Skip to main content
Log in

Understanding how charge-charge interaction affects the stereochemistry of enamine fluorination by chiral primary amine catalysis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Electrostatic interaction, especially electrostatic attraction, usually plays critical roles in controlling the reactivity and selectivity in catalytic transformations; however, the like-charge repulsion, which is ubiquitous in physical systems, is rarely applied in reaction control. Herein we disclosed an unexpected like-charge repulsion induced enantio-control mode in primary aminecatalyzed fluorination reactions with 1-fluoro-2,4,6-trimethylpyridinium triflate. The ionic reaction works favorably in both highly polar (methanol) and non-polar (hexane) solvents, a seldom observed phenomenon in asymmetric catalysis. Erying plot analysis showed that an inversion temperature existed in MeOH, which was explained by the solvent-solute cluster model under different temperatures. Density functional theory (DFT) study and energy decomposition analysis (EDA) verified that the like-charge repulsion takes effect in polar solvent methanol, while in nonpolar solvents, the steric repulsion associated with ion-pair was found to be the major effect for the observed enantioselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Donnell MJ. Acc Chem Res, 2004, 37: 506–517

    Article  PubMed  Google Scholar 

  2. Lygo B, Andrews BI. Acc Chem Res, 2004, 37: 518–525

    Article  CAS  PubMed  Google Scholar 

  3. Hashimoto T, Maruoka K. Chem Rev, 2007, 107: 5656–5682

    Article  CAS  PubMed  Google Scholar 

  4. Ooi T, Maruoka K. Angew Chem Int Ed, 2007, 46: 4222–4266

    Article  CAS  Google Scholar 

  5. Jew S, Park H. Chem Commun, 2009, 7090

  6. Hashimoto T, Maruoka K. in Asymmetric Phase Transfer Catalysis. Maruoka K, Eds. New York: Wiley-VCH, 2008. 1–8

  7. Shirakawa S, Maruoka K. in Catalytic Asymmetric Synthesis. 3rd ed. Ojima I, Eds. New York: Wiley-VCH, 2010. 95–119

  8. Ooi T, Maruoka K. Acc Chem Res, 2004, 37: 526–533

    Article  CAS  PubMed  Google Scholar 

  9. Dolling UH, Davis P, Grabowski EJJ. J Am Chem Soc, 1984, 106: 446–447

    Article  CAS  Google Scholar 

  10. Hamilton GL, Kanai T, Toste FD. J Am Chem Soc, 2008, 130: 14984–14986

    Article  CAS  PubMed  Google Scholar 

  11. Lv J, Zhang Q, Zhong X, Luo S. J Am Chem Soc, 2015, 137: 15576–15583

    Article  CAS  PubMed  Google Scholar 

  12. Mayer S, List B. Angew Chem Int Ed, 2006, 45: 4193–4195

    Article  CAS  Google Scholar 

  13. Kennedy CR, Lehnherr D, Rajapaksa NS, Ford DD, Park Y, Jacobsen EN. J Am Chem Soc, 2016, 138: 13525–13528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ford DD, Lehnherr D, Kennedy CR, Jacobsen EN. ACS Catal, 2016, 6: 4616–4620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ford DD, Lehnherr D, Kennedy CR, Jacobsen EN. J Am Chem Soc, 2016, 138: 7860–7863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wasa M, Liu RY, Roche SP, Jacobsen EN. J Am Chem Soc, 2014, 136: 12872–12875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bergonzini G, Schindler CS, Wallentin CJ, Jacobsen EN, Stephenson CRJ. Chem Sci, 2014, 5: 112–116

    Article  CAS  Google Scholar 

  18. Birrell JA, Desrosiers JN, Jacobsen EN. J Am Chem Soc, 2011, 133: 13872–13875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brown AR, Kuo WH, Jacobsen EN. J Am Chem Soc, 2010, 132: 9286–9288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raheem IT, Thiara PS, Peterson EA, Jacobsen EN. J Am Chem Soc, 2007, 129: 13404–13405

