Skip to main content
Log in

Rb5Ba2(B10O17)2(BO2): The formation of unusual functional [BO2] in borates with deep-ultraviolet transmission window

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The design and synthesis of new deep-ultraviolet (DUV) optical materials are important but challenging. It is well known that the polarizability anisotropy of linear [BO2] is larger than those of [BO3]3− and [BO4]5−, which is the better choice for exploring excellent optical materials. Here, we search for such crystals in borate systems based on the unusual fundamental structural unit [BO2]. By combining the linear [BO2] with the traditional triangular [BO3]3− and tetrahedral [BO4]5− units, a new mixed metal borate, Rb5Ba2(B10O17)2(BO2) was obtained via high-temperature solution method. It exhibits excellent optical properties including a DUV transmission window (188 nm) and suitable birefringence (0.06). It also has good thermal stability and its crystal plates can be prepared easily. Furthermore, the strategies of designing borates with [BO2] units have been proposed from the transformation of crystal framework and the preparation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker P. Adv Mater, 1998, 10: 979–992

    Article  CAS  Google Scholar 

  2. Chen C, Liu G. Annu Rev Mater Sci, 1986, 16: 203–243

    Article  CAS  Google Scholar 

  3. Mutailipu M, Zhang M, Yang Z, Pan S. Acc Chem Res, 2019, 52: 791–801

    Article  CAS  PubMed  Google Scholar 

  4. Shi G, Wang Y, Zhang F, Zhang B, Yang Z, Hou X, Pan S, Poep-pelmeier KR. J Am Chem Soc, 2017, 139: 10645–10648

    Article  CAS  PubMed  Google Scholar 

  5. Fang Y, Zheng Y, Fang T, Chen Y, Zhu Y, Liang Q, Sheng H, Li Z, Chen C, Wang X. Sci China Chem, 2019, 63: 149–181

    Article  CAS  Google Scholar 

  6. Chen W, Zhen X, Wu W, Jiang X. Sci China Chem, 2020, 63: 648–664

    Article  CAS  Google Scholar 

  7. Mutailipu M, Poeppelmeier KR, Pan S. Chem Rev, 2021, 121: 1130–1202

    Article  CAS  PubMed  Google Scholar 

  8. Gao M, Wu H, Yu H, Hu Z, Wang J, Wu Y. Sci China Chem, 2021, 64: 1184–1191

    Article  CAS  Google Scholar 

  9. Pan X, Wu H, Cheng S, Wang Z. Inorg Chem Front, 2020, 7: 101–107

    Article  CAS  Google Scholar 

  10. Wang Y, Zhang B, Yang Z, Pan S. Angew Chem, 2018, 130: 2172–2176

    Article  Google Scholar 

  11. Xia M, Li RK. J Solid State Chem, 2016, 233: 58–61

    Article  CAS  Google Scholar 

  12. Wang X, Zhang F, Gao L, Yang Z, Pan S. Adv Sci, 2019, 6: 1901679

    Article  CAS  Google Scholar 

  13. Fabian M, Svab E. J Am Ceram Soc, 2016, 99: 2292–2299

    Article  CAS  Google Scholar 

  14. Xu X, Hu CL, Kong F, Zhang JH, Mao JG. Inorg Chem, 2011, 50: 8861–8868

    Article  CAS  PubMed  Google Scholar 

  15. Li W, Wu H, Yu H, Hu Z, Wang J, Wu Y. Chem Commun, 2020, 56: 6086–6089

    Article  CAS  Google Scholar 

  16. Zhang JH, Hu CL, Xu X, Kong F, Mao JG. Inorg Chem, 2011, 50: 1973–1982

    Article  CAS  PubMed  Google Scholar 

  17. Ju J, Yang T, Li G, Liao F, Wang Y, You L, Lin J. Chem Eur J, 2004, 10: 3901–3906

    Article  CAS  PubMed  Google Scholar 

  18. Li S, Liu X, Wu H, Song Z, Yu H, Lin Z, Hu Z, Wang J, Wu Y. Chem Sci, 2021, 12: 13897–13901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen C, Wang Y, Wu B, Wu K, Zeng W, Yu L. Nature, 1995, 373: 322–324

