Skip to main content
Log in

Persistent radical anion of perylene dianhydride: an emerging metal-free photocatalyst for near-infrared photocontrolled RAFT polymerization

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Developing a new type of photocatalyst (PC) and catalytic mechanism for near-infrared (NIR) photocontrolled reversible-deactivation radical polymerization (RDRP) system is charming but challenging. Herein, a novel PC of the persistent radical anion (PRA) (possessing the properties of both radical and anion) was developed for NIR photocontrolled reversible addition-fragmentation chain transfer (RAFT) polymerization, enabling successful polymerization while gaining a deep insight into the mechanism of photo-induced electron transfer RAFT (PET-RAFT) polymerization. Different from the conventional and well-accepted reductive quenching (RQ) pathway, in which the radical anion intermediates of PCs (PCs•−) must be generated in an excited state (ES), here, the PRA (3,4,9,10-perylenetetracarboxylic dianhydride radical anion (PTCDA•−)) could generate conveniently in situ in the ground state (GS) and subsequently serve as highly efficient PC in the NIR region (740–850 nm). The successful implementation of this strategy elucidates the peculiar role played by light and the real way of electron transfer behaviors. In fact, the transfer of a single electron from PRA to chain transfer agent (CTA) and cleavage of the C–S bonds is a process from ES to GS, rather than always from GS (PCs•−) to GS (CTA) in the RQ pathway as is well known to all. In addition, the excellent spatial-temporal control and powerful penetration ability of the NIR light were also confirmed by this PRA-catalyzed polymerization system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamago S. Chem Rev, 2009, 109: 5051–5068

    Article  PubMed  CAS  Google Scholar 

  2. Engelis NG, Anastasaki A, Nurumbetov G, Truong NP, Nikolaou V, Shegiwal A, Whittaker MR, Davis TP, Haddleton DM. Nat Chem, 2017, 9: 171–178

    Article  PubMed  CAS  Google Scholar 

  3. Tang K, Zhong YW. Sci China Chem, 2020, 63: 1175–1176

    Article  CAS  Google Scholar 

  4. Keddie DJ. Chem Soc Rev, 2014, 43: 496–505

    Article  PubMed  CAS  Google Scholar 

  5. Mayadunne RTA, Jeffery J, Moad G, Rizzardo E. Macromolecules, 2003, 36: 1505–1513

    Article  ADS  CAS  Google Scholar 

  6. Destarac M. Polym Rev, 2011, 51: 163–187

    Article  CAS  Google Scholar 

  7. Perrier S. Macromolecules, 2017, 50: 7433–7447

    Article  ADS  CAS  Google Scholar 

  8. Moad G. Polym Chem, 2017, 8: 177–219

    Article  CAS  Google Scholar 

  9. Pan X, Tasdelen MA, Laun J, Junkers T, Yagci Y, Matyjaszewski K. Prog Polym Sci, 2016, 62: 73–125

    Article  CAS  Google Scholar 

  10. Zhou YN, Li JJ, Wu YY, Luo ZH. Chem Rev, 2020, 120: 2950–3048

    Article  PubMed  CAS  Google Scholar 

  11. Zhao Y, Ma M, Lin X, Chen M. Angew Chem Int Ed, 2020, 59: 21470–21474

    Article  CAS  Google Scholar 

  12. Lee Y, Kwon Y, Kim Y, Yu C, Feng S, Park J, Doh J, Wannemacher R, Koo B, Gierschner J, Kwon MS. Adv Mater, 2022, 34: 2108446–2108457

    Article  CAS  Google Scholar 

  13. Chen M, Zhong M, Johnson JA. Chem Rev, 2016, 116: 10167–10211

    Article  PubMed  CAS  Google Scholar 

  14. Li S, Han G, Zhang W. Polym Chem, 2020, 11: 1830–1844

    Article  CAS  Google Scholar 

  15. Quinn JF, Barner L, Barner-Kowollik C, Rizzardo E, Davis TP. Macromolecules, 2002, 35: 7620–7627

    Article  ADS  CAS  Google Scholar 

  16. Carmean RN, Becker TE, Sims MB, Sumerlin BS. Chem, 2017, 2: 93–101

    Article  CAS  Google Scholar 

  17. Li J, Ding C, Zhang Z, Pan X, Li N, Zhu J, Zhu X. Macromol Rapid Commun, 2017, 38: 1600482–1600490

    Article  Google Scholar 

  18. Hartlieb M. Macromol Rapid Commun, 2022, 43: 2100514–2100539

    Article  CAS  Google Scholar 

  19. Xu J, Jung K, Atme A, Shanmugam S, Boyer C. J Am Chem Soc, 2014, 136: 5508–5519

    Article  PubMed  CAS  Google Scholar 

  20. Ng G, Yeow J, Xu J, Boyer C. Polym Chem, 2017, 8: 2841–2851

    Article  CAS  Google Scholar 

  21. Wang Q, Hu L, Cui Z, Fu P, Liu M, Qiao X, Pang X. ACS Appl Mater Interfaces, 2020, 12: 42161–42168

    Article  PubMed  CAS  Google Scholar 

  22. Fu Q, Ruan Q, McKenzie TG, Reyhani A, Tang J, Qiao GG. Macromolecules, 2017, 50: 7509–7516

    Article  ADS  CAS  Google Scholar 

  23. Zhu Y, Zhu D, Chen Y, Yan Q, Liu CY, Ling K, Liu Y, Lee D, Wu X, Senftle TP, Verduzco R. Chem Sci, 2021, 12: 16092–16099

