Skip to main content
Log in

Bio-inspired nanoenzyme for metabolic reprogramming and anti-inflammatory treatment of hyperuricemia and gout

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Gout, a common type of inflammatory arthritis resulting from chronic elevation of uric acid (UA) level, is usually accompanied with hyperuricemia. The current clinical drugs for the treatment of gout and hyperuricemia are greatly restricted by their limited therapeutic efficacy, off-target toxicity and severe side effects. Here, a neutrophil membrane (NM)-coated and cascade catalytic nanoenzyme was devised with excellent inflammation targeting, inflammatory cytokines neutralizing and UA degrading characteristics for the treatment of gout and hyperuricemia with high efficacy and safety. This nanoenzyme was fabricated by encapsulating uricase (UOx) and catalase (CAT) into zeolitic imidazolate framework-8 (ZIF-8) and further coating it with NM. The NM-coated nanoenzyme inherits the antigenic exterior and cell membrane functions of neutrophils for inflammation targeting and cytokine neutralization. UOx and CAT encapsulated in ZIF-8 could efficiently degrade UA and eliminate hydrogen peroxide (H2O2) via a biocatalytic cascade, thus successfully blocking the inflammation amplification during gout development. Both in vitro and in vivo experiments demonstrated the preferable potentials of the nanoenzyme for gout targeting, inflammation elimination and UA degradation, exhibiting great promise for the treatment of gout and hyperuricemia in an effective and safe manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rouault TA. Nat Rev Neurosci, 2013, 14: 551–564

    Article  Google Scholar 

  2. Samadi M, Moradi S, Moradinazar M, Mostafai R, Pasdar Y. Neurol Sci, 2019, 40: 2031–2043

    Article  Google Scholar 

  3. Lan G, Zhang J, Ye W, Yang F, Li A, He W, Zhang WD. Sci China Chem, 2019, 62: 409–416

    Article  Google Scholar 

  4. Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. Int J Cardiol, 2016, 213: 8–14

    Article  Google Scholar 

  5. Borghi C, Palazzuoli A, Landolfo M, Cosentino E. Heart Fail Rev, 2020, 25: 43–51

    Article  Google Scholar 

  6. Schroder K, Zhou R, Tschopp J. Science, 2010, 327: 296–300

    Article  Google Scholar 

  7. Raucci F, Iqbal AJ, Saviano A, Minosi P, Piccolo M, Irace C, Caso F, Scarpa R, Pieretti S, Mascolo N, Maione F. Pharmacol Res, 2019, 147: 104351

    Article  Google Scholar 

  8. Schauer C, Janko C, Munoz LE, Zhao Y, Kienhöfer D, Frey B, Lell M, Manger B, Rech J, Naschberger E, Holmdahl R, Krenn V, Harrer T, Jeremic I, Bilyy R, Schett G, Hoffmann M, Herrmann M. Nat Med, 2014, 20: 511–517

    Article  Google Scholar 

  9. Martinon F, Mayor A, Tschopp J. Annu Rev Immunol, 2009, 27: 229–265

    Article  Google Scholar 

  10. Richette P, Clerson P, Périssin L, Flipo RM, Bardin T. Ann Rheum Dis, 2015, 74: 142–147

    Article  Google Scholar 

  11. Rock KL, Kataoka H, Lai JJ. Nat Rev Rheumatol, 2013, 9: 13–23

    Article  Google Scholar 

  12. Bardin T, Richette P. BMC Med, 2017, 15: 123

    Article  Google Scholar 

  13. Dehlin M, Jacobsson L, Roddy E. Nat Rev Rheumatol, 2020, 16: 380–390

    Article  Google Scholar 

  14. Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, Gabriel S, Hirsch R, Hochberg MC, Hunder GG, Jordan JM, Katz JN, Kremers HM, Wolfe F. Arthritis Rheum, 2008, 58: 26–35

