Skip to main content
Log in

Electrochemical transformation of biomass-derived oxygenates

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Replacing conventional fossil resources with renewable raw materials for chemical production and energy generation is crucial for achieving the carbon-neutral goal and alleviating the emerging energy crisis. Biomass has been considered as one of the most promising candidates for this purpose owing to its great natural abundance and inherent ability to fix CO2 in the form of multi-carbon compounds. Particularly, biomass conversion through an electrochemical route is intriguing because of its operability near ambient conditions, flexible scalability (suitable for distributed manufacturing and even domestic use) and green generation of oxidative or reductive equivalents instead of wasteful and possibly explosive or flammable reagents. Herein, recent progress in electrochemical transformation of biomass, including hydrogenation and amination, is reviewed with the emphasis on catalysts and strategies for enhancing catalytic efficiency. The advances in mechanistic understanding using in-situ spectroscopy are also briefly discussed. Finally, recommendations for the directions for future development are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Serrano-Ruiz JC, Luque R, Sepúlveda-Escribano A. Chem Soc Rev, 2011, 40: 5266–5281

    Article  CAS  PubMed  Google Scholar 

  2. Lange JP. Nat Catal, 2021, 4: 186–192

    Article  CAS  Google Scholar 

  3. Lucas FWS, Grim RG, Tacey SA, Downes CA, Hasse J, Roman AM, Farberow CA, Schaidle JA, Holewinski A. ACS Energy Lett, 2021, 6: 1205–1270

    Article  CAS  Google Scholar 

  4. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick Jr. WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T. Science, 2006, 311: 484–489

    Article  CAS  PubMed  Google Scholar 

  5. Ashokkumar V, Venkatkarthick R, Jayashree S, Chuetor S, Dharmaraj S, Kumar G, Chen WH, Ngamcharussrivichai C. Bioresource Tech, 2022, 344: 126195

    Article  CAS  Google Scholar 

  6. Okolie JA, Mukherjee A, Nanda S, Dalai AK, Kozinski JA. Intl J Energy Res, 2021, 45: 14145–14169

    Article  CAS  Google Scholar 

  7. Nwosu U, Wang A, Palma B, Zhao H, Khan MA, Kibria M, Hu J. Renew Sustain Energy Rev, 2021, 148: 111266

    Article  CAS  Google Scholar 

  8. Rajesh Banu J, Preethi J, Kavitha S, Tyagi VK, Gunasekaran M, Karthikeyan OP, Kumar G. Fuel, 2021, 302: 121086

    Article  CAS  Google Scholar 

  9. Kim J, Sen SM, Maravelias CT. Energy Environ Sci, 2013, 6: 1093–1104

    Article  CAS  Google Scholar 

  10. Galadima A, Muraza O. Int J Energy Res, 2015, 39: 741–759

    Article  CAS  Google Scholar 

  11. Kunkes EL, Simonetti DA, West RM, Serrano-Ruiz JC, Gartner CA, Dumesic JA. Science, 2008, 322: 417–421

    Article  CAS  PubMed  Google Scholar 

  12. Li J, Zhan G, Yang J, Quan F, Mao C, Liu Y, Wang B, Shi Y, Du Y, Hao W, Wong PK, Wang J, Dou SX, Zhang L, Yu JC. J Am Chem Soc, 2020, 142: 7036–7046

    Article  CAS  PubMed  Google Scholar 

  13. Chadderdon XH, Chadderdon DJ, Matthiesen JE, Qiu Y, Carraher JM, Tessonnier JP, Li W. J Am Chem Soc, 2017, 139: 14120–14128

    Article  CAS  PubMed  Google Scholar 

  14. Wang DY, Si Y, Guo W, Fu Y. Nat Commun, 2021, 12: 3220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leech MC, Lam K. Acc Chem Res, 2020, 53: 121–134

