Skip to main content

Advertisement

Log in

Mastering lanthanide energy states for next-gen photonic innovation

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Lanthanide-based photonic materials have been extensively explored for use in laser crystals, lighting, fiber-optic communications, bioimaging, diagnostics, and many other fields. In recent years, they have enabled numerous breakthroughs in areas such as single-particle spectroscopy, super-resolution imaging, micro-lasing, lifetime multiplexing, and detection. Here, we summarize recent advances in lanthanide photonic materials from an energy state perspective, focusing on the interplay between energy state manipulation and advanced photonic applications. We then discuss the challenges and prospects for controlling energy states at the single-particle level. We wish to highlight the importance of quantifying and understanding the energy states of lanthanides for future innovations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becquerel J, Onnes HK. The absorption spectrums of lanthanide crystals and their modification in an electrical field at the temperatures of liquefaction and solidification of hydrogen. C R Hebd Seances Acad Sci, 1908, 146: 625–628

    CAS  Google Scholar 

  2. Levine AK, Palilla FC. Appl Phys Lett, 1964, 5: 118–120

    Article  CAS  Google Scholar 

  3. Auzel F. J Lumin, 2020, 223: 116900

    Article  CAS  Google Scholar 

  4. Auzel F. Chem Rev, 2004, 104: 139–174

    Article  CAS  PubMed  Google Scholar 

  5. Menyuk N, Dwight K, Pierce JW. Appl Phys Lett, 1972, 21: 159–161

    Article  CAS  Google Scholar 

  6. Auzel FE. Proc IEEE, 1973, 61: 758–786

    Article  CAS  Google Scholar 

  7. Johnson LF, Guggenheim HJ. Appl Phys Lett, 1971, 19: 44–47

    Article  CAS  Google Scholar 

  8. Wright JC, Zalucha DJ, Lauer HV, Cox DE, Fong FK. J Appl Phys, 1973, 44: 781–786

    Article  CAS  Google Scholar 

  9. Piper WW, DeLuca JA, Ham FS. J Lumin, 1974, 8: 344–348

    Article  CAS  Google Scholar 

  10. Sommerdijk JL, Bril A, de Jager AW. J Lumin, 1974, 8: 341–343

    Article  CAS  Google Scholar 

  11. Matsuzawa T, Aoki Y, Takeuchi N, Murayama Y. J Electrochem Soc, 1996, 143: 2670–2673

    Article  CAS  Google Scholar 

  12. Murray CB, Norris DJ, Bawendi MG. J Am Chem Soc, 1993, 115: 8706–8715

    Article  CAS  Google Scholar 

  13. Alivisatos AP. Science, 1996, 271: 933–937

    Article  CAS  Google Scholar 

  14. Bruchez Marcel J, Moronne M, Gin P, Weiss S, Paul Alivisatos A. Science, 1998, 281: 2013–2016

    Article  Google Scholar 

  15. Wang X, Zhuang J, Peng Q, Li Y. Nature, 2005, 437: 121–124

    Article  CAS  PubMed  Google Scholar 

  16. Heer S, Kömpe K, Güdel HU, Haase M. Adv Mater, 2004, 16: 2102–2105

    Article  CAS  Google Scholar 

  17. Mai HX, Zhang YW, Si R, Yan ZG, Sun L, You LP, Yan CH. J Am Chem Soc, 2006, 128: 6426–6436

    Article  CAS  PubMed  Google Scholar 

  18. Li Z, Zhang Y. Nanotechnology, 2008, 19: 345606

    Article  PubMed  Google Scholar 

  19. Wang L, Li Y. Chem Mater, 2007, 19: 727–734

    Article  CAS  Google Scholar 

  20. Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X. Nature, 2010, 463: 1061–1065

    Article  CAS  PubMed  Google Scholar 

  21. Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X. Nat Mater, 2011, 10: 968–973

    Article  CAS  PubMed  Google Scholar 

  22. Wang F, Liu X. J Am Chem Soc, 2008, 130: 5642–5643

    Article  CAS  PubMed  Google Scholar 

  23. Li Z, Zhang Y, Jiang S. Adv Mater, 2008, 20: 4765–4769

    Article  CAS  Google Scholar 

  24. Chen G, Qiu H, Prasad PN, Chen X. Chem Rev, 2014, 114: 5161–5214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou J, Liu Q, Feng W, Sun Y, Li F. Chem Rev, 2015, 115: 395–465

