Skip to main content
Log in

Merging benzotrithiophene covalent organic framework photocatalysis with TEMPO for selective oxidation of organic sulfides

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Visible light photocatalysis of covalent organic frameworks (COFs) has made significant progress in recent years. Benzotrithiophene (BTT), a planar, electron-rich building block, turns out to be foundational in assembling COFs in which the full π-conjugation of BTT is essential to facilitate electron transfer. Herein, a sp2 carbon-conjugated COF, namely BTT-sp2c-COF, is assembled from benzo[1,2-b:3,4-b′:5,6-b″]trithiophene-2,5,8-tricarbaldehyde and [1,1′:4′,1″-terphenyl]-4,4″-dicarbonitrile towards photocatalysis. More importantly, TEMPO (2,2,6,6-tetramethylpiperidin-1-yl)oxyl, 1 mol%) could considerably accelerate the selective oxidation of organic sulfides with O2 over BTT-sp2c-COF. TEMPO mediates hole transfer between BTT-sp2c-COF and organic sulfides, and O-atoms are incorporated into sulfoxides via an electron transfer pathway. Merging BTT-sp2c-COF photocatalysis with TEMPO generally applies to transforming organic sulfides into sulfoxides. This work implies the full π-conjugation of electron-rich building blocks into COFs is a viable strategy for selective visible light photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ploetz E, Engelke H, Lächelt U, Wuttke S. Adv Funct Mater, 2020, 30: 1909062

    Article  CAS  Google Scholar 

  2. Li Z, He T, Gong Y, Jiang D. Acc Chem Res, 2020, 53: 1672–1685

    Article  CAS  PubMed  Google Scholar 

  3. Yang X, Xie Z, Zhang T, Zhang G, Zhao Z, Wang Y, Xing G, Chen L. Sci China Chem, 2022, 65: 190–196

    Article  CAS  Google Scholar 

  4. Xing G, Chen L. Nat Synth, 2022, 1: 341–343

    Article  Google Scholar 

  5. Chen X, Geng K, Liu R, Tan KT, Gong Y, Li Z, Tao S, Jiang Q, Jiang D. Angew Chem Int Ed, 2020, 59: 5050–5091

    Article  CAS  Google Scholar 

  6. Martinez-Abadia M, Mateo-Alonso A. Adv Mater, 2020, 32: 2002366

    Article  CAS  Google Scholar 

  7. Kandambeth S, Dey K, Banerjee R. J Am Chem Soc, 2019, 141: 1807–1822

    Article  CAS  PubMed  Google Scholar 

  8. Guan X, Chen F, Fang Q, Qiu S. Chem Soc Rev, 2020, 49: 1357–1384

    Article  CAS  PubMed  Google Scholar 

  9. Bhunia S, Deo KA, Gaharwar AK. Adv Funct Mater, 2020, 30: 2002046

    Article  CAS  Google Scholar 

  10. Zhao X, Pachfule P, Thomas A. Chem Soc Rev, 2021, 50: 6871–6913

    Article  CAS  PubMed  Google Scholar 

  11. Zhi Y, Wang Z, Zhang H, Zhang Q. Small, 2020, 16: 2001070

    Article  CAS  Google Scholar 

  12. Wang Z, Zhang S, Chen Y, Zhang Z, Ma S. Chem Soc Rev, 2020, 49: 708–735

    Article  CAS  PubMed  Google Scholar 

  13. Li J, Jing X, Li Q, Li S, Gao X, Feng X, Wang B. Chem Soc Rev, 2020, 49: 3565–3604

    Article  CAS  PubMed  Google Scholar 

  14. Dai C, Liu B. Energy Environ Sci, 2020, 13: 24–52

    Article  CAS  Google Scholar 

  15. Wang TX, Liang HP, Anito DA, Ding X, Han BH. J Mater Chem A, 2020, 8: 7003–7034

    Article  CAS  Google Scholar 

  16. Luo S, Zeng Z, Zeng G, Liu Z, Xiao R, Xu P, Wang H, Huang D, Liu Y, Shao B, Liang Q, Wang D, He Q, Qin L, Fu Y. J Mater Chem A, 2020, 8: 6434–6470

    Article  CAS  Google Scholar 

  17. Guo J, Ma D, Sun F, Zhuang G, Wang Q, Al-Enizi AM, Nafady A, Ma S. Sci China Chem, 2022, 65: 1704–1709

    Article  CAS  Google Scholar 

  18. Wang H, Wang H, Wang Z, Tang L, Zeng G, Xu P, Chen M, Xiong T, Zhou C, Li X, Huang D, Zhu Y, Wang Z, Tang J. Chem Soc Rev, 2020, 49: 4135–4165