    Article  CAS  PubMed  Google Scholar 

  16. Seavill PW, Wilden JD. Green Chem, 2020, 22: 7737–7759

    Article  CAS  Google Scholar 

  17. Meyer TH, Choi I, Tian C, Ackermann L. Chem, 2020, 6: 2484–2496

    Article  CAS  Google Scholar 

  18. Siu JC, Fu N, Lin S. Acc Chem Res, 2020, 53: 547–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carneiro J, Nikolla E. Annu Rev Chem Biomol Eng, 2019, 10: 85–104

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Han M, Liu G, Wang G, Zhang Y, Zhang H, Zhao H. Appl Catal B-Environ, 2019, 244: 899–908

    Article  CAS  Google Scholar 

  21. Wu R, Meng Q, Yan J, Liu H, Zhu Q, Zheng L, Zhang J, Han B. J Am Chem Soc, 2022, 144: 1556–1571

    Article  CAS  PubMed  Google Scholar 

  22. Akhade SA, Singh N, Gutiérrez OY, Lopez-Ruiz J, Wang H, Holladay JD, Liu Y, Karkamkar A, Weber RS, Padmaperuma AB, Lee MS, Whyatt GA, Elliott M, Holladay JE, Male JL, Lercher JA, Rousseau R, Glezakou VA. Chem Rev, 2020, 120: 11370–11419

    Article  CAS  PubMed  Google Scholar 

  23. Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew Chem Int Ed, 2018, 57: 6018–6041

    Article  Google Scholar 

  24. Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc Chem Res, 2020, 53: 72–83

    Article  CAS  PubMed  Google Scholar 

  25. Ogawa KA, Boydston AJ. Chem Lett, 2015, 44: 10–16

    Article  Google Scholar 

  26. Waldie KM, Flajslik KR, McLoughlin E, Chidsey CED, Waymouth RM. J Am Chem Soc, 2017, 139: 738–748

    Article  CAS  PubMed  Google Scholar 

  27. Lu Y, Liu T, Dong CL, Huang YC, Li Y, Chen J, Zou Y, Wang S. Adv Mater, 2021, 33: 2007056

    Article  CAS  Google Scholar 

  28. Zhou P, Lv X, Tao S, Wu J, Wang H, Wei X, Wang T, Zhou B, Lu Y, Frauenheim T, Fu X, Wang S, Zou Y. Adv Mater, 2022, 34: 2204089

    Article  CAS  Google Scholar 

  29. Wu J, Xu L, Li Y, Dong CL, Lu Y, Nga TTT, Kong Z, Li S, Zou Y, Wang S. J Am Chem Soc, 2022, 144: 23649–23656

    Article  CAS  PubMed  Google Scholar 

  30. Zhou P, Li L, Mosali VSS, Chen Y, Luan P, Gu Q, Turner DR, Huang L, Zhang J. Angew Chem Int Ed, 2022, 61: e202117809

    CAS  Google Scholar 

  31. Zhou P, Guo SX, Li L, Ueda T, Nishiwaki Y, Huang L, Zhang Z, Zhang J. Angew Chem Int Ed, 2022, 61: e202214881

    Google Scholar 

  32. Jung S, Biddinger EJ. ACS Sustain Chem Eng, 2016, 4: 6500–6508

    Article  CAS  Google Scholar 

  33. Zhao B, Guo Q, Fu Y. Electrochemistry, 2014, 82: 954–959

    Article  CAS  Google Scholar 

  34. Jung S, Karaiskakis AN, Biddinger EJ. Catal Today, 2019, 323: 26–34

    Article  CAS  Google Scholar 

  35. You B, Jiang N, Liu X, Sun Y. Angew Chem Int Ed, 2016, 55: 9913–9917

    Article  CAS  Google Scholar 

  36. Zhang P, Sun L. Chin J Chem, 2020, 38: 996–1004

    Article  CAS  Google Scholar 

  37. May AS, Biddinger EJ. ACS Catal, 2020, 10: 3212–3221

    Article  CAS  Google Scholar 

  38. Zhou P, Chen Y, Luan P, Zhang X, Yuan Z, Guo SX, Gu Q, Johannessen B, Mollah M, Chaffee AL, Turner DR, Zhang J. Green Chem, 2021, 23: 3028–3038

