ma D. Angew Chem Int Ed, 2017, 56: 12614–12618

    Article  CAS  Google Scholar 

  80. Hu X, Lei B, Li SS, Chen LJ, Li Q. Responsive Mater, 2023, 1: e20230009

    Article  Google Scholar 

  81. Eltzschig HK, Bratton DL, Colgan SP. Nat Rev Drug Discov, 2014, 13: 852–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Geng WC, Jia S, Zheng Z, Li Z, Ding D, Guo DS. Angew Chem Int Ed, 2019, 58: 2377–2381

    Article  CAS  Google Scholar 

  83. Zhang TX, Hou X, Kong Y, Yang F, Yue YX, Shah MR, Li HB, Huang F, Liu J, Guo DS. Theranostics, 2022, 12: 396–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H. Oncotarget, 2017, 8: 38022–38043

    Article  PubMed Central  Google Scholar 

  85. Kolishetti N, Dhar S, Valencia PM, Lin LQ, Karnik R, Lippard SJ, Langer R, Farokhzad OC. Proc Natl Acad Sci USA, 2010, 107: 17939–17944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mayer LD, Harasym TO, Tardi PG, Harasym NL, Shew CR, Johnstone SA, Ramsay EC, Bally MB, Janoff AS. Mol Cancer Ther, 2006, 5: 1854–1863

    Article  CAS  PubMed  Google Scholar 

  87. Miao L, Guo S, Zhang J, Kim WY, Huang L. Adv Funct Mater, 2014, 24: 6601–6611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang Y, Zhang Z, Zhao X, Xu L, Zheng Y, Li HB, Guo DS, Shi L, Liu Y. Theranostics, 2022, 12: 3747–3757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pan YC, Hu XY, Guo DS. Angew Chem Int Ed, 2021, 60: 2768–2794

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U20A20259, 22201141), the Fundamental Research Funds for the Central Universities, the NCC Fund (NCC2020FH04), and the China Postdoctoral Science Foundation (2022M711697).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Chen Pan or Dong-Sheng Guo.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, YX., Lin, YL., Chen, MM. et al. Azocalixarenes: a scaffold of universal excipients with high efficiency. Sci. China Chem. 67, 1697–1706 (2024). https://doi.org/10.1007/s11426-023-1857-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1857-2

Keywords

Navigation