    Article  CAS  PubMed  Google Scholar 

  19. Yang Q, Luo M, Liu K, Cao H, Yan H. Appl Catal B-Environ, 2020, 276: 119174

    Article  CAS  Google Scholar 

  20. Rodriguez-San-Miguel D, Montoro C, Zamora F. Chem Soc Rev, 2020, 49: 2291–2302

    Article  CAS  PubMed  Google Scholar 

  21. Lan X, Liu X, Zhang Y, Li Q, Wang J, Zhang Q, Bai G. ACS Catal, 2021, 11: 7429–7441

    Article  CAS  Google Scholar 

  22. Liu H, Li C, Li H, Ren Y, Chen J, Tang J, Yang Q. ACS Appl Mater Interfaces, 2020, 12: 20354–20365

    Article  CAS  PubMed  Google Scholar 

  23. Huang F, Dong X, Wang Y, Lang X. Appl Catal B-Environ, 2023, 330: 122585

    Article  CAS  Google Scholar 

  24. Liu H, Yan X, Chen W, Xie Z, Li S, Chen W, Zhang T, Xing G, Chen L. Sci China Chem, 2021, 64: 827–833

    Article  CAS  Google Scholar 

  25. Jin E, Asada M, Xu Q, Dalapati S, Addicoat MA, Brady MA, Xu H, Nakamura T, Heine T, Chen Q, Jiang D. Science, 2017, 357: 673–676

    Article  CAS  PubMed  Google Scholar 

  26. Bi S, Yang C, Zhang W, Xu J, Liu L, Wu D, Wang X, Han Y, Liang Q, Zhang F. Nat Commun, 2019, 10: 2467

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li X. Mater Chem Front, 2021, 5: 2931–2949

    Article  CAS  Google Scholar 

  28. Xu S, Wang G, Biswal BP, Addicoat M, Paasch S, Sheng W, Zhuang X, Brunner E, Heine T, Berger R, Feng X. Angew Chem IntEd, 2019, 58: 849–853

    Article  CAS  Google Scholar 

  29. Xiang Y, Dong W, Wang P, Wang S, Ding X, Ichihara F, Wang Z, Wada Y, Jin S, Weng Y, Chen H, Ye J. Appl Catal B-Environ, 2020, 274: 119096

    Article  CAS  Google Scholar 

  30. Yang YL, Niu HY, Xu L, Zhang H, Cai YQ. Appl Catal B: Environ, 2020, 269: 118799

    Article  CAS  Google Scholar 

  31. Jin E, Fu S, Hanayama H, Addicoat MA, Wei W, Chen Q, Graf R, Landfester K, Bonn M, Zhang KAI, Wang HI, Müllen K, Narita A. Angew Chem IntEd, 2022, 61: e202114059

    Article  CAS  Google Scholar 

  32. Zhao Y, Liu H, Wu C, Zhang Z, Pan Q, Hu F, Wang R, Li P, Huang X, Li Z. Angew Chem IntEd, 2019, 58: 5376–5381

    Article  CAS  Google Scholar 

  33. Chen R, Shi J, Ma Y, Lin G, Lang X, Wang C. Angew Chem Int Ed, 2019, 58: 6430–6434

    Article  CAS  Google Scholar 

  34. Peng YK, Lee KM, Ting CC, Hsu MW, Liu CY. J Mater Chem A, 2019, 7: 24765–24770

    Article  CAS  Google Scholar 

  35. Garcia-Benito I, Zimmermann I, Urieta-Mora J, Aragó J, Molina-Ontoria A, Orti E, Martin N, Nazeeruddin MK. J Mater Chem A, 2017, 5: 8317–8324

    Article  CAS  Google Scholar 

  36. Wu X, Wang W, Hang H, Li H, Chen Y, Xu Q, Tong H, Wang L. ACS Appl Mater Interfaces, 2019, 11: 28115–28124

    Article  CAS  PubMed  Google Scholar 

  37. Budiawan W, Lai KW, Karuppuswamy P, Jadhav TS, Lu YA, Ho KC, Wang PC, Chang CC, Chu CW. ACS Appl Mater Interfaces, 2020, 12: 29143–29152

