Skip to main content
Log in

Selecting small molecule DNA aptamers with significant conformational changes for constructing transcriptional switches and biosensors

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Small molecule aptamers discovered by traditional selection methods usually lack conformational changes upon target binding. This limits the use of aptamers as molecular probes for small molecule detection and regulatory elements of genetic circuits. Here, we report a new method called capture and in vitro transcription-systematic evolution of ligands by exponential enrichment (CIVT-SELEX) to select DNA aptamers that can not only bind to small molecule ligands but also undergo significant conformational changes. Through this method, we select a structure-switching aptamer of uridine-5′-diphosphate (UDP). Taking advantage of its conformational changes, we first construct a UDP-responsive transcriptional switch by inserting the aptamer in a genetic circuit and demonstrate that it can respond to the addition of UDP and regulate the transcription of downstream genes. We also build a UDP aptamer-based biosensor that can be used for active glycosyltransferase screening. We believe this method can provide a universal platform for selecting small molecule aptamers with conformational changes and expand the use of aptamers in small molecule detection and genetic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang X, Zhang XJ, Li Y, Zhang GR, Li J, Wang XQ, Tan W. CCS Chem, 2022, 4: 2581–2587

    Article  CAS  Google Scholar 

  2. Li L, Xu S, Yan H, Li X, Yazd HS, Li X, Huang T, Cui C, Jiang J, Tan W. Angew Chem Int Ed, 2021, 60: 2221–2231

    Article  CAS  Google Scholar 

  3. Huang R, Xi Z, He N. Sci China Chem, 2015, 58: 1122–1130

    Article  CAS  Google Scholar 

  4. Tian L, Shao M, Gong Y, Chao Y, Wei T, Yang K, Chen Q, Liu Z. Sci China Chem, 2022, 65: 574–583

    Article  CAS  Google Scholar 

  5. Wang Z, Huang C, Sun N, Deng C. Sci China Chem, 2021, 64: 932–947

    Article  CAS  Google Scholar 

  6. Liu M, Zhang M, Chen J, Yang R, Huang Z, Liu Z, Li N, Shui L. Sci China Chem, 2022, 65: 2023–2030

    Article  CAS  Google Scholar 

  7. Tuerk C, Gold L. Science, 1990, 249: 505–510

    Article  CAS  PubMed  Google Scholar 

  8. Yu H, Alkhamis O, Canoura J, Liu Y, Xiao Y. Angew Chem Int Ed, 2021, 60: 16800–16823

    Article  CAS  Google Scholar 

  9. Huang PJJ, Liu J. ACS Chem Biol, 2022, 17: 2121–2129

    Article  CAS  PubMed  Google Scholar 

  10. Nutiu R, Li Y. J Am Chem Soc, 2003, 125: 4771–4778

    Article  CAS  PubMed  Google Scholar 

  11. Stojanovic MN, de Prada P, Landry DW. J Am Chem Soc, 2001, 123: 4928–4931

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Yang L, Cui X, Zhang Z, Dong L, Guan N. ACS Synth Biol, 2017, 6: 758–765

    Article  CAS  PubMed  Google Scholar 

  13. Hoetzel J, Suess B. J Mol Biol, 2022, 434: 167631

    Article  CAS  PubMed  Google Scholar 

  14. Ma Q, Zhang C, Zhang M, Han D, Tan W. Small Struct, 2021, 2: 2100051

    Article  CAS  Google Scholar 

  15. Guo S, Xu Z, Lin L, Guo Y, Li J, Lu C, Shi X, Yang H. Int J Mol Sci, 2023, 24: 2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mendonsa SD, Bowser MT. J Am Chem Soc, 2004, 126: 20–21

    Article  CAS  PubMed  Google Scholar 

  17. Nguyen VT, Kwon YS, Kim JH, Gu MB. Chem Commun, 2014, 50: 10513–10516

    Article  CAS  Google Scholar 

  18. Spiga FM, Maietta P, Guiducci C. ACS Comb Sci, 2015, 17: 326–333

    Article  CAS  PubMed  Google Scholar 

  19. Boussebayle A, Torka D, Ollivaud S, Braun J, Bofill-Bosch C, Dombrowski M, Groher F, Hamacher K, Suess B. Nucleic Acids Res, 2019, 47: 4883–4895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang M, Song J, Huang P, Chen X, Wang W, Zhu Z, Song Y, Yang C. Anal Chem, 2019, 91: 10879–10886

    Article  CAS  PubMed  Google Scholar 

  21. Lyu C, Khan IM, Wang Z. Talanta, 2021, 229: 122274

    Article  PubMed  Google Scholar 

  22. Bowles D, Isayenkova J, Lim EK, Poppenberger B. Curr Opin Plant Biol, 2005, 8: 254–263

    Article  CAS  PubMed  Google Scholar 

  23. Guo S, Wang M, Xu W, Zou F, Lin J, Peng Q, Xu W, Xu S, Shi X. Phytochemistry, 2022, 193: 113007

    Article  CAS  PubMed  Google Scholar 

  24. Boussebayle A, Groher F, Suess B. Methods, 2019, 161: 10–15

    Article  CAS  PubMed  Google Scholar 

  25. Alam KK, Tawiah KD, Lichte MF, Porciani D, Burke DH. ACS Synth Biol, 2017, 6: 1710–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McKeague M, Velu R, Hill K, Bardóczy V, Mészáros T, DeRosa M. Toxins, 2014, 6: 2435–2452

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu X, Lu Q, Chen S, Wang F, Hou J, Xu Z, Meng C, Hu T, Hou Y. Molecules, 2018, 23: 2337

    Article  PubMed  PubMed Central  Google Scholar 

  28. Alkhamis O, Yang W, Farhana R, Yu H, Xiao Y. Nucleic Acids Res, 2020, 48: e120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu J, Lu Y. Angew Chem Int Ed, 2005, 45: 90–94

    Article  Google Scholar 

  30. Zhang Z, Oni O, Liu J. Nucleic Acids Res, 2017, 45: 7593–7601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kypr J, Kejnovska I, Renciuk D, Vorlickova M. Nucleic Acids Res, 2009, 37: 1713–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sengupta A, Gavvala K, Koninti RK, Hazra P. J Photochem Photobiol B-Biol, 2014, 140: 240–248

    Article  CAS  Google Scholar 

  33. Canoura J, Wang Z, Yu H, Alkhamis O, Fu F, Xiao Y. J Am Chem Soc, 2018, 140: 9961–9971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Canoura J, Yu H, Alkhamis O, Roncancio D, Farhana R, Xiao Y. J Am Chem Soc, 2021, 143: 805–816

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. J. Yang, Dr. Y. Zheng, Dr. F. Li, Dr. M. Chen, and Dr. L. Chen for their helpful discussion and suggestions. This work was supported by the National Natural Science Foundation of China (32001037, 22176035), the National Key R&D Program of China (2020YFA0210800, 2018YFA0902600), the Natural Science Foundation of Fujian Province (2020J01491, 2020J05120), and Fuzhou University Research Fund (GXRC-20033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lanlan Chen or Huanghao Yang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

11426_2022_1540_MOESM1_ESM.pdf

Selecting Small Molecule DNA Aptamers with Significant Conformational Changes for Constructing Transcriptional Switches and Biosensors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Lin, J., Lin, L. et al. Selecting small molecule DNA aptamers with significant conformational changes for constructing transcriptional switches and biosensors. Sci. China Chem. 66, 1529–1536 (2023). https://doi.org/10.1007/s11426-022-1540-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1540-y

Navigation