    Article  Google Scholar 

  15. Kuo CF, Grainge MJ, Zhang W, Doherty M. Nat Rev Rheumatol, 2015, 11: 649–662

    Article  Google Scholar 

  16. Pillinger M H, Mandell B F. Nat Rev Rheumatol, 2020, 50: S24–S30

    Google Scholar 

  17. van Durme CM, Wechalekar MD, Buchbinder R, Schlesinger N, van der Heijde D, Landewé RB. Cochrane Database Syst Rev, 2014, 9: Cd010120

    Google Scholar 

  18. Dalbeth N, Lauterio TJ, Wolfe HR. Clin Ther, 2014, 36: 1465–1479

    Article  Google Scholar 

  19. Johnson RJ, Choi HK, Yeo AE, Lipsky PE. Hypertension, 2019, 74: 95–101

    Article  Google Scholar 

  20. Perez-Ruiz F, Dalbeth N. Seminars Arthritis Rheumatism, 2019, 48: 658–668

    Article  Google Scholar 

  21. Bardin T, Keenan RT, Khanna PP, Kopicko J, Fung M, Bhakta N, Adler S, Storgard C, Baumgartner S, So A. Ann Rheum Dis, 2017, 76: 811–820

    Article  Google Scholar 

  22. Aung T, Myung G, FitzGerald J. PPA, 2017, 11: 795–800

    Article  Google Scholar 

  23. Huang Y, Zhang C, Xu Z, Shen J, Zhang X, Du H, Zhang K, Zhang D. Hellenic J Cardiol, 2017, 58: 360–365

    Article  Google Scholar 

  24. Liu Y, Du J, Yan M, Lau MY, Hu J, Han H, Yang OO, Liang S, Wei W, Wang H, Li J, Zhu X, Shi L, Chen W, Ji C, Lu Y. Nat Nanotech, 2013, 8: 187–192

    Article  Google Scholar 

  25. Xu D, Han H, He Y, Lee H, Wu D, Liu F, Liu X, Liu Y, Lu Y, Ji C. Adv Mater, 2018, 30: 1707443

    Article  Google Scholar 

  26. Li H, Li L, Wang X, Li Q, Du M, Tang B. Sci China Chem, 2015, 58: 825–829

    Article  Google Scholar 

  27. Singh JA. J Clin Rheumatol, 2014, 20: 172–174

    Article  Google Scholar 

  28. Keith MP, Gilliland WR. Am J Med, 2007, 120: 221–224

    Article  Google Scholar 

  29. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Nature, 2006, 440: 237–241

    Article  Google Scholar 

  30. Brovold H, Lund T, Svistounov D, Solbu MD, Jenssen TG, Ytrehus K, Zykova SN. Sci Rep, 2019, 9: 10513

    Article  Google Scholar 

  31. Phillipson M, Kubes P. Nat Med, 2011, 17: 1381–1390

    Article  Google Scholar 

  32. Kolaczkowska E, Kubes P. Nat Rev Immunol, 2013, 13: 159–175

    Article  Google Scholar 

  33. Xue J, Zhao Z, Zhang L, Xue L, Shen S, Wen Y, Wei Z, Wang L, Kong L, Sun H, Ping Q, Mo R, Zhang C. Nat Nanotech, 2017, 12: 692–700

