Skip to main content
Log in

Concentrated hydrogel electrolyte for integrated supercapacitor with high capacitance at subzero temperature

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Hydrogel electrolytes with anti-freezing properties are crucial for flexible quasi-solid-state supercapacitors operating at low temperatures. However, the electrolyte freezing and sluggish ion migration caused by the cold temperature inevitably damage the flexibility and electrochemical properties of supercapacitors. Herein, we introduce the concentrated electrolyte into a freeze-casted poly(vinyl alcohol) hydrogel film not only reducing the freezing point of the electrolyte (−51.14 °C) in gels for ensuring the flexibility, but also improving the ionic conductivity of the hydrogel electrolyte (5.92 mS cm−1 at −40 °C) at low temperatures. As a proof, an all-in-one supercapacitor, synthesized by the one-step polymerization method, exhibits a good specific capacitance of 278.6 mF cm−2 at −40 °C (accounting for 93.8% of the capacitance at room temperature), high rate performance (50% retention under the 100-fold increase in current densities), and long cycle life (88.9% retention after 8,000 cycles at −40 °C), representing an excellent low-temperature performance. Our results provide a fresh insight into the hydrogel electrolyte design for flexible energy storage devices operating in the wide range of temperature and open up an exciting direction for improving all-in-one supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu J, Yuan N, Razal JM, Zheng Y, Zhou X, Ding J, Cho K, Ge S, Zhang R, Gogotsi Y, Baughman RH. Energy Storage Mater, 2019, 22: 323–329

    Article  Google Scholar 

  2. Yang Y, Ng SW, Chen D, Chang J, Wang D, Shang J, Huang Q, Deng Y, Zheng Z. Small, 2019, 15: 1902071

    Article  Google Scholar 

  3. Lin Y, Zhang H, Liao H, Zhao Y, Li K. Chem Eng J, 2019, 367: 139–148

    Article  Google Scholar 

  4. Zhou Y, Wang CH, Lu W, Dai L. Adv Mater, 2020, 32: 1902779

    Article  Google Scholar 

  5. Yang C, Pan Q, Jia Q, Xin Y, Qi W, Wei H, Yang S, Cao B. Appl Surf Sci, 2020, 502: 144423

    Article  Google Scholar 

  6. Lv T, Liu M, Zhu D, Gan L, Chen T. Adv Mater, 2018, 30: 1705489

    Article  Google Scholar 

  7. Mo F, Liang G, Meng Q, Liu Z, Li H, Fan J, Zhi C. Energy Environ Sci, 2019, 12: 706–715

    Article  Google Scholar 

  8. Sui X, Guo H, Chen P, Zhu Y, Wen C, Gao Y, Yang J, Zhang X, Zhang L. Adv Funct Mater, 2020, 30: 1907986

    Article  Google Scholar 

  9. Jiang H, Shin W, Ma L, Hong JJ, Wei Z, Liu Y, Zhang S, Wu X, Xu Y, Guo Q, Subramanian MA, Stickle WF, Wu T, Lu J, Ji X. Adv Energy Mater, 2020, 10: 2000968

    Article  Google Scholar 

  10. Peng X, Liu H, Yin Q, Wu J, Chen P, Zhang G, Liu G, Wu C, Xie Y. Nat Commun, 2016, 7: 11782

    Article  Google Scholar 

  11. Xu J, Wang X, Zhou X, Yuan N, Ge S, Ding J. Electrochim Acta, 2019, 301: 478–486

    Article  Google Scholar 

  12. Lang J, Zhang X, Liu L, Yang B, Yang J, Yan X. J Power Sources, 2019, 423: 271–279

    Article  Google Scholar 

  13. Wu QL, Zhao SX, Yu L, Zheng XX, Wang YF, Yu LQ, Nan CW, Cao G. J Mater Chem A, 2019, 7: 13205–13214

    Article  Google Scholar 

  14. Jin X, Zhang G, Sun G, Yang H, Xiao Y, Gao J, Zhang Z, Jiang L, Qu L. Nano Energy, 2019, 64: 103938

    Article  Google Scholar 

  15. Rong Q, Lei W, Huang J, Liu M. Adv Energy Mater, 2018, 8: 1801967

    Article  Google Scholar 

  16. Wu J, Wu Z, Lu X, Han S, Yang BR, Gui X, Tao K, Miao J, Liu C. ACS Appl Mater Interfaces, 2019, 11: 9405–9414

    Article  Google Scholar 

  17. Hu C, Zhang Y, Wang X, Xing L, Shi L, Ran R. ACS Appl Mater Interfaces, 2018, 10: 44000–44010

    Article  Google Scholar 

  18. Nian Q, Wang J, Liu S, Sun T, Zheng S, Zhang Y, Tao Z, Chen J. Angew Chem Int Ed, 2019, 58: 16994–16999

    Article  Google Scholar 

  19. Pei Z, Yuan Z, Wang C, Zhao S, Fei J, Wei L, Chen J, Wang C, Qi R, Liu Z, Chen Y. Angew Chem Int Ed, 2020, 59: 4793–4799