    Article  CAS  Google Scholar 

  39. Singh N, Song Y, Gutiérrez OY, Camaioni DM, Campbell CT, Lercher JA. ACS Catal, 2016, 6: 7466–7470

    Article  CAS  Google Scholar 

  40. Jung S, Biddinger EJ. Energy Technol, 2018, 6: 1370–1379

    Article  CAS  Google Scholar 

  41. Delbecq F, Wang Y, Muralidhara A, El Ouardi K, Marlair G, Len C. Front Chem, 2018, 6: 146

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tang X, Wei J, Ding N, Sun Y, Zeng X, Hu L, Liu S, Lei T, Lin L. Renew Sustain Energy Rev, 2017, 77: 287–296

    Article  CAS  Google Scholar 

  43. Zhao B, Chen M, Guo Q, Fu Y. Electrochim Acta, 2014, 135: 139–146

    Article  CAS  Google Scholar 

  44. Parpot P, Bettencourt AP, Chamoulaud G, Kokoh KB, Belgsir EM. Electrochim Acta, 2004, 49: 397–403

    Article  CAS  Google Scholar 

  45. Shi Y, Zhu Y, Yang Y, Li YW, Jiao H. ACS Catal, 2015, 5: 4020–4032

    Article  CAS  Google Scholar 

  46. Li Z, Kelkar S, Lam CH, Luczek K, Jackson JE, Miller DJ, Saffron CM. Electrochim Acta, 2012, 64: 87–93

    Article  CAS  Google Scholar 

  47. Singh N, Sanyal U, Ruehl G, Stoerzinger KA, Gutiérrez OY, Camaioni DM, Fulton JL, Lercher JA, Campbell CT. J Catal, 2020, 382: 372–384

    Article  CAS  Google Scholar 

  48. Lam CH, Lowe CB, Li Z, Longe KN, Rayburn JT, Caldwell MA, Houdek CE, Maguire JB, Saffron CM, Miller DJ, Jackson JE. Green Chem, 2015, 17: 601–609

    Article  CAS  Google Scholar 

  49. Elliott DC. Energy Fuels, 2007, 21: 1792–1815

    Article  CAS  Google Scholar 

  50. Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD. Appl Catal A-Gen, 2011, 407: 1–19