    Article  CAS  PubMed  Google Scholar 

  21. Brak K, Jacobsen EN. Angew Chem Int Ed, 2013, 52: 534–561

    Article  CAS  Google Scholar 

  22. Aoki E, Sato D, Fujiwara K, Ikeguchi M. Biochemistry, 2017, 56: 2139–2148

    Article  CAS  PubMed  Google Scholar 

  23. Leclercq L, Bauduin P, Nardello-Rataj V. Langmuir, 2017, 33: 3395–3403

    Article  CAS  PubMed  Google Scholar 

  24. Pivetta M, Rusponi S, Brune H. Phys Rev B, 2018, 98: 115417

    Article  CAS  Google Scholar 

  25. You Y, Zhang L, Luo S. Chem Sci, 2017, 8: 621–626

    Article  CAS  PubMed  Google Scholar 

  26. Cui L, You Y’, Mi X, Luo S. J Org Chem, 2018, 83: 4250–4256

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Zhou H, Yang K, You C, Zhang L, Luo S. Org Lett, 2019, 21: 407–411

    Article  PubMed  Google Scholar 

  28. Reichardt C, Welton T. Sovlents and Solvent Effect in Organic Chemistry. Weinheim: Wiley-VCH, 2011

    Google Scholar 

  29. Jain S, Vanka K. J Phys Chem A, 2020, 124: 8019–8028

    Article  CAS  PubMed  Google Scholar 

  30. Abadie MA, Trivelli X, Medina F, Duhal N, Kouach M, Linden B, Génin E, Vandewalle M, Capet F, Roussel P, Del Rosal I, Maron L, Agbossou-Niedercorn F, Michon C. Chem Eur J, 2017, 23: 10777–10788

    Article  CAS  PubMed  Google Scholar 

  31. Selim KB, Martel A, Laurent MY, Lhoste J, Py S, Dujardin G. J Org Chem, 2014, 79: 3414–3426

    Article  CAS  PubMed  Google Scholar 

  32. Yu H, Xie F, Ma Z, Liu Y, Zhang W. Org Biomol Chem, 2012, 10: 5137–5142

    Article  CAS  PubMed  Google Scholar 

  33. Austin JF, Kim SG, Sinz CJ, Xiao WJ, MacMillan DWC. Proc Natl Acad Sci USA, 2004, 101: 5482–5487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cainelli G, Galletti P, Giacomini D. Chem Soc Rev, 2009, 38: 990–1001

    Article  CAS  PubMed  Google Scholar 

  35. Buschmann H, Scharf HD, Hoffmann N, Esser P. Angew Chem Int Ed, 1991, 30: 477–515

    Article  Google Scholar 

  36. Garzan A, Jaganathan A, Salehi Marzijarani N, Yousefi R, Whitehead DC, Jackson JE, Borhan B. Chem Eur J, 2013, 19: 9015–9021

