Skip to main content
Log in

Access to chiral homoallylic vicinal diols from carbonyl allylation of aldehydes with allyl ethers via palladium-catalyzed allylic C-H borylation

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Chiral homoallylic vicinal diols are found in many bioactive compounds and are among the most versatile functional groups in organic chemistry. Here, we describe an asymmetric carbonyl allylation of aldehydes with allyl ethers proceeding via allylic C-H borylation enabled by palladium and chiral phosphoric acid sequential catalysis, providing facile access to homoallylic vicinal anti-diols in high yields and with excellent stereoselectivity. This protocol enables the total synthesis of aigialomycin D to be finished within 7 steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Casiraghi G, Zanardi F, Rassu G, Spanu P. Chem Rev, 1995, 95: 1677–1716

    Article  CAS  Google Scholar 

  2. Parenty A, Moreau X, Niel G, Campagne JM. Chem Rev, 2013, 113: PR1–PR40

    Article  CAS  PubMed  Google Scholar 

  3. Yasumoto T, Murata M. Chem Rev, 1993, 93: 1897–1909

    Article  CAS  Google Scholar 

  4. Lorente A, Lamariano-Merketegi J, Albericio F, Álvarez M. Chem Rev, 2013, 113: 4567–4610

    Article  CAS  PubMed  Google Scholar 

  5. Scheidt KA, Bannister TD, Tasaka A, Wendt MD, Savall BM, Fegley GJ, Roush WR. J Am Chem Soc, 2002, 124: 6981–6990

    Article  CAS  PubMed  Google Scholar 

  6. Mahapatra S, Carter RG. J Am Chem Soc, 2013, 135: 10792–10803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heinrich M, Murphy JJ, Ilg MK, Letort A, Flasz J, Philipps P, Fürstner A. Angew Chem Int Ed, 2018, 57: 13575–13581

    Article  CAS  Google Scholar 

  8. Barluenga S, Dakas PY, Ferandin Y, Meijer L, Winssinger N. Angew Chem Int Ed, 2006, 45: 3951–3954

    Article  CAS  Google Scholar 

  9. Jacobsen EN, Marko I, Mungall WS, Schroeder G, Sharpless KB. J Am Chem Soc, 1988, 110: 1968–1970

    Article  CAS  Google Scholar 

  10. Kolb HC, VanNieuwenhze MS, Sharpless KB. Chem Rev, 1994, 94: 2483–2547

    Article  CAS  Google Scholar 

  11. Johnson RA, Sharpless KB. In: Catalytic Asymmetric Synthesis. 2nd ed. Ojima I, Ed. New York: VCH, 2000. 357–398

  12. Xu D, Crispino GA, Sharpless KB. J Am Chem Soc, 1992, 114: 7570–7571

    Article  CAS  Google Scholar 

  13. Boeckman, RK, Hudack RA. J Org Chem, 1998, 63: 3524–3525

    Article  CAS  Google Scholar 

  14. Takai K, Nitta K, Utimoto K. Tetrahedron Lett, 1988, 29: 5263–5266

    Article  CAS  Google Scholar 

  15. Ramachandran PV, Gagare PD, Nicponski DR. 2.01 Allylborons. In: Comprehensive Organic Synthesis II. 2nd Ed. Knochel P, Ed. Amsterdam: Elsevier, 2014. 1–71

    Google Scholar 

  16. Lombardo M, Trombini C. Chem Rev, 2007, 107: 3843–3879

    Article  CAS  PubMed  Google Scholar 

  17. Gao S, Chen M. Org Lett, 2018, 20: 6174–6177

    Article  CAS  PubMed  Google Scholar 

  18. Schäfers F, Quach L, Schwarz JL, Saladrigas M, Daniliuc CG, Glorius F. ACS Catal, 2020, 10: 11841–11847

    Article  Google Scholar 

  19. Trost BM, Van Vranken DL. Chem Rev, 1996, 96: 395–422

    Article  CAS  PubMed  Google Scholar 

  20. Trost BM, Crawley ML. Chem Rev, 2003, 103: 2921–2944

    Article  CAS  PubMed  Google Scholar 

  21. Wang PS, Gong LZ. Acc Chem Res, 2020, 53: 2841–2854

    Article  CAS  PubMed  Google Scholar 

  22. Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall JE, Pfaltz A, Pericàs MA, Diéguez M. Chem Rev, 2021, 121: 4373–4505