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hakobyan K, Gegenhuber T, McErlean CSP, Müllner M. Angew Chem, 2019, 131: 1842–1846

    Article  ADS  Google Scholar 

  25. Zhang L, Shi X, Zhang Z, Kuchel RP, Namivandi-Zangeneh R, Corrigan N, Jung K, Liang K, Boyer C. Angew Chem Int Ed, 2021, 60: 5489–5496

    Article  CAS  Google Scholar 

  26. Yeow J, Joshi S, Chapman R, Boyer C. Angew Chem Int Ed, 2018, 57: 10102–10106

    Article  CAS  Google Scholar 

  27. Enomoto T, Kondo M, Asada M, Nakamura T, Masaoka S. J Phys Chem C, 2018, 122: 11282–11287

    Article  CAS  Google Scholar 

  28. Antal T, Harju E, Pihlgren L, Lastusaari M, Tyystjärvi T, Hölsä J, Tyystjärvi E. Int J Hydrogen Energy, 2012, 37: 8859–8863

    Article  CAS  Google Scholar 

  29. Shanmugam S, Xu J, Boyer C. Angew Chem Int Ed, 2016, 55: 1036–1040

    Article  CAS  Google Scholar 

  30. Zhang L, Wu C, Jung K, Ng YH, Boyer C. Angew Chem Int Ed, 2019, 58: 16811–16814

    Article  CAS  Google Scholar 

  31. Cao H, Wang G, Xue Y, Yang G, Tian J, Liu F, Zhang W. ACS Macro Lett, 2019, 8: 616–622

    Article  PubMed  CAS  Google Scholar 

  32. Wu Z, Jung K, Boyer C. Angew Chem Int Ed, 2020, 59: 2013–2017

    Article  CAS  Google Scholar 

  33. Allison-Logan S, Fu Q, Sun Y, Liu M, Xie J, Tang J, Qiao GG. Angew Chem Int Ed, 2020, 59: 21392–21396

    Article  CAS  Google Scholar 

  34. Ma Q, Wang W, Zhang L, Cao H. Macromol Rapid Commun, 2022, 43: 2200122–2200128

    Article  CAS  Google Scholar 

  35. Wu Z, Jung K, Wu C, Ng G, Wang L, Liu J, Boyer C. J Am Chem Soc, 2022, 144: 995–1005

    Article  PubMed  CAS  Google Scholar 

  36. Jiang J, Ye G, Lorandi F, Liu Z, Liu Y, Hu T, Chen J, Lu Y, Matyjaszewski K. Angew Chem Int Ed, 2019, 58: 12096–12101

    Article  CAS  Google Scholar 

  37. Wu Z, Fang W, Wu C, Corrigan N, Zhang T, Xu S, Boyer C. Chem Sci, 2022, 13: 11519–11532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhu Y, Liu Y, Miller KA, Zhu H, Egap E. ACS Macro Lett, 2020, 9: 725–730

    Article  PubMed  CAS  Google Scholar 

  39. Xia Z, Shi B, Zhu W, Xiao Y, Lü C. Adv Funct Mater, 2022, 32: 2207655–2207665

    Article  CAS  Google Scholar 

  40. Zhang L, Ng G, Kapoor-Kaushik N, Shi X, Corrigan N, Webster R, Jung K, Boyer C. Angew Chem Int Ed, 2021, 60: 22664–22671

    Article  CAS  Google Scholar 

  41. Fabian J, Nakazumi H, Matsuoka M. Chem Rev, 1992, 92: 1197–1226

    Article  CAS  Google Scholar 

  42. Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB. Chem Rev, 2000, 100: 1973–2012

    Article  PubMed  CAS  Google Scholar 

  43. Kobayashi N, Furuyama T, Satoh K. J Am Chem Soc, 2011, 133: 19642–19645

    Article  PubMed  CAS  Google Scholar 

  44. Gresser R, Hummert M, Hartmann H, Leo K, Riede M. Chem Eur J, 2011, 17: 2939–2947

    Article  PubMed  CAS  Google Scholar 

  45. Qian G, Wang ZY. Chem Asian J, 2010, 5: 1006–1029

    Article  PubMed  CAS  Google Scholar 

  46. Li L, Han X, Wang M, Li C, Jia T, Zhao X. Chem Eng J, 2021, 417: 128844–128863

    Article  CAS  Google Scholar 

  47. Wu C, Corrigan N, Lim CH, Jung K, Zhu J, Miyake G, Xu J, Boyer C. Macromolecules, 2019, 52: 236–248

    Article  PubMed  ADS  CAS  Google Scholar 

  48. Wu CY, Jung K, Ma YT, Liu WJ, Boyer C. Nat Commun, 2021, 12: 478

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  49. Wu C, Corrigan N, Lim CH, Liu W, Miyake G, Boyer C. Chem Rev, 2022, 122: 5476–5518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Shanmugam S, Xu J, Boyer C. J Am Chem Soc, 2015, 137: 9174–9185