    Article  CAS  Google Scholar 

  51. Liu H, Jiang T, Han B, Liang S, Zhou Y. Science, 2009, 326: 1250–1252

    Article  CAS  PubMed  Google Scholar 

  52. Zhao C, Zhang Z, Liu Y, Shang N, Wang HJ, Wang C, Gao Y. ACS Sustain Chem Eng, 2020, 8: 12304–12312

    Article  CAS  Google Scholar 

  53. Verma S, Nadagouda MN, Varma RS. Green Chem, 2019, 21: 1253–1257

    Article  CAS  Google Scholar 

  54. Sun W, Zhang X, Hou Y, Wang Y, Wang X, Xue W. Ind Eng Chem Res, 2020, 59: 6435–6444

    Article  CAS  Google Scholar 

  55. Kumar BR, Saravanan S. Renew Sustain Energy Rev, 2016, 60: 84–115

    Article  Google Scholar 

  56. Li Z, Garedew M, Lam CH, Jackson JE, Miller DJ, Saffron CM. Green Chem, 2012, 14: 2540–2549

    Article  CAS  Google Scholar 

  57. Song Y, Gutiérrez OY, Herranz J, Lercher JA. Appl Catal B-Environ, 2016, 182: 236–246

    Article  CAS  Google Scholar 

  58. Ragnar M, Lindgren CT, Nilvebrant NO. J Wood Chem Tech, 2000, 20: 277–305

    Article  CAS  Google Scholar 

  59. Zhou Y, Gao Y, Zhong X, Jiang W, Liang Y, Niu P, Li M, Zhuang G, Li X, Wang J. Adv Funct Mater, 2019, 29: 1807651

    Article  Google Scholar 

  60. Cirtiu CM, Hassani HO, Bouchard NA, Rowntree PA, Ménard H. Langmuir, 2006, 22: 6414–6421

    Article  CAS  PubMed  Google Scholar 

  61. Song Y, Chia SH, Sanyal U, Gutiérrez OY, Lercher JA. J Catal, 2016, 344: 263–272

    Article  CAS  Google Scholar 

  62. Formenti D, Ferretti F, Scharnagl FK, Beller M. Chem Rev, 2018, 119: 2611–2680

    Article  PubMed  Google Scholar 

  63. Irrgang T, Kempe R. Chem Rev, 2020, 120: 9583–9674

    Article  CAS  PubMed  Google Scholar 

  64. Senthamarai T, Murugesan K, Schneidewind J, Kalevaru NV, Baumann W, Neumann H, Kamer PCJ, Beller M, Jagadeesh RV. Nat Commun, 2018, 9: 4123

    Article  PubMed  PubMed Central  Google Scholar 

  65. Murugesan K, Beller M, Jagadeesh RV. Angew Chem Int Ed, 2019, 58: 5064–5068

    Article  CAS  Google Scholar 

  66. Reshi NUD, Saptal VB, Beller M, Bera JK. ACS Catal, 2021, 11: 13809–13837

    Article  CAS  Google Scholar 

  67. Chen Z, Zeng H, Gong H, Wang H, Li CJ. Chem Sci, 2015, 6: 4174–4178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roylance JJ, Choi KS. Green Chem, 2016, 18: 5412–5417

    Article  CAS  Google Scholar 

  69. Lopez-Ruiz JA, Andrews E, Akhade SA, Lee MS, Koh K, Sanyal U, Yuk SF, Karkamkar AJ, Derewinski MA, Holladay J, Glezakou VA, Rousseau R, Gutiérrez OY, Holladay JD. ACS Catal, 2019, 9: 9964–9972