    Article  CAS  PubMed  Google Scholar 

  37. Ilg MK, Wolf LM, Mantilli L, Farès C, Thiel W, Fürstner A. Chem Eur J, 2015, 21: 12279–12284

    Article  CAS  PubMed  Google Scholar 

  38. Talsi EP, Rybalova TV, Bryliakov KP. ACS Catal, 2015, 5: 4673–4679

    Article  CAS  Google Scholar 

  39. Cainelli G, Giacomini D, Galletti P, Marini A. Angew Chem Int Ed, 1996, 35: 2849–2852

    Article  CAS  Google Scholar 

  40. Cainelli G, Giacomini D, Galletti P, Orioli P, Paradisi F. Eur J Org Chem, 2000, 2000: 3619–3626

    Article  Google Scholar 

  41. Cainelli G, Giacomini D, Galletti P, Orioli P. Eur J Org Chem, 2001, 2001: 4509–4515

    Article  Google Scholar 

  42. Cainelli G, Giacomini D, Galletti P, Quintavalla A. Eur J Org Chem, 2002, 2002: 3153–3161

    Article  Google Scholar 

  43. Olsson MHM, Warshel A. J Am Chem Soc, 2004, 126: 15167–15179

    Article  CAS  PubMed  Google Scholar 

  44. Cainelli G, Galletti P, Giacomini D, Gualandi A, Quintavalla A. HCA, 2003, 86: 3548–3559

    Article  CAS  Google Scholar 

  45. Kitamoto Y, Kuruma Y, Suzuki K, Hattori T. J Org Chem, 2015, 80: 521–527

    Article  CAS  PubMed  Google Scholar 

  46. Kato M, Hirao S, Nakano K, Sato M, Yamanaka M, Sohtome Y, Nagasawa K. Chem Eur J, 2015, 21: 18606–18612

    Article  PubMed  Google Scholar 

  47. Lage-Estebanez I, del Olmo L, López R, García de la Vega JM. J Comput Chem, 2017, 38: 530–540

    Article  CAS  PubMed  Google Scholar 

  48. Knorr A, Stange P, Fumino K, Weinhold F, Ludwig R. ChemPhysChem, 2016, 17: 458–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Strate A, Niemann T, Michalik D, Ludwig R. Angew Chem Int Ed, 2017, 56: 496–500

    Article  CAS  Google Scholar 

  50. Khudozhitkov AE, Neumann J, Niemann T, Zaitsau D, Stange P, Paschek D, Stepanov AG, Kolokolov DI, Ludwig R. Angew Chem Int Ed, 2019, 58: 17863–17871

    Article  CAS  Google Scholar 

  51. Holthoff JM, Weiss R, Rosokha SV, Huber SM. Chem Eur J, 2021, 27: 16530–16542

    Article  CAS  PubMed  Google Scholar 

  52. Zhao Y, Truhlar DG. Acc Chem Res, 2008, 41: 157–167

    Article  CAS  PubMed  Google Scholar 

  53. Zhao Y, Truhlar DG. Theor Chem Account, 2008, 120: 215–241

    Article  CAS  Google Scholar 

  54. Xie S, Lopez SA, Ramström O, Yan M, Houk KN. J Am Chem Soc, 2015, 137: 2958–2966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang YF, Yu P, Houk KN. J Am Chem Soc, 2017, 139: 18213–18221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang M, Zhang L, Pan T, Luo S. Science, 2022, 375: 869–874

    Article  CAS  PubMed  Google Scholar 

  57. Cai M, Xu K, Li Y, Nie Z, Zhang L, Luo S. J Am Chem Soc, 2021, 143: 1078–1087

    Article  CAS  PubMed  Google Scholar 

  58. Becke AD. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  59. Lee C, Yang W, Parr RG. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  60. Weigend F, Ahlrichs R. Phys Chem Chem Phys, 2005, 7: 3297–3305

    Article  CAS  PubMed  Google Scholar 

  61. Marenich AV, Cramer CJ, Truhlar DG. J Phys Chem B, 2009, 113: 6378–6396

    Article  CAS  PubMed  Google Scholar 

  62. Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG. J Phys Chem B, 2011, 115: 14556–14562

    Article  CAS  PubMed  Google Scholar 

  63. Lam Y, Houk KN. J Am Chem Soc, 2014, 136: 9556–9559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu C, Zhang L, Luo S. Angew Chem Int Ed, 2014, 53: 4149–4153

    Article  CAS  Google Scholar 

  65. Lu T, Chen F. J Comput Chem, 2012, 33: 580–592

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22373056, 22031006), the Haihe Laboratory of Sustainable Chemical Transformations (YYJC202113), and the National Science & Technology Fundamental Resource Investigation Program of China (2018FY201200). L.Z. was supported by the National Program of Top-notch Young Professionals.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Zhang or Sanzhong Luo.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

11426_2023_1746_MOESM1_ESM.pdf

Understanding How Charge-charge Interaction Affects the Stereochemistry of Enamine Fluorination by Chiral Primary Amine Catalysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Yang, K., Zhang, L. et al. Understanding how charge-charge interaction affects the stereochemistry of enamine fluorination by chiral primary amine catalysis. Sci. China Chem. 66, 2828–2835 (2023). https://doi.org/10.1007/s11426-023-1746-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1746-7

Navigation