    Article  CAS  PubMed  Google Scholar 

  26. Zhou J, Liu Z, Li F. Chem Soc Rev, 2012, 41: 1323–1349

    Article  CAS  PubMed  Google Scholar 

  27. Vetrone F, Naccache R, Zamarrón A, Juarranz de la Fuente A, Sanz-Rodríguez F, Martinez Maestro L, Martín Rodriguez E, Jaque D, García Solé J, Capobianco JA. ACS Nano, 2010, 4: 3254–3258

    Article  CAS  PubMed  Google Scholar 

  28. Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y. Nat Med, 2012, 18: 1580–1585

    Article  CAS  PubMed  Google Scholar 

  29. Wang YF, Liu GY, Sun LD, Xiao JW, Zhou JC, Yan CH. ACS Nano, 2013, 7: 7200–7206

    Article  CAS  PubMed  Google Scholar 

  30. Dong H, Du SR, Zheng XY, Lyu GM, Sun LD, Li LD, Zhang PZ, Zhang C, Yan CH. Chem Rev, 2015, 115: 10725–10815

    Article  CAS  PubMed  Google Scholar 

  31. Zou W, Visser C, Maduro JA, Pshenichnikov MS, Hummelen JC. Nat Photon, 2012, 6: 560–564

    Article  CAS  Google Scholar 

  32. van der Ende BM, Aarts L, Meijerink A. Phys Chem Chem Phys, 2009, 11: 11081–11095

    Article  CAS  PubMed  Google Scholar 

  33. Zhou B, Shi B, Jin D, Liu X. Nat Nanotech, 2015, 10: 924–936

    Article  CAS  Google Scholar 

  34. Wang L, Yan R, Huo Z, Wang L, Zeng J, Bao J, Wang X, Peng Q, Li Y. Angew Chem Int Ed, 2005, 44: 6054–6057

    Article  CAS  Google Scholar 

  35. Zheng W, Huang P, Tu D, Ma E, Zhu H, Chen X. Chem Soc Rev, 2015, 44: 1379–1415

    Article  CAS  PubMed  Google Scholar 

  36. Bogdan N, Vetrone F, Ozin GA, Capobianco JA. Nano Lett, 2011, 11: 835–840

    Article  CAS  PubMed  Google Scholar 

  37. Dieke GH, Crosswhite HM. Appl Opt, 1963, 2: 675–686

    Article  CAS  Google Scholar 

  38. Judd BR. Phys Rev, 1962, 127: 750–761

    Article  CAS  Google Scholar 

  39. Ofelt GS. J Chem Phys, 1962, 37: 511–520

    Article  CAS  Google Scholar 

  40. Hehlen MP, Brik MG, Krämer KW. J Lumin, 2013, 136: 221–239

    Article  CAS  Google Scholar 

  41. Walsh BM. Judd-Ofelt theory: principles and practices. In: Di Bartolo B, Forte O, Eds. Advances in Spectroscopy for Lasers and Sensing. Betherlands: Spronger, 2006. 403–433

    Chapter  Google Scholar 

  42. Carnall WT, Fields PR, Rajnak K. J Chem Phys, 1968, 49: 4424–4442

    Article  CAS  Google Scholar 

  43. Goldner P, Auzel F. J Appl Phys, 1996, 79: 7972–7977

    Article  CAS  Google Scholar 

  44. Levey CG, Glynn TJ, Yen WM. J Lumin, 1984, 31–32: 245–247

    Article  Google Scholar 

  45. Levey CG. J Lumin, 1990, 45: 168–171

    Article  CAS  Google Scholar 

  46. Quimby RS, Miniscalco WJ. J Appl Phys, 1994, 75: 613–615

    Article  CAS  Google Scholar 

  47. Merkle LD, Zandi B, Moncorgé R, Guyot Y, Verdun HR, McIntosh B. J Appl Phys, 1996, 79: 1849–1856

    Article  CAS  Google Scholar 

  48. Smentek L. Phys Rep, 1998, 297: 155–237

    Article  CAS  Google Scholar 

  49. McCumber DE. Phys Rev, 1964, 136: A954–A957

    Article  Google Scholar 

  50. Payne SA, Chase LL, Smith LK, Kway WL, Krupke WF. IEEE J Quantum Electron, 1992, 28: 2619–2630

    Article  CAS  Google Scholar 

  51. Zou X, Toratani H. J Non-Crystalline Solids, 1996, 195: 113–124

    Article  CAS  Google Scholar 

  52. Su LB, Wang QG, Li HJ, Brasse G, Camy P, Doualan JL, Braud A, Moncorgé R, Zhan YY, Zheng LH, Qian XB, Xu J. Laser Phys Lett, 2013, 10: 035804