    Article  CAS  Google Scholar 

  70. Fonocho R, Gardner CL, Ternan M. Electrochim Acta, 2012, 75: 171–178

    Article  CAS  Google Scholar 

  71. Huang S, Wu X, Chen W, Wang T, Wu Y, He G. Green Chem, 2016, 18: 2353–2362

    Article  CAS  Google Scholar 

  72. Huang H, Yu Y, Chung KH. Int J Hydrogen Energy, 2014, 39: 13832–13837

    Article  CAS  Google Scholar 

  73. Wakisaka M, Kunitake M. Electrochem Commun, 2016, 64: 5–8

    Article  CAS  Google Scholar 

  74. Sasaki K, Kunai A, Harada J, Nakabori S. Electrochim Acta, 1983, 28: 671–674

    Article  CAS  Google Scholar 

  75. Miller LL, Christensen L. J Org Chem, 1978, 43: 2059–2061

    Article  CAS  Google Scholar 

  76. Misra RA, Sharma BL. Electrochim Acta, 1979, 24: 727–728

    Article  CAS  Google Scholar 

  77. Coche L, Moutet JC. J Am Chem Soc, 1987, 109: 6887–6889

    Article  CAS  Google Scholar 

  78. Chagnes A, Laplante F, Kerdouss F, Proulx P, Ménard H. Can J Chem, 2004, 82: 641–648

    Article  CAS  Google Scholar 

  79. Inami Y, Ogihara H, Yamanaka I. ChemistrySelect, 2017, 2: 1939–1943

    Article  CAS  Google Scholar 

  80. Moutet JC, Ouennoughi Y, Ourari A, Hamar-Thibault S. Electrochim Acta, 1995, 40: 1827–1833

    Article  CAS  Google Scholar 

  81. Souto RM, Rodriguez JL, Pastor G, Pastor E. Electrochim Acta, 2000, 45: 1645–1653

    Article  CAS  Google Scholar 

  82. Song Y, Sanyal U, Pangotra D, Holladay JD, Camaioni DM, Gutiérrez OY, Lercher JA. J Catal, 2018, 359: 68–75

    Article  CAS  Google Scholar 

  83. Sáez A, García-García V, Solla-Gullón J, Aldaz A, Montiel V. Electrochim Acta, 2013, 91: 69–74

    Article  Google Scholar 

  84. Lofrano RCZ, Madurro JM, Abrantes LM, Romero JR. J Mol Catal A-Chem, 2004, 218: 73–79

    Article  CAS  Google Scholar 

  85. Chiba T, Okimoto M, Nagai H, Takata Y. BCSJ, 1983, 56: 719–723

    Article  CAS  Google Scholar 

  86. Yamada T, Osa T, Matsue T. Chem Lett, 1987, 16: 1989–1992

    Article  Google Scholar 

  87. Ilikti H, Rekik N, Thomalla M. J Appl Electrochem, 2002, 32: 603–609

    Article  CAS  Google Scholar 

  88. Belot G, Desjardins S, Lessard J. Tetrahedron Lett, 1984, 25: 5347–5350

    Article  CAS  Google Scholar 

  89. Mahdavi B, Lafrance A, Martel A, Lessard J, Me’nard H, Brossard L. J Appl Electrochem, 1997, 27: 605–611

    Article  CAS  Google Scholar 

  90. Dabo P, Mahdavi B, Ménard H, Lessard J. Electrochim Acta, 1997, 42: 1457–1459

    Article  CAS  Google Scholar 

  91. Ilikti H, Rekik N, Thomalla M. J Appl Electrochem, 2004, 34: 127–136

    Article  CAS  Google Scholar 

  92. Ivanova NM, Soboleva EA, Kulakova EV, Malyshev VP, Kirilyus IV. Russ J Appl Chem, 2009, 82: 421–428

    Article  CAS  Google Scholar 

  93. Andrews E, Lopez-Ruiz JA, Egbert JD, Koh K, Sanyal U, Song M, Li D, Karkamkar AJ, Derewinski MA, Holladay J, Gutiérrez OY, Holladay JD. ACS Sustain Chem Eng, 2020, 8: 4407–4418

    Article  CAS  Google Scholar 

  94. Pacut RI, Kariv-Miller E. J Org Chem, 1986, 51: 3468–3470

    Article  CAS  Google Scholar 

  95. Inami Y, Ogihara H, Nagamatsu S, Asakura K, Yamanaka I. ACS Catal, 2019, 9: 2448–2457

    Article  CAS  Google Scholar 

  96. Amouzegar K, Savadogo O. J Appl Electrochem, 1997, 27: 539–542

    Article  CAS  Google Scholar 

  97. Cui X, Li W, Ryabchuk P, Junge K, Beller M. Nat Catal, 2018, 1: 385–397

    Article  CAS  Google Scholar 

  98. Koh K, Sanyal U, Lee MS, Cheng G, Song M, Glezakou VA, Liu Y, Li D, Rousseau R, Gutiérrez OY, Karkamkar A, Derewinski M, Lercher JA. Angew Chem Int Ed, 2020, 59: 1501–1505

    Article  CAS  Google Scholar 

  99. Su DS, Centi G. J Energy Chem, 2013, 22: 151–173

    Article  CAS  Google Scholar 

  100. Figueiredo JL. J Mater Chem A, 2013, 1: 9351–9364

    Article  CAS  Google Scholar 

  101. Zhu Y, Wang J, Chu H, Chu YC, Chen HM. ACS Energy Lett, 2020, 5: 1281–1291

    Article  CAS  Google Scholar 

  102. Yoo JM, Shin H, Park S, Sung YE. J Phys D-Appl Phys, 2021, 54: 173001

    Article  CAS  Google Scholar 

  103. Ji Y, Yin ZW, Yang Z, Deng YP, Chen H, Lin C, Yang L, Yang K, Zhang M, Xiao Q, Li JT, Chen Z, Sun SG, Pan F. Chem Soc Rev, 2021, 50: 10743–10763