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang R, Luan Y, Ye M. Chin J Chem, 2019, 37: 720–743

    Article  CAS  Google Scholar 

  24. Deng HP, Eriksson L, Szabó KJ. Chem Commun, 2014, 50: 9207–9210

    Article  CAS  Google Scholar 

  25. Olsson VJ, Szabó KJ. Angew Chem Int Ed, 2007, 46: 6891–6893

    Article  CAS  Google Scholar 

  26. Tao ZL, Li XH, Han ZY, Gong LZ. J Am Chem Soc, 2015, 137: 4054–4057

    Article  CAS  PubMed  Google Scholar 

  27. Li LL, Tao ZL, Han ZY, Gong LZ. Org Lett, 2017, 19: 102–105

    Article  CAS  PubMed  Google Scholar 

  28. Starý I, Stará IG, Kočovský P. Tetrahedron Lett, 1993, 34: 179–182

    Article  Google Scholar 

  29. Trost BM, McEachern EJ, Toste FD. J Am Chem Soc, 1998, 120: 12702–12703

    Article  CAS  Google Scholar 

  30. Lin HC, Xie PP, Dai ZY, Zhang SQ, Wang PS, Chen YG, Wang TC, Hong X, Gong LZ. J Am Chem Soc, 2019, 141: 5824–5834

    Article  CAS  PubMed  Google Scholar 

  31. Wang TC, Fan LF, Shen Y, Wang PS, Gong LZ. J Am Chem Soc, 2019, 141: 10616–10620

    Article  CAS  PubMed  Google Scholar 

  32. Wang TC, Wang PS, Gong LZ. Sci China Chem, 2020, 63: 454–459

    Article  CAS  Google Scholar 

  33. Jain P, Antilla JC. J Am Chem Soc, 2010, 132: 11884–11886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Isaka M, Suyarnsestakorn C, Tanticharoen M, Kongsaeree P, Thebt-aranonth Y. J Org Chem, 2002, 67: 1561–1566

    Article  CAS  PubMed  Google Scholar 

  35. Baird LJ, Timmer MSM, Teesdale-Spittle PH, Harvey JE. J Org Chem, 2009, 74: 2271–2277

    Article  CAS  PubMed  Google Scholar 

  36. Xu J, Chen A, Go ML, Nacro K, Liu B, Chai CLL. ACS Med Chem Lett, 2011, 2: 662–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Larsson JM, Szabó KJ. J Am Chem Soc, 2013, 135: 443–455

    Article  CAS  PubMed  Google Scholar 

  38. Diner C, Szabó KJ. J Am Chem Soc, 2017, 139: 2–14

    Article  CAS  PubMed  Google Scholar 

  39. Grayson MN, Pellegrinet SC, Goodman JM. J Am Chem Soc, 2012, 134: 2716–2722

    Article  CAS  PubMed  Google Scholar 

  40. Wang H, Jain P, Antilla JC, Houk KN. J Org Chem, 2013, 78: 1208–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grayson MN, Goodman JM. J Am Chem Soc, 2013, 135: 6142–6148

    Article  CAS  PubMed  Google Scholar 

  42. Grayson MN, Yang Z, Houk KN. J Am Chem Soc, 2017, 139: 7717–7720

    Article  CAS  PubMed  Google Scholar 

  43. Gao S, Duan M, Houk KN, Chen M. Angew Chem Int Ed, 2020, 59: 10540–10548

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21831007). We sincerely thank the group of SIOC for providing high-resolution MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu-Zhu Gong.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

11426_2021_1134_MOESM1_ESM.doc

Access to Chiral Homoallylic Vicinal Diols from Carbonyl Allylation of Aldehydes with Allyl ethers via Palladium-catalyzed Allylic C-H Borylation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TC., Wang, PS., Chen, DF. et al. Access to chiral homoallylic vicinal diols from carbonyl allylation of aldehydes with allyl ethers via palladium-catalyzed allylic C-H borylation. Sci. China Chem. 65, 298–303 (2022). https://doi.org/10.1007/s11426-021-1134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1134-x

Navigation