    Article  CAS  Google Scholar 

  53. Brenier A, Boulon G. J Alloys Compd, 2001, 323–324: 210–213

    Article  Google Scholar 

  54. Hu JY, Ning Y, Meng YS, Zhang J, Wu ZY, Gao S, Zhang JL. Chem Sci, 2017, 8: 2702–2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hasegawa M, Ohmagari H, Tanaka H, Machida K. J Photochem Photobiol C-Photochem Rev, 2022, 50: 100484

    Article  CAS  Google Scholar 

  56. Demirbas U, Thesinga J, Kellert M, Kärtner FX, Pergament M. Opt Mater Express, 2021, 11: 250–272

    Article  Google Scholar 

  57. Haumesser PH, Gaumé R, Viana B, Antic-Fidancev E, Vivien D. J Phys-Condens Matter, 2001, 13: 5427–5447

    Article  CAS  Google Scholar 

  58. Haumesser PH, Gaume R, Viana B, Vivien D. J Opt Soc Am B, 2002, 19: 2365–2375

    Article  CAS  Google Scholar 

  59. Kong M, Gu Y, Chai Y, Ke J, Liu Y, Xu X, Li Z, Feng W, Li F. Sci China Chem, 2021, 64: 974–984

    Article  CAS  Google Scholar 

  60. Weber MJ. Phys Rev B, 1971, 4: 3153–3159

    Article  Google Scholar 

  61. Jaque D, Ramirez MO, Bausá LE, Solé JG, Cavalli E, Speghini A, Bettinelli M. Phys Rev B, 2003, 68: 035118

    Article  Google Scholar 

  62. Dexter DL. J Chem Phys, 1953, 21: 836–850

    Article  CAS  Google Scholar 

  63. Kushida T. J Phys Soc Jpn, 1973, 34: 1318–1326

    Article  CAS  Google Scholar 

  64. Malta OL. J Non-Crystalline Solids, 2008, 354: 4770–4776

    Article  CAS  Google Scholar 

  65. Carneiro Neto AN, Moura Renaldo T. J, Malta OL. J Lumin, 2019, 210: 342–347

    Article  CAS  Google Scholar 

  66. Yamada N, Shionoya S, Kushida T. J Phys Soc Jpn, 1972, 32: 1577–1586

    Article  CAS  Google Scholar 

  67. Ramirez MO, Jaque D, Bausá LE, Martín IR, Lahoz F, Cavalli E, Speghini A, Bettinelli M. J Appl Phys, 2005, 97: 093510

    Article  Google Scholar 

  68. Zuo J, Sun D, Tu L, Wu Y, Cao Y, Xue B, Zhang Y, Chang Y, Liu X, Kong X, Buma WJ, Meijer EJ, Zhang H. Angew Chem Int Ed, 2018, 57: 3054–3058

    Article  CAS  Google Scholar 

  69. Tu LP, Zuo J, Zhang H. Sci China Tech Sci, 2018, 61: 1301–1308

    Article  Google Scholar 

  70. Feng Y, Li Z, Li Q, Yuan J, Tu L, Ning L, Zhang H. Light Sci Appl, 2021, 10: 105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xue B, Wang D, Tu L, Sun D, Jing P, Chang Y, Zhang Y, Liu X, Zuo J, Song J, Qu J, Meijer EJ, Zhang H, Kong X. J Phys Chem Lett, 2018, 9: 4625–4631