    Article  CAS  PubMed  Google Scholar 

  104. Cardinal MF, Ende EV, Hackler RA, McAnally MO, Stair PC, Schatz GC, Van Duyne RP. Chem Soc Rev, 2017, 46: 3886–3903

    Article  CAS  PubMed  Google Scholar 

  105. Lai H, Xu F, Zhang Y, Wang L. J Mater Chem B, 2018, 6: 4008–4028

    Article  CAS  PubMed  Google Scholar 

  106. Handoko AD, Wei F, Jenndy F, Yeo BS, Seh ZW. Nat Catal, 2018, 1: 922–934

    Article  CAS  Google Scholar 

  107. Deng Y, Yeo BS. ACS Catal, 2017, 7: 7873–7889

    Article  CAS  Google Scholar 

  108. Wang X, Guo L. Angew Chem Int Ed, 2020, 59: 4231–4239

    Article  CAS  Google Scholar 

  109. Adarsh KS, Chandrasekaran N, Chakrapani V. Front Chem, 2020, 8: 137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bondue CJ, Koper MTM. J Am Chem Soc, 2019, 141: 12071–12078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang C, Wöll C. Adv Phys-X, 2017, 2: 373–408

    CAS  Google Scholar 

  112. Zhang Y, Guo SX, Zhang X, Bond AM, Zhang J. Nano Today, 2020, 31: 100835

    Article  CAS  Google Scholar 

  113. Román AM, Hasse JC, Medlin JW, Holewinski A. ACS Catal, 2019, 9: 10305–10316

    Article  Google Scholar 

  114. Gu Y, Liu Y, Cao X. Natl Sci Rev, 2017, 4: 161–163

    Article  CAS  Google Scholar 

  115. Mekhilef S, Saidur R, Safari A. Renew Sustain Energy Rev, 2012, 16: 981–989

    Article  CAS  Google Scholar 

  116. Narouz MR, Osten KM, Unsworth PJ, Man RWY, Salorinne K, Takano S, Tomihara R, Kaappa S, Malola S, Dinh CT, Padmos JD, Ayoo K, Garrett PJ, Nambo M, Horton JH, Sargent EH, Häkkinen H, Tsukuda T, Crudden CM. Nat Chem, 2019, 11: 419–425

    Article  CAS  PubMed  Google Scholar 

  117. Wang Y, Wang Z, Dinh CT, Li J, Ozden A, Kibria MG, Seifitokaldani A, Tan CS, Gabardo CM, Luo M, Zhou H, Li F, Lum Y, McCallum C, Xu Y, Liu M, Proppe A, Johnston A, Todorovic P, Zhuang TT, Sinton D, Kelley SO, Sargent EH. Nat Catal, 2019, 3: 98–106

    Article  Google Scholar 

  118. Ross MB, Dinh CT, Li Y, Kim D, De Luna P, Sargent EH, Yang P. J Am Chem Soc, 2017, 139: 9359–9363

    Article  CAS  PubMed  Google Scholar 

  119. Li J, Xu A, Li F, Wang Z, Zou C, Gabardo CM, Wang Y, Ozden A, Xu Y, Nam DH, Lum Y, Wicks J, Chen B, Wang Z, Chen J, Wen Y, Zhuang T, Luo M, Du X, Sham TK, Zhang B, Sargent EH, Sinton D. Nat Commun, 2020, 11: 3685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Monash-Warwick Alliance for funding support through the Accelerator Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Zhang, J. Electrochemical transformation of biomass-derived oxygenates. Sci. China Chem. 66, 1011–1031 (2023). https://doi.org/10.1007/s11426-022-1511-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1511-2

Keywords

Navigation