    Article  Google Scholar 

  34. Chu D, Dong X, Shi X, Zhang C, Wang Z. Adv Mater, 2018, 30: 1706245

    Article  Google Scholar 

  35. Popa-Nita O, Naccache PH. Immunol Cell Biol, 2010, 88: 32–40

    Article  Google Scholar 

  36. Schorn C, Strysio M, Janko C, Munoz LE, Schett G, Herrmann M. Autoimmunity, 2010, 43: 236–238

    Article  Google Scholar 

  37. Yang X, Li J, Yu Y, Wang J, Li D, Cao Z, Yang X. Sci China Chem, 2019, 62: 1379–1386

    Article  Google Scholar 

  38. Guo W, Liu L, Xiang C, Chen J, Liang XJ. Sci China Chem, 2019, 62: 1557–1560

    Article  Google Scholar 

  39. Sun M, Qian Q, Shi L, Xu L, Liu Q, Zhou L, Zhu X, Yue JM, Yan D. Sci China Chem, 2020, 63: 35–41

    Article  Google Scholar 

  40. Kang T, Zhu Q, Wei D, Feng J, Yao J, Jiang T, Song Q, Wei X, Chen H, Gao X, Chen J. ACS Nano, 2017, 11: 1397–1411

    Article  Google Scholar 

  41. Zhang C, Zhang L, Wu W, Gao F, Li R, Song W, Zhuang Z, Liu C, Zhang X. Adv Mater, 2019, 31: 1901179

    Article  Google Scholar 

  42. Zhang Q, Dehaini D, Zhang Y, Zhou J, Chen X, Zhang L, Fang RH, Gao W, Zhang L. Nat Nanotech, 2018, 13: 1182–1190

    Article  Google Scholar 

  43. Gao LZ, Wei H, Qu XG. Sin Vitae, 2020, 50: 682–697

    Article  Google Scholar 

  44. Huang Y, Ren J, Qu X. Chem Rev, 2019, 119: 4357–4412

    Article  Google Scholar 

  45. Jiang D, Ni D, Rosenkrans Z, Huang P, Yan X, Cai W. Chem Soc Rev, 2019, 48: 3683–3704

    Article  Google Scholar 

  46. Zhang L, Wan SS, Li CX, Xu L, Cheng H, Zhang XZ. Nano Lett, 2018, 18: 7609–7618

    Article  Google Scholar 

  47. Liu W, Liu T, Zou M, Yu W, Li C, He Z, Zhang M, Liu M, Li Z, Feng J, Zhang X. Adv Mater, 2018, 30: 1802006

    Article  Google Scholar 

  48. Zhang Z, Gu Y, Liu Q, Zheng C, Xu L, An Y, Jin X, Liu Y, Shi L. Small, 2018, 14: 1801865

    Article  Google Scholar 

  49. Liu X, Zhang Z, Zhang Y, Guan Y, Liu Z, Ren J, Qu X. Adv Funct Mater, 2016, 26: 7921–7928

    Article  Google Scholar 

  50. Li X, Xu D, Sun D, Zhang T, He X, Xiao D. J Cell Biochem, 2019, 120: 6718–6728

    Article  Google Scholar 

  51. Cheng H, Zhu JY, Li SY, Zeng JY, Lei Q, Chen KW, Zhang C, Zhang XZ. Adv Funct Mater, 2016, 26: 7847–7860

    Article  Google Scholar 

  52. Zarbock A, Ley K, McEver RP, Hidalgo A. Blood, 2011, 118: 6743–6751

    Article  Google Scholar 

  53. Busso N, So A. Arthritis Res Ther, 2010, 12: 206

    Article  Google Scholar 

  54. So AK, Martinon F. Nat Rev Rheumatol, 2017, 13: 639–647

    Article  Google Scholar 

  55. Mitroulis I, Kambas K, Ritis K. Semin Immunopathol, 2013, 35: 501–512

    Article  Google Scholar 

  56. Zhuang J, Duan Y, Zhang Q, Gao W, Li S, Fang RH, Zhang L. Nano Lett, 2020, 20: 4051–4058

    Article  Google Scholar 

  57. Wang Y, Zhang K, Qin X, Li T, Qiu J, Yin T, Huang J, McGinty S, Pontrelli G, Ren J, Wang Q, Wu W, Wang G. Adv Sci, 2019, 6: 1900172

    Article  Google Scholar 

  58. Wei X, Ying M, Dehaini D, Su Y, Kroll AV, Zhou J, Gao W, Fang RH, Chien S, Zhang L. ACS Nano, 2018, 12: 109–116

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51833007, 51690152, 51988102, 21721005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Zheng Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information of

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, C., Zhuang, ZN. et al. Bio-inspired nanoenzyme for metabolic reprogramming and anti-inflammatory treatment of hyperuricemia and gout. Sci. China Chem. 64, 616–628 (2021). https://doi.org/10.1007/s11426-020-9923-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9923-9

Keywords

Navigation