    Article  CAS  PubMed  Google Scholar 

  72. Purcell EM. Phys Rev, 1946, 69: 681–681

    Article  Google Scholar 

  73. Pelton M. Nat Photon, 2015, 9: 427–435

    Article  CAS  Google Scholar 

  74. Wang YZ, Lu BL, Li YQ, Liu YS. Opt Lett, 1995, 20: 770–772

    Article  CAS  PubMed  Google Scholar 

  75. Svelto O, Hanna DC. Principles of Lasers. New York: Springer, 1998

    Book  Google Scholar 

  76. Silfvast WT. Laser Fundamentals. Cambridge: Cambridge University Press, 2004

    Book  Google Scholar 

  77. Xiao G, Bass M. IEEE J Quantum Electron, 1997, 33: 41–44

    Article  CAS  Google Scholar 

  78. Zayhowski JJ, Kelley PL. IEEE J Quantum Electron, 1991, 27: 2220–2225

    Article  CAS  Google Scholar 

  79. Novelline RA, Squire LF. Squire’s Fundamentals of Radiology. La Editorial, UPR: Harvard University Press, 1997

    Google Scholar 

  80. Suo H, Zhang X, Wang F. Trends Chem, 2022, 4: 726–738

    Article  CAS  Google Scholar 

  81. Liu Q, Zhang Y, Peng CS, Yang T, Joubert LM, Chu S. Nat Photon, 2018, 12: 548–553

    Article  CAS  Google Scholar 

  82. Yi Z, Gao H, Ji X, Yeo XY, Chong SY, Mao Y, Luo B, Shen C, Han S, Wang JW, Jung S, Shi P, Ren H, Liu X. J Am Chem Soc, 2021, 143: 14907–14915

    Article  CAS  PubMed  Google Scholar 

  83. Zheng X, Zhu X, Lu Y, Zhao J, Feng W, Jia G, Wang F, Li F, Jin D. Anal Chem, 2016, 88: 3449–3454

    Article  CAS  PubMed  Google Scholar 

  84. Fan Y, Wang P, Lu Y, Wang R, Zhou L, Zheng X, Li X, Piper JA, Zhang F. Nat Nanotech, 2018, 13: 941–946

    Article  CAS  Google Scholar 

  85. Qiu X, Zhou Q, Zhu X, Wu Z, Feng W, Li F. Nat Commun, 2020, 11: 4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu B, Chen C, Di X, Liao J, Wen S, Su QP, Shan X, Xu ZQ, Ju LA, Mi C, Wang F, Jin D. Nano Lett, 2020, 20: 4775–4781

    Article  CAS  PubMed  Google Scholar 

  87. Wang F, Ma Z, Zhong Y, Salazar F, Xu C, Ren F, Qu L, Wu AM, Dai H. Proc Natl Acad Sci USA, 2021, 118: e2023888118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Denkova D, Ploschner M, Das M, Parker LM, Zheng X, Lu Y, Orth A, Packer NH, Piper JA. Nat Commun, 2019, 10: 3695

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lee C, Xu EZ, Liu Y, Teitelboim A, Yao K, Fernandez-Bravo A, Kotulska AM, Nam SH, Suh YD, Bednarkiewicz A, Cohen BE, Chan EM, Schuck PJ. Nature, 2021, 589: 230–235

    Article  CAS  PubMed  Google Scholar 

  90. Liang Y, Zhu Z, Qiao S, Guo X, Pu R, Tang H, Liu H, Dong H, Peng T, Sun LD, Widengren J, Zhan Q. Nat Nanotechnol, 2022, 17: 524–530

    Article  CAS  PubMed  Google Scholar 

  91. Wang F, Ren F, Ma Z, Qu L, Gourgues R, Xu C, Baghdasaryan A, Li J, Zadeh IE, Los JWN, Fognini A, Qin-Dregely J, Dai H. Nat Nanotechnol, 2022, 17: 653–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lu Y, Zhao J, Zhang R, Liu Y, Liu D, Goldys EM, Yang X, Xi P, Sunna A, Lu J, Shi Y, Leif RC, Huo Y, Shen J, Piper JA, Robinson JP, Jin D. Nat Photon, 2013, 8: 32–36

    Article  Google Scholar 

  93. Zhou L, Fan Y, Wang R, Li X, Fan L, Zhang F. Angew Chem, 2018, 130: 13006–13011

    Article  Google Scholar 

  94. Liang L, Feng Z, Zhang Q, Cong TD, Wang Y, Qin X, Yi Z, Ang MJY, Zhou L, Feng H, Xing B, Gu M, Li X, Liu X. Nat Nanotechnol, 2021, 16: 975–980

