Skip to main content
Log in

Constructing artificial mimic-enzyme catalysts for carbon dioxide electroreduction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Natural bio-enzyme catalysts usually exhibit unexpected performances for many significant reactions, which are worthy of reference. Here we report artificial metal-sulfur-carbon (M-S-C) mimic-enzyme catalysts based on bionic design. The catalysts combine metal centers and functional ligands, which realize the universal fabrication of phase and adjustable dimension. The synthesized catalysts inherit the highly active and selective feature of bio-enzyme catalysts. When directly used for carbon dioxide electroreduction reaction, the Sn-S-C catalyst exhibits high selectivity for formate (Faradaic efficiency >95%), as well as a continuous stability over 120 h at a high current density of 740 mA cm−2, greatly outperforming the reported catalysts for formate formation. The catalytic sites and pathways are probed with in-situ Fourier transform infrared (FTIR) spectra, in-situ Raman spectra and synchrotron-radiation X-ray photoelectron spectra. These results break the inherent conundrum that it is impossible to simultaneously realize activity and durability under high selectivity. Our findings offer a versatile strategy to inherit from nature and integrate different components, thus designing efficient catalysts for various challenging reactions and energy conversions via a natural sustainable way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McCollum DL, Jewell J, Krey V, Bazilian M, Fay M, Riahi K. Nat Energy, 2016, 1: 16077

    Article  Google Scholar 

  2. Gao D, Arán-Ais RM, Jeon HS, Roldan Cuenya B. Nat Catal, 2019, 2: 198–210

    Article  CAS  Google Scholar 

  3. Birdja YY, Pérez-Gallent E, Figueiredo MC, Göttle AJ, Calle-Vallejo F, Koper MTM. Nat Energy, 2019, 4: 732–745

    Article  CAS  Google Scholar 

  4. Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, Li D, Yang J, Xie Y. Nature, 2016, 529: 68–71

    Article  CAS  Google Scholar 

  5. Li Y, Kim D, Louisia S, Xie C, Kong Q, Yu S, Lin T, Aloni S, Fakra SC, Yang P. Proc Natl Acad Sci USA, 2020, 117: 9194–9201

    Article  CAS  Google Scholar 

  6. Hu C, Zhang L, Li L, Zhu W, Deng W, Dong H, Zhao ZJ, Gong J. Sci China Chem, 2019, 62: 1030–1036

    Article  CAS  Google Scholar 

  7. He C, Chen S, Long R, Song L, Xiong Y. Sci China Chem, 2020, 63: 1721–1726

    Article  CAS  Google Scholar 

  8. Li F, Thevenon A, Rosas-Hernández A, Wang Z, Li Y, Gabardo CM, Ozden A, Dinh CT, Li J, Wang Y, Edwards JP, Xu Y, McCallum C, Tao L, Liang ZQ, Luo M, Wang X, Li H, O’Brien CP, Tan CS, Nam DH, Quintero-Bermudez R, Zhuang TT, Li YC, Han Z, Britt RD, Sinton D, Agapie T, Peters JC, Sargent EH. Nature, 2020, 577: 509–513

    Article  CAS  Google Scholar 

  9. Buckley AK, Lee M, Cheng T, Kazantsev RV, Larson DM, Goddard III WA, Toste FD, Toma FM. J Am Chem Soc, 2019, 141: 7355–7364

    Article  CAS  Google Scholar 

  10. Liu Y, Fan X, Nayak A, Wang Y, Shan B, Quan X, Meyer TJ. Proc Natl Acad Sci USA, 2019, 116: 26353–26358

    Article  CAS  Google Scholar 

  11. Ma W, Xie S, Zhang XG, Sun F, Kang J, Jiang Z, Zhang Q, Wu DY, Wang Y. Nat Commun, 2019, 10: 892

    Article  Google Scholar 

  12. Reda T, Plugge CM, Abram NJ, Hirst J. Proc Natl Acad Sci USA, 2008, 105: 10654–10658

    Article  CAS  Google Scholar 

  13. Zhang H, Liu H, Tian Z, Lu D, Yu Y, Cestellos-Blanco S, Sakimoto KK, Yang P. Nat Nanotech, 2018, 13: 900–905

    Article  CAS  Google Scholar 

  14. Seefeldt LC, Yang ZY, Lukoyanov DA, Harris DF, Dean DR, Raugei S, Hoffman BM. Chem Rev, 2020, 120: 5082–5106

    Article  CAS  Google Scholar 

  15. Barron AR, Wurzburger N, Bellenger JP, Wright SJ, Kraepiel AML, Hedin LO. Nat Geosci, 2009, 2: 42–45

    Article  CAS  Google Scholar 

  16. Aleku GA, Saaret A, Bradshaw-Allen RT, Derrington SR, Titchiner GR, Gostimskaya I, Gahloth D, Parker DA, Hay S, Leys D. Nat Chem Biol, 2020, 16: 1255–1260