    Article  CAS  Google Scholar 

  20. Tang C, Jiang XX, Yin W, Liu L, Xia M, Huang Q, Song G, Wang X, Lin Z, Chen C. Dalton Trans, 2019, 48: 21–24

    Article  CAS  Google Scholar 

  21. Wang S, Ye N, Li W, Zhao D. J Am Chem Soc, 2010, 132: 8779–8786

    Article  CAS  PubMed  Google Scholar 

  22. Liu H, Zhang B, Li L, Wang Y. ACS Appl Mater Interfaces, 2021, 13: 30853–30860

    Article  CAS  PubMed  Google Scholar 

  23. Fang Z, Jiang X, Duan M, Hou Z, Tang C, Xia M, Liu L, Lin Z, Fan F, Bai L, Chen C. Chem Eur J, 2018, 24: 7856–7860

    Article  CAS  PubMed  Google Scholar 

  24. Jia Z, Zhang N, Ma Y, Zhao L, Xia M, Li R. Cryst Growth Des, 2017, 17: 558–562

    Article  CAS  Google Scholar 

  25. Tang RL, Hu CL, Mao FF, Feng JH, Mao JG. Chem Sci, 2019, 10: 837–842

    Article  CAS  PubMed  Google Scholar 

  26. Wang JH, Wei Q, Cheng JW, He H, Yang BF, Yang GY. Chem Commun, 2015, 51: 5066–5068

    Article  CAS  Google Scholar 

  27. Mutailipu M, Zhang M, Dong X, Chen Y, Pan S. Inorg Chem, 2016, 55: 10608–10616

    Article  CAS  PubMed  Google Scholar 

  28. Chen Z, Zeng H, Han S, Yang Z, Pan S. Inorg Chem Front, 2021, 8: 2584–2590

    Article  CAS  Google Scholar 

  29. Yan X, Luo S, Lin Z, Yao J, He R, Yue Y, Chen C. Inorg Chem, 2014, 53: 1952–1954

    Article  CAS  PubMed  Google Scholar 

  30. Qiu QM, Sun KN, Yang GY. CrystEngComm, 2021, 23: 7081–7089

    Article  CAS  Google Scholar 

  31. Mori Y, Kuroda I, Nakajima S, Sasaki T, Nakai S. Appl Phys Lett, 1995, 67: 1818–1820

    Article  CAS  Google Scholar 

  32. Zhao D, Ma FX, Fan YC, Zhang L, Zhang RJ, Duan PG. Dalton Trans, 2017, 46: 8673–8679

    Article  CAS  PubMed  Google Scholar 

  33. Frost RL, Xi Y, Scholz R. SpectroChim Acta Part A-Mol Biomol Spectr, 2012, 96: 946–951

    Article  CAS  Google Scholar 

  34. Ito A, Aoki H, Akao M, Miura N, Otsuka R, Tsutsumi S. J Ceram Soc Jpn, 1988, 96: 305–309

    Article  CAS  Google Scholar 

  35. Calvo C, Faggiani R, Krishnamachari N. Acta Crystlogr B Struct Sci, 1975, 31: 188–192

    Article  Google Scholar 

  36. Chen S, Hoffmann S, Carrillo-Cabrera W, Akselrud LG, Prots Y, Schwarz U, Zhao JT, Kniep R. J Solid State Chem, 2010, 183: 658–661

    Article  CAS  Google Scholar 

  37. Höppe HA. Z für Naturforsch B, 2015, 70: 769–774

    Article  CAS  Google Scholar 

  38. Huang C, Mutailipu M, Zhang F, Griffith KJ, Hu C, Yang Z, Griffin JM, Poeppelmeier KR, Pan S. Nat Commun, 2021, 12: 2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Christ CL, Clark JR. Phys Chem Miner, 1977, 2: 59–87

    Article  CAS  Google Scholar 

  40. Yuan G, Xue D. Acta Crystlogr B Struct Sci, 2007, 63: 353–362

    Article  CAS  Google Scholar 

  41. Zhai HJ, Wang LM, Li SD, Wang LS. J Phys Chem A, 2007, 111: 1030–1035

    Article  CAS  PubMed  Google Scholar 

  42. Chen C, Wu Y, Li R. Int Rev Phys Chem, 1989, 8: 65–91

    Article  Google Scholar 

  43. Xia Z, Poeppelmeier KR. Acc Chem Res, 2017, 50: 1222–1230

    Article  CAS  PubMed  Google Scholar 

  44. Zou G, Ok KM. Chem Sci, 2020, 11: 5404–5409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liang ML, Hu CL, Kong F, Mao JG. J Am Chem Soc, 2016, 138: 9433–9436

    Article  CAS  PubMed  Google Scholar 

  46. Gutsev GL, Boldyrev AI. Russ Chem Rev, 1987, 56: 519–531

    Article  Google Scholar 

  47. Calvo C, Faggiani R. J Chem Soc Chem Commun, 1974, 17: 714–715

    Article  Google Scholar 

  48. Yang Y, Dong X, Pan S, Wu H. Inorg Chem, 2018, 57: 13380–13385

    Article  CAS  PubMed  Google Scholar 

  49. Yang Y, Dong X, Yang Z, Pan S. Sci Bull, 2021, 66: 2165–2169

    Article  CAS  Google Scholar 

  50. Miao Z, Yang Y, Wei Z, Yang Z, Pan S. Dalton Trans, 2020, 49: 1292–1299

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51872325, 51922014, 61835014, 51972336), the Shanghai Cooperation Organization Science and Technology Partnership Program (2020E01039), Xinjiang Tianshan Youth Program-Out-standing Young Science and Technology Talents (2020Q004), the CAS Youth Interdisciplinary Team (JCTD-2021-18), the West Light Foundation of Chinese Academy of Sciences (2021-XBQNXZ-004), the Scientific Instrument Developing Project, Chinese Academy of Sciences (YJ-KYYQ20210033), Fujian Innovation Academy, Chinese Academy of Sciences, Key Research Program of Frontier Sciences, Chinese Academy of Sciences (ZDBS-LY-SLH035), Xinjiang Outstanding Young Scientific and Technological Talents (2020Q004), and the International Partnership Program of CAS (1A1365kysb20200008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Yang or Shilie Pan.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, F., Yang, R. et al. Rb5Ba2(B10O17)2(BO2): The formation of unusual functional [BO2] in borates with deep-ultraviolet transmission window. Sci. China Chem. 65, 719–725 (2022). https://doi.org/10.1007/s11426-021-1200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1200-7

Keywords

Navigation