    Article  CAS  PubMed  Google Scholar 

  95. Liu Y, Lu Y, Yang X, Zheng X, Wen S, Wang F, Vidal X, Zhao J, Liu D, Zhou Z, Ma C, Zhou J, Piper JA, Xi P, Jin D. Nature, 2017, 543: 229–233

    Article  CAS  PubMed  Google Scholar 

  96. Cole RW, Jinadasa T, Brown CM. Nat Protoc, 2011, 6: 1929–1941

    Article  CAS  PubMed  Google Scholar 

  97. Jonkman J, Brown CM, Wright GD, Anderson KI, North AJ. Nat Protoc, 2020, 15: 1585–1611

    Article  CAS  PubMed  Google Scholar 

  98. Gao L, Shao L, Chen BC, Betzig E. Nat Protoc, 2014, 9: 1083–1101

    Article  CAS  PubMed  Google Scholar 

  99. Bacia K, Schwille P. Nat Protoc, 2007, 2: 2842–2856

    Article  CAS  PubMed  Google Scholar 

  100. Sun Y, Day RN, Periasamy A. Nat Protoc, 2011, 6: 1324–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang J, Allgeyer ES, Sirinakis G, Zhang Y, Hu K, Lessard MD, Li Y, Diekmann R, Phillips MA, Dobbie IM, Ries J, Booth MJ, Bewersdorf J. Nat Protoc, 2021, 16: 677–727

    Article  CAS  PubMed  Google Scholar 

  102. Sezgin E, Schneider F, Galiani S, Urbančič I, Waithe D, Lagerholm BC, Eggeling C. Nat Protoc, 2019, 14: 1054–1083

    CAS  PubMed  Google Scholar 

  103. Birk UJ. Super-resolution Microscopy. A Practical Guide. Weinheim: John Wiley & Sons, 2017

    Book  Google Scholar 

  104. Xi P, Rajwa B, Jones JT, Robinson JP. Am J Phys, 2007, 75: 203–207

    Article  Google Scholar 

  105. Xu H, Han S, Deng R, Su Q, Wei Y, Tang Y, Qin X, Liu X. Nat Photon, 2021, 15: 732–737

    Article  CAS  Google Scholar 

  106. Zhou J, Wen S, Liao J, Clarke C, Tawfik SA, Ren W, Mi C, Wang F, Jin D. Nat Photon, 2018, 12: 154–158

    Article  CAS  Google Scholar 

  107. Liang L, Wang C, Chen J, Wang QJ, Liu X. Nat Photon, 2022, 16: 712–717

    Article  CAS  Google Scholar 

  108. Zhan Q, Liu H, Wang B, Wu Q, Pu R, Zhou C, Huang B, Peng X, Ågren H, He S. Nat Commun, 2017, 8: 1058

    Article  PubMed  PubMed Central  Google Scholar 

  109. Chen C, Wang F, Wen S, Su QP, Wu MCL, Liu Y, Wang B, Li D, Shan X, Kianinia M, Aharonovich I, Toth M, Jackson SP, Xi P, Jin D. Nat Commun, 2018, 9: 3290

    Article  PubMed  PubMed Central  Google Scholar 

  110. Dong H, Sun LD, Feng W, Gu Y, Li F, Yan CH. ACS Nano, 2017, 11: 3289–3297

    Article  CAS  PubMed  Google Scholar 

  111. Huang B, Wu Q, Peng X, Yao L, Peng D, Zhan Q. Nanoscale, 2018, 10: 21025–21030

    Article  CAS  PubMed  Google Scholar 

  112. Gu Y, Guo Z, Yuan W, Kong M, Liu Y, Liu Y, Gao Y, Feng W, Wang F, Zhou J, Jin D, Li F. Nat Photonics, 2019, 13: 525–531

    Article  CAS  Google Scholar 

  113. Chen H, Jiang Z, Hu H, Kang B, Zhang B, Mi X, Guo L, Zhang C, Li J, Lu J, Yan L, Fu Z, Zhang Z, Zheng H, Xu H. Nat Photon, 2022, 16: 651–657

    Article  CAS  Google Scholar 

  114. Ou X, Qin X, Huang B, Zan J, Wu Q, Hong Z, Xie L, Bian H, Yi Z, Chen X, Wu Y, Song X, Li J, Chen Q, Yang H, Liu X. Nature, 2021, 590: 410–415