    Article  CAS  Google Scholar 

  17. Balchin D, Hayer-Hartl M, Hartl FU. Science, 2016, 353: aac4354

    Article  Google Scholar 

  18. Luo Q, Hou C, Bai Y, Wang R, Liu J. Chem Rev, 2016, 116: 13571–13632

    Article  CAS  Google Scholar 

  19. Forget AL, Dombrowski CC, Amitani I, Kowalczykowski SC. Nat Protoc, 2013, 8: 525–538

    Article  CAS  Google Scholar 

  20. Mao AS, Özkale B, Shah NJ, Vining KH, Descombes T, Zhang L, Tringides CM, Wong SW, Shin JW, Scadden DT, Weitz DA, Mooney DJ. Proc Natl Acad Sci USA, 2019, 116: 15392–15397

    Article  CAS  Google Scholar 

  21. Wei P, Li H, Lin L, Gao D, Zhang X, Gong H, Qing G, Cai R, Wang G, Bao X. Sci China Chem, 2020, 63: 1711–1715

    Article  CAS  Google Scholar 

  22. Longo LM, Petrović D, Kamerlin SCL, Tawfik DS. Proc Natl Acad Sci USA, 2020, 117: 5310–5318

    Article  CAS  Google Scholar 

  23. Golub E, Subramanian RH, Esselborn J, Alberstein RG, Bailey JB, Chiong JA, Yan X, Booth T, Baker TS, Tezcan FA. Nature, 2020, 578: 172–176

    Article  CAS  Google Scholar 

  24. Thomaston JL, Polizzi NF, Konstantinidi A, Wang J, Kolocouris A, DeGrado WF. J Am Chem Soc, 2018, 140: 15219–15226

    Article  CAS  Google Scholar 

  25. Sun Z, Lv F, Cao L, Liu L, Zhang Y, Lu Z. Angew Chem Int Ed, 2015, 54: 7944–7948

    Article  CAS  Google Scholar 

  26. Kuan SL, Bergamini FRG, Weil T. Chem Soc Rev, 2018, 47: 9069–9105

    Article  CAS  Google Scholar 

  27. Aksel S, Daniel S. Semin Reprod Med, 1984, 2: 379–384

    Article  Google Scholar 

  28. Li D, Yang D, Yang X, Wang Y, Guo Z, Xia Y, Sun S, Guo S. Angew Chem Int Ed, 2016, 55: 15925–15928

    Article  CAS  Google Scholar 

  29. Wu ZY, Xu SL, Yan QQ, Chen ZQ, Ding YW, Li C, Liang HW, Yu SH. Sci Adv, 2018, 4: eaat0788

    Article  CAS  Google Scholar 

  30. Feaster JT, Shi C, Cave ER, Hatsukade T, Abram DN, Kuhl KP, Hahn C, Nørskov JK, Jaramillo TF. ACS Catal, 2017, 7: 4822–4827

    Article  CAS  Google Scholar 

  31. Zu X, Li X, Liu W, Sun Y, Xu J, Yao T, Yan W, Gao S, Wang C, Wei S, Xie Y. Adv Mater, 2019, 31: 1808135

    Article  Google Scholar 

  32. Zheng X, de Luna P, García de Arquer FP, Zhang B, Becknell N, Ross MB, Li Y, Banis MN, Li Y, Liu M, Voznyy O, Dinh CT, Zhuang T, Stadler P, Cui Y, Du X, Yang P, Sargent EH. Joule, 2017, 1: 794–805

    Article  CAS  Google Scholar 

  33. Li J, Chen G, Zhu Y, Liang Z, Pei A, Wu CL, Wang H, Lee HR, Liu K, Chu S, Cui Y. Nat Catal, 2018, 1: 592–600

    Article  CAS  Google Scholar 

  34. Fan L, Xia C, Zhu P, Lu Y, Wang H. Nat Commun, 2020, 11: 3633

    Article  CAS  Google Scholar 

  35. Nam DH, Bushuyev OS, Li J, de Luna P, Seifitokaldani A, Dinh CT, García de Arquer FP, Wang Y, Liang Z, Proppe AH, Tan CS, Todorović P, Shekhah O, Gabardo CM, Jo JW, Choi J, Choi MJ, Baek SW, Kim J, Sinton D, Kelley SO, Eddaoudi M, Sargent EH. J Am Chem Soc, 2018, 140: 11378–11386

    Article  CAS  Google Scholar 

  36. Xia C, Zhu P, Jiang Q, Pan Y, Liang W, Stavitski E, Alshareef HN, Wang H. Nat Energy, 2019, 4: 776–785

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2019YFA0210004, 2017YFA0207301), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB36000000), the National Natural Science Foundation of China (22125503, 21975242, U2032212, 21890754, 2212500041), the Youth Innovation Promotion Association of CAS (CX2340007003), the Major Program of Development Foundation of Hefei Center for Physical Science and Technology (2020HSC-CIP003), the Key Research Program of Frontier Sciences of CAS (QYZDYSSW-SLH011), the Fok Ying-Tong Education Foundation (161012), Users with Excellence Program of Hefei Science Center (2020HSC-UE001), and the University Synergy Innovation Program of Anhui Province (GXXT-2020-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Sun.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, Q., Li, X. et al. Constructing artificial mimic-enzyme catalysts for carbon dioxide electroreduction. Sci. China Chem. 65, 106–113 (2022). https://doi.org/10.1007/s11426-021-1116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1116-6

Keywords

Navigation