    CAS  Google Scholar 

  38. Patra D, Park S. Macromol Rapid Commun, 2022, 43: 2200473

    Article  CAS  Google Scholar 

  39. Pan X, Qin X, Zhang Q, Ge Y, Ke H, Cheng G. Microporous Mesoporous Mater, 2020, 296: 109990

    Article  CAS  Google Scholar 

  40. Wang L, Yang Y, Liang H, Wu N, Peng X, Wang L, Song Y. J Hazard Mater, 2021, 409: 124528

    Article  CAS  PubMed  Google Scholar 

  41. Frey L, Pohls JF, Hennemann M, Mähringer A, Reuter S, Clark T, Weitz RT, Medina DD. Adv Funct Mater, 2022, 32: 2205949

    Article  CAS  Google Scholar 

  42. Wei H, Ning J, Cao X, Li X, Hao L. J Am Chem Soc, 2018, 140: 11618–11622

    Article  CAS  PubMed  Google Scholar 

  43. Li Z, Wang J, Ma S, Zhang Z, Zhi Y, Zhang F, Xia H, Henkelman G, Liu X. Appl Catal B-Environ, 2022, 310: 121335

    Article  CAS  Google Scholar 

  44. Liu H, Zheng X, Xu J, Jia X, Chao M, Wang D, Zhao Y. ACS Appl Mater Interfaces, 2023, 15: 16794–16800

    Article  CAS  PubMed  Google Scholar 

  45. Wang Y, Hao W, Liu H, Chen R, Pan Q, Li Z, Zhao Y. Nat Commun, 2022, 13: 100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dai L, Dong A, Meng X, Liu H, Li Y, Li P, Wang B. Angew Chem Int Ed, 2023, 62: e202300224

    Article  CAS  Google Scholar 

  47. Zahid S, Rasool A, Ans M, Salim Akhter M, Iqbal J, Al-Buriahi MS, Alomairy S, Alrowaili ZA. Sol Energy, 2022, 231: 793–808

    Article  CAS  Google Scholar 

  48. Keshtov ML, Kuklin SA, Konstantinov IO, Ostapov IE, Xie Z, Koukaras EN, Suthar R, Sharma GD. Sol Energy, 2020, 205: 211–220

    Article  CAS  Google Scholar 

  49. Li S, Dai L, Li L, Dong A, Li J, Meng X, Wang B, Li P. J Mater Chem A, 2022, 10: 13325–13332

    Article  CAS  Google Scholar 

  50. Li J, An Z, Sun J, Tan C, Gao D, Tan Y, Jiang Y. ACS Appl Mater Interfaces, 2020, 12: 35475–35481

    Article  CAS  PubMed  Google Scholar 

  51. Zhang X, Wei X, Huang S, Yang G. Chem Asian J, 2021, 16: 2031–2034

    Article  CAS  PubMed  Google Scholar 

  52. Li H, Li X, Zhou J, Sheng W, Lang X. Chin Chem Lett, 2022, 33: 3733–3738

    Article  CAS  Google Scholar 

  53. Wang GB, Xie KH, Xu HP, Wang YJ, Zhao F, Geng Y, Dong YB. Coord Chem Rev, 2022, 472: 214774

    Article  CAS  Google Scholar 

  54. López-Magano A, Daliran S, Oveisi AR, Mas-Ballesté R,, Dhakshinamoorthy A, Alemán J, Garcia H, Luque R. Adv Mater, 2023, 35: 2209475

    Article  Google Scholar 

  55. Sheng W, Wang X, Wang Y, Chen S, Lang X. ACS Catal, 2022, 12: 11078–11088

    Article  CAS  Google Scholar 

  56. Shi JL, Feng K, Hao H, Ku C, Sit PHL, Teoh WY, Lang X. Sol RRL, 2022, 6: 2100608

    Article  CAS  Google Scholar 

  57. Hao H, Zhang F, Dong X, Lang X. Appl Catal B-Environ, 2021, 299: 120691

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22072108). The numerical calculations were done on the supercomputing system in the Supercomputing Center of Wuhan University. We also acknowledge the Core Facility of Wuhan University and the Center for Electron Microscopy at Wuhan University for support to materials characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianjun Lang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary data

11426_2023_1644_MOESM1_ESM.docx

Merging benzotrithiophene covalent organic framework photocatalysis with TEMPO for selective oxidation of organic sulfides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Wang, Y., Dong, X. et al. Merging benzotrithiophene covalent organic framework photocatalysis with TEMPO for selective oxidation of organic sulfides. Sci. China Chem. 66, 3290–3296 (2023). https://doi.org/10.1007/s11426-023-1644-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1644-x

Navigation