    Article  CAS  PubMed  Google Scholar 

  115. Pei P, Chen Y, Sun C, Fan Y, Yang Y, Liu X, Lu L, Zhao M, Zhang H, Zhao D, Liu X, Zhang F. Nat Nanotechnol, 2021, 16: 1011–1018

    Article  CAS  PubMed  Google Scholar 

  116. Abbe E. Archiv für Mikroskopische Anatomie, 1873, 9: 413–468

    Article  Google Scholar 

  117. Peng X, Huang B, Pu R, Liu H, Zhang T, Widengren J, Zhan Q, Ågren H. Nanoscale, 2019, 11: 1563–1569

    Article  CAS  PubMed  Google Scholar 

  118. Mi Z, Zhang Y, Vanga SK, Chen CB, Tan HQ, Watt F, Liu X, Bettiol AA. Nat Commun, 2015, 6: 8832

    Article  CAS  PubMed  Google Scholar 

  119. Wen S, Liu Y, Wang F, Lin G, Zhou J, Shi B, Suh YD, Jin D. Nat Commun, 2020, 11: 6047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wu R, Zhan Q, Liu H, Wen X, Wang B, He S. Opt Express, 2015, 23: 32401

    Article  CAS  PubMed  Google Scholar 

  121. Zhang H, Jia T, Chen L, Zhang Y, Zhang S, Feng D, Sun Z, Qiu J. Phys Chem Chem Phys, 2017, 19: 17756–17764

    Article  CAS  PubMed  Google Scholar 

  122. Kolesov R, Reuter R, Xia K, Stöhr R, Zappe A, Wrachtrup J. Phys Rev B, 2011, 84: 153413

    Article  Google Scholar 

  123. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW. Proc Natl Acad Sci USA, 2000, 97: 8206–8210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chen C, Liu B, Liu Y, Liao J, Shan X, Wang F, Jin D. Adv Mater, 2021, 33: 2008847

    Article  CAS  Google Scholar 

  125. Wu Q, Huang B, Peng X, He S, Zhan Q. Opt Express, 2017, 25: 30885

    Article  CAS  PubMed  Google Scholar 

  126. Liu Y, Wang F, Lu H, Fang G, Wen S, Chen C, Shan X, Xu X, Zhang L, Stenzel M, Jin D. Small, 2020, 16: 1905572

    Article  CAS  Google Scholar 

  127. Göppert-Mayer M. Ann Phys, 1931, 401: 273–294

    Article  Google Scholar 

  128. Su Q, Han S, Xie X, Zhu H, Chen H, Chen CK, Liu RS, Chen X, Wang F, Liu X. J Am Chem Soc, 2012, 134: 20849–20857

    Article  CAS  PubMed  Google Scholar 

  129. Rabouw FT, Prins PT, Villanueva-Delgado P, Castelijns M, Geitenbeek RG, Meijerink A. ACS Nano, 2018, 12: 4812–4823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Liu X, Wang Y, Li X, Yi Z, Deng R, Liang L, Xie X, Loong DTB, Song S, Fan D, All AH, Zhang H, Huang L, Liu X. Nat Commun, 2017, 8: 899

    Article  PubMed  PubMed Central  Google Scholar 

  131. Zheng W, Zhou S, Chen Z, Hu P, Liu Y, Tu D, Zhu H, Li R, Huang M, Chen X. Angew Chem, 2013, 125: 6803–6808

    Article  Google Scholar 

  132. Zheng W, Tu D, Huang P, Zhou S, Chen Z, Chen X. Chem Commun, 2015, 51: 4129–4143

    Article  CAS  Google Scholar 

  133. Kong M, Gu Y, Liu Y, Shi Y, Wu N, Feng W, Li F. Small, 2019, 15: 1904487

    Article  CAS  Google Scholar 

  134. Zhao M, Li B, Wu Y, He H, Zhu X, Zhang H, Dou C, Feng L, Fan Y, Zhang F. Adv Mater, 2020, 32: 2001172

    Article  CAS  Google Scholar 

  135. Zhao M, Zhuang H, Zhang H, Li B, Ming J, Chen X, Chen M. Angew Chem Int Ed, 2022, 61: e202209592

    Article  CAS  Google Scholar 

  136. Fikouras AH, Schubert M, Karl M, Kumar JD, Powis SJ, Di Falco A, Gather MC. Nat Commun, 2018, 9: 4817

    Article  PubMed  PubMed Central  Google Scholar 

  137. Jin L, Wu Y, Wang Y, Liu S, Zhang Y, Li Z, Chen X, Zhang W, Xiao S, Song Q. Adv Mater, 2019, 31: 1807079

    Article  Google Scholar 

  138. Shang Y, Zhou J, Cai Y, Wang F, Fernandez-Bravo A, Yang C, Jiang L, Jin D. Nat Commun, 2020, 11: 6156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhu H, Chen X, Jin LM, Wang QJ, Wang F, Yu SF. ACS Nano, 2013, 7: 11420–11426