    Article  PubMed  CAS  Google Scholar 

  51. Xu J, Shanmugam S, Duong HT, Boyer C. Polym Chem, 2015, 6: 5615–5624

    Article  CAS  Google Scholar 

  52. Hakobyan K, Gegenhuber T, McErlean CSP, Müllner M. Angew Chem Int Ed, 2019, 58: 1828–1832

    Article  CAS  Google Scholar 

  53. Bainbridge CWA, Engel KE, Jin J. Polym Chem, 2020, 11: 4084–4093

    Article  CAS  Google Scholar 

  54. Zhao Y, Chen Y, Zhou H, Zhou Y, Chen K, Gu Y, Chen M. Nat Synth, 2023, 2: 653–662

    Article  ADS  Google Scholar 

  55. Saha S. Acc Chem Res, 2018, 51: 2225–2236

    Article  PubMed  CAS  Google Scholar 

  56. Guha S, Goodson FS, Corson LJ, Saha S. J Am Chem Soc, 2012, 134: 13679–13691

    Article  PubMed  CAS  Google Scholar 

  57. Yang Y, An Z. Polym Chem, 2019, 10: 2801–2811

    Article  CAS  Google Scholar 

  58. Zhang A, Jiang W, Wang Z. Angew Chem Int Ed, 2020, 59: 752–757

    Article  CAS  Google Scholar 

  59. Guha S, Saha S. J Am Chem Soc, 2010, 132: 17674–17677

    Article  PubMed  CAS  Google Scholar 

  60. Ghosh I, König B. Angew Chem Int Ed, 2016, 55: 7676–7679

    Article  CAS  Google Scholar 

  61. Neumeier M, Sampedro D, Májek M, della Peña O’Shea VA, von Wangelin AJ, Pérez-Ruiz R. Chem Eur J, 2018, 24: 105–108

    Article  PubMed  CAS  Google Scholar 

  62. Chmiel AF, Williams OP, Chernowsky CP, Yeung CS, Wickens ZK. J Am Chem Soc, 2021, 143: 10882–10889

    Article  PubMed  CAS  Google Scholar 

  63. Xu J, Cao J, Wu X, Wang H, Yang X, Tang X, Toh RW, Zhou R, Yeow EKL, Wu J. J Am Chem Soc, 2021, 143: 13266–13273

    Article  PubMed  CAS  Google Scholar 

  64. Targos K, Williams OP, Wickens ZK. J Am Chem Soc, 2021, 143: 4125–4132

    Article  PubMed  CAS  Google Scholar 

  65. Ghosh I, Ghosh T, Bardagi JI, König B. Science, 2014, 346: 725–728

    Article  PubMed  ADS  CAS  Google Scholar 

  66. Tam TLD, Xu JW. Chem Commun, 2019, 55: 6225–6228

    Article  CAS  Google Scholar 

  67. Kumar Y, Kumar S, Bansal D, Mukhopadhyay P. Org Lett, 2019, 21: 2185–2188

    Article  PubMed  CAS  Google Scholar 

  68. Schmidt D, Bialas D, Würthner F. Angew Chem Int Ed, 2015, 54: 3611–3614

    Article  CAS  Google Scholar 

  69. Rosen BM, Percec V. Chem Rev, 2009, 109: 5069–5119

    Article  PubMed  CAS  Google Scholar 

  70. Romero NA, Nicewicz DA. Chem Rev, 2016, 116: 10075–10166

    Article  PubMed  CAS  Google Scholar 

  71. Silverstein TP. J Chem Educ, 2012, 89: 1159–1167

    Article  CAS  Google Scholar 

  72. Barbara PF, Meyer TJ, Ratner MA. J Phys Chem, 1996, 100: 13148–13168

    Article  CAS  Google Scholar 

  73. Marcus RA. Rev Mod Phys, 1993, 65: 599–610

    Article  ADS  CAS  Google Scholar 

  74. Yang YY, Zhang P, Hadjichristidis N. J Am Chem Soc, 2023, 145: 12737–12744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21871201) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lifen Zhang or Zhenping Cheng.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1733_MOESM1_ESM.pdf

Persistent Radical Anion of Perylene Dianhydride: An Emerging Metal-Free Photocatalyst for Near-Infrared Photo-Controlled RAFT Polymerization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Bian, G., Xu, X. et al. Persistent radical anion of perylene dianhydride: an emerging metal-free photocatalyst for near-infrared photocontrolled RAFT polymerization. Sci. China Chem. 67, 677–686 (2024). https://doi.org/10.1007/s11426-023-1733-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1733-0

Navigation