    Article  Google Scholar 

  20. Abbas Q, Béguin F. J Power Sources, 2016, 318: 235–241

    Article  Google Scholar 

  21. Liu Z, Zhang J, Liu J, Long Y, Fang L, Wang Q, Liu T. J Mater Chem A, 2020, 8: 6219–6228

    Article  Google Scholar 

  22. Zhang XF, Ma X, Hou T, Guo K, Yin J, Wang Z, Shu L, He M, Yao J. Angew Chem Int Ed, 2019, 58: 7366–7370

    Article  Google Scholar 

  23. Morelle XP, Illeperuma WR, Tian K, Bai R, Suo Z, Vlassak JJ. Adv Mater, 2018, 30: 1801541

    Article  Google Scholar 

  24. Lu X, Yu M, Wang G, Tong Y, Li Y. Energy Environ Sci, 2014, 7: 2160

    Article  Google Scholar 

  25. Wang K, Zhang X, Li C, Sun X, Meng Q, Ma Y, Wei Z. Adv Mater, 2015, 27: 7451–7457

    Article  Google Scholar 

  26. Wang Y, Lv C, Ji G, Hu R, Zheng J. J Mater Chem A, 2020, 8: 8255–8261

    Article  Google Scholar 

  27. Kumar A, Mishra R, Reinwald Y, Bhat S. Mater Today, 2010, 13: 42–44

    Article  Google Scholar 

  28. Su L, Gong L, Lü H, Xü Q. J Power Sources, 2014, 248: 212–217

    Article  Google Scholar 

  29. Zhang H, Xia H, Zhao Y. ACS Macro Lett, 2012, 1: 1233–1236

    Article  Google Scholar 

  30. Bai Y, Liu R, Wang Y, Xiao H, Liu Y, Yuan G. ACS Appl Mater Interfaces, 2019, 11: 43294–43302

    Article  Google Scholar 

  31. Knopf DA, Luo BP, Krieger UK, Koop T. J Phys Chem A, 2003, 107: 4322–4332

    Article  Google Scholar 

  32. Mund C, Zellner R. ChemPhysChem, 2003, 4: 638–645

    Article  Google Scholar 

  33. Chu X, Huang H, Zhang H, Zhang H, Gu B, Su H, Liu F, Han Y, Wang Z, Chen N, Yan C, Deng W, Deng W, Yang W. Electrochim Acta, 2019, 301: 136–144

    Article  Google Scholar 

  34. Lai F, Feng J, Yan R, Wang GC, Antonietti M, Oschatz M. Adv Funct Mater, 2018, 28: 1801298

    Article  Google Scholar 

  35. Zhao S, Dong L, Sun B, Yan K, Zhang J, Wan S, He F, Munroe P, Notten PHL, Wang G. Small, 2020, 16: 1906131

    Article  Google Scholar 

  36. Wang J, Polleux J, Lim J, Dunn B. J Phys Chem C, 2007, 111: 14925–14931

    Article  Google Scholar 

  37. Brezesinski T, Wang J, Tolbert SH, Dunn B. Nat Mater, 2010, 9: 146–151

    Article  Google Scholar 

  38. Li K, Wang X, Li S, Urbankowski P, Li J, Xu Y, Gogotsi Y. Small, 2020, 16: 1906851

    Article  Google Scholar 

  39. Chen S, Zhang Y, Geng H, Yang Y, Rui X, Li CC. J Power Sources, 2019, 441: 227192

    Article  Google Scholar 

  40. Wang Y, Wang X, Li X, Bai Y, Xiao H, Liu Y, Liu R, Yuan G. Adv Funct Mater, 2019, 29: 1900326

    Article  Google Scholar 

  41. Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y. Adv Funct Mater, 2017, 27: 1701264

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Science and Technology Projects of Heilongjiang Province (2019ZX09A01) and the National Key Technology R&D Program (2017YFB1401805).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Liu or Guohui Yuan.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Liu, R., Liu, Y. et al. Concentrated hydrogel electrolyte for integrated supercapacitor with high capacitance at subzero temperature. Sci. China Chem. 64, 852–860 (2021). https://doi.org/10.1007/s11426-020-9950-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9950-8

Keywords

Navigation