    Article  CAS  PubMed  Google Scholar 

  140. Wu Y, Xu J, Poh ET, Liang L, Liu H, Yang JKW, Qiu CW, Vallée RAL, Liu X. Nat Nanotechnol, 2019, 14: 1110–1115

    Article  CAS  PubMed  Google Scholar 

  141. Qin X, Carneiro Neto AN, Longo RL, Wu Y, Malta OL, Liu X. J Phys Chem Lett, 2021, 12: 1520–1541

    Article  CAS  PubMed  Google Scholar 

  142. Wu M, Ha ST, Shendre S, Durmusoglu EG, Koh WK, Abujetas DR, Sánchez-Gil JA, Paniagua-Domínguez R, Demir HV, Kuznetsov AI. Nano Lett, 2020, 20: 6005–6011

    Article  CAS  PubMed  Google Scholar 

  143. Fernandez-Bravo A, Wang D, Barnard ES, Teitelboim A, Tajon C, Guan J, Schatz GC, Cohen BE, Chan EM, Schuck PJ, Odom TW. Nat Mater, 2019, 18: 1172–1176

    Article  CAS  PubMed  Google Scholar 

  144. Shang Y, Chen T, Ma T, Hao S, Lv W, Jia D, Yang C. J Rare Earths, 2022, 40: 687–695

    Article  CAS  Google Scholar 

  145. Wang T, Yu H, Siu CK, Qiu J, Xu X, Yu SF. ACS Photonics, 2017, 4: 1539–1543

    Article  CAS  Google Scholar 

  146. Fernandez-Bravo A, Yao K, Barnard ES, Borys NJ, Levy ES, Tian B, Tajon CA, Moretti L, Altoe MV, Aloni S, Beketayev K, Scotognella F, Cohen BE, Chan EM, Schuck PJ. Nat Nanotech, 2018, 13: 572–577

    Article  CAS  Google Scholar 

  147. Chang SW, Lin TR, Chuang SL. Opt Express, 2010, 18: 15039–15053

    Article  CAS  PubMed  Google Scholar 

  148. Austerlitz H. Chapter 2—Analog signal transducers in Data Acquisition Techniques Using PCs. 2nd Ed. San Diego: Academic Press, 2003. 6–28

    Book  Google Scholar 

  149. le Masne de Chermont Q, Chanéac C, Seguin J, Pellé F, Maîtrejean S, Jolivet JP, Gourier D, Bessodes M, Scherman D. Proc Natl Acad Sci USA, 2007, 104: 9266–9271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang JX, Bakr OM, Mohammed OF. Matter, 2022, 5: 2547–2549

    Article  CAS  Google Scholar 

  151. Qin X, Liu X, Huang W, Bettinelli M, Liu X. Chem Rev, 2017, 117: 4488–4527

    Article  CAS  PubMed  Google Scholar 

  152. Yang YM, Li ZY, Zhang JY, Lu Y, Guo SQ, Zhao Q, Wang X, Yong ZJ, Li H, Ma JP, Kuroiwa Y, Moriyoshi C, Hu LL, Zhang LY, Zheng LR, Sun HT. Light Sci Appl, 2018, 7: 88

    Article  PubMed  PubMed Central  Google Scholar 

  153. Bian H, Qin X, Wu Y, Yi Z, Liu S, Wang Y, Brites CDS, Carlos LD, Liu X. Adv Mater, 2022, 34: 2101895

    Article  CAS  Google Scholar 

  154. Li Y, Gecevicius M, Qiu J. Chem Soc Rev, 2016, 45: 2090–2136

    Article  CAS  PubMed  Google Scholar 

  155. Li L, Li T, Hu Y, Cai C, Li Y, Zhang X, Liang B, Yang Y, Qiu J. Light Sci Appl, 2022, 11: 51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Takasaki H, Tanabe S, Hanada T. J Ceram Soc Jpn, 1996, 104: 322–326

    Article  CAS  Google Scholar 

  157. Lei L, Wang Y, Xu W, Ye R, Hua Y, Deng D, Chen L, Prasad PN, Xu S. Nat Commun, 2022, 13: 5739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Evans KA, Kennedy ZC, Arey BW, Christ JF, Schaef HT, Nune SK, Erikson RL. ACS Appl Mater Interfaces, 2018, 10: 15112–15121

    Article  CAS  PubMed  Google Scholar 

  159. Elder B, Neupane R, Tokita E, Ghosh U, Hales S, Kong YL. Adv Mater, 2020, 32: 1907142

    Article  CAS  Google Scholar 

  160. Huang J, Wu P. Nano-Micro Lett, 2021, 13: 15

    Article  CAS  Google Scholar 

  161. Ni R, Qian B, Liu C, Liu X, Qiu J. Opt Express, 2018, 26: 25481–25491

    Article  CAS  PubMed  Google Scholar 

  162. Liu J, Guo Y, Bi Y, Wang Y, Wang Y, Kipper MJ, Belfiore LA, Tang J. J Alloys Compd, 2022, 928: 167194

    Article  CAS  Google Scholar 

  163. Yao Y, Yin C, Hong S, Chen H, Shi Q, Wang J, Lu X, Zhou N. Chem Mater, 2020, 32: 8868–8876

    Article  CAS  Google Scholar 

  164. Méndez-Ramos J, Ruiz-Morales JC, Acosta-Mora P, Khaidukov NM. J Mater Chem C, 2016, 4: 801–806

    Article  Google Scholar 

  165. Rocheva VV, Koroleva AV, Savelyev AG, Khaydukov KV, Generalova AN, Nechaev AV, Guller AE, Semchishen VA, Chichkov BN, Khaydukov EV. Sci Rep, 2018, 8: 3663

    Article  PubMed  PubMed Central  Google Scholar 

  166. Chen Y, Zhang J, Liu X, Wang S, Tao J, Huang Y, Wu W, Li Y, Zhou K, Wei X, Chen S, Li X, Xu X, Cardon L, Qian Z, Gou M. Sci Adv, 2020, 6: eaba7406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hososhima S, Yuasa H, Ishizuka T, Hoque MR, Yamashita T, Yamanaka A, Sugano E, Tomita H, Yawo H. Sci Rep, 2015, 5: 16533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wu X, Zhang Y, Takle K, Bilsel O, Li Z, Lee H, Zhang Z, Li D, Fan W, Duan C, Chan EM, Lois C, Xiang Y, Han G. ACS Nano, 2016, 10: 1060–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lin X, Wang Y, Chen X, Yang R, Wang Z, Feng J, Wang H, Lai KWC, He J, Wang F, Shi P. Adv Healthcare Mater, 2017, 6: 1700446

    Article  Google Scholar 

  170. Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, Huang AJY, Hashimotodani Y, Kano M, Iwasaki H, Parajuli LK, Okabe S, Teh DBL, All AH, Tsutsui-Kimura I, Tanaka KF, Liu X, McHugh TJ. Science, 2018, 359: 679–684

    Article  CAS  PubMed  Google Scholar 

  171. Liang L, Chen J, Shao K, Qin X, Pan Z, Liu X. Nat Mater, 2023, 22: 289–304

    Article  CAS  PubMed  Google Scholar 

  172. Hou B, Yi L, Li C, Zhao H, Zhang R, Zhou B, Liu X. Nat Electron, 2022, 5: 682–693

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation, the Prime Minister’s Office of Singapore under its Competitive Research Program (NRF-CRP23-2019-0002) and NRF Investigatorship Programme (NRF-NRFI05-2019-0003), the RIE2025 Manufacturing, Trade and Connectivity (MTC) Programmatic Fund (M21J9b0085), and the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR-2018-CRG7-3736).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Liu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Gu, C., Zhang, Y. et al. Mastering lanthanide energy states for next-gen photonic innovation. Sci. China Chem. 66, 2460–2479 (2023). https://doi.org/10.1007/s11426-023-1609-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1609-y

Keywords

Navigation