Skip to main content
Log in

Chalcogen cathode and its conversion electrochemistry in rechargeable Li/Na batteries

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Chalcogen elements, such as sulfur (S), selenium (Se), tellurium (Te) and the interchalcogen compounds, have been studied extensively as cathode materials for the next-generation rechargeable lithium/sodium (Li/Na) batteries. The high energy output of the Li/Na-chalcogen battery originates from the two-electron conversion reaction between chalcogen cathode and alkali metal anode, through which both electrodes are able to deliver high theoretical capacities. The reaction also leads to parasitic reactions that deteriorate the chemical environment in the battery, and different cathode-anode combinations show their own features. In this article, we intend to discuss the fundamental conversion electrochemistry between chalcogen elements and alkali metals and its potential influence, either positive or negative, on the performance of batteries. The strategies to improve the conversion electrochemistry of chalcogen cathode are also reviewed to offer insights into the reasonable design of rechargeable Li/Na-chalcogen batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao YFY, Kummer JT. J Inorg Nucl Chem, 1967, 29: 2453–2475

    CAS  Google Scholar 

  2. Abouimrane A, Dambournet D, Chapman KW, Chupas PJ, Weng W, Amine K. J Am Chem Soc, 2012, 134: 4505–4508

    PubMed  CAS  Google Scholar 

  3. Liu Y, Wang J, Xu Y, Zhu Y, Bigio D, Wang C. J Mater Chem A, 2014, 2: 12201–12207

    CAS  Google Scholar 

  4. Peng HJ, Huang JQ, Zhang Q. Chem Soc Rev, 2017, 46: 5237–5288

    PubMed  CAS  Google Scholar 

  5. Peng HJ, Huang JQ, Cheng XB, Zhang Q. Adv Energy Mater, 2017, 7: 1700260

    Google Scholar 

  6. Pang Q, Liang X, Kwok CY, Nazar LF. Nat Energy, 2016, 1: 16132

    CAS  Google Scholar 

  7. Ji X, Nazar LF. J Mater Chem, 2010, 20: 9821–9826

    CAS  Google Scholar 

  8. Manthiram A, Fu Y, Chung SH, Zu C, Su YS. Chem Rev, 2014, 114: 11751–11787

    PubMed  CAS  Google Scholar 

  9. Bhargav A, He J, Gupta A, Manthiram A. Joule, 2020, 4: 285–291

    Google Scholar 

  10. Yin YX, Xin S, Guo YG, Wan LJ. Angew Chem Int Ed, 2013, 52: 13186–13200

    CAS  Google Scholar 

  11. Xin S, Chang Z, Zhang X, Guo YG. Natl Sci Rev, 2017, 4: 54–70

    CAS  Google Scholar 

  12. Shen J, Liu J, Liu Z, Hu R, Liu J, Zhu M. Chem Eur J, 2018, 24: 4573–4582

    PubMed  CAS  Google Scholar 

  13. Zhao M, Peng H, Zhang Z, Li B, Chen X, Xie J, Chen X, Wei J, Zhang Q, Huang J. Angew Chem Int Ed, 2019, 58: 3779–3783

    CAS  Google Scholar 

  14. Herbet D, Ulam J. Electric Dry Cells and Storage Batteries. US Patent, 3043896, 1962-07-10

  15. Bhaskara RML. Organic Electrolyte Cells. US Patent, 3413154, 1966-03-23

  16. Peled E, Sternberg Y, Gorenshtein A, Lavi Y. J Electrochem Soc, 1989, 136: 1621–1625

    CAS  Google Scholar 

  17. Ji X, Lee KT, Nazar LF. Nat Mater, 2009, 8: 500–506

    PubMed  CAS  Google Scholar 

  18. Gotou T, Kawamura F, Sagawa N, Yusa H. Power Storage System Using Sodium-Sulfur Batteries. US Patent, US4578325A, 1986-03-25

  19. Abe H. High-Temperature Secondary Battery Based Energy Storage and Power Compensation System. US Patent, US20010043013A1, 2001-11-22

  20. Wen Z, Hu Y, Wu X, Han J, Gu Z. Adv Funct Mater, 2013, 23: 1005–1018

    CAS  Google Scholar 

  21. Andriollo M, Benato R, Dambone Sessa S, Di Pietro N, Hirai N, Nakanishi Y, Senatore E. J Energy Storage, 2016, 5: 146–155

    Google Scholar 

  22. Wei S, Xu S, Agrawral A, Choudhury S, Lu Y, Tu Z, Ma L, Archer LA. Nat Commun, 2016, 7: 11722

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Xin S, Yin YX, Guo YG, Wan LJ. Adv Mater, 2014, 26: 1261–1265

    PubMed  CAS  Google Scholar 

  24. Park CW, Ahn JH, Ryu HS, Kim KW, Ahn HJ. Electrochem Solid-State Lett, 2006, 9: A123

    CAS  Google Scholar 

  25. Xin S, Yu L, You Y, Cong HP, Yin YX, Du XL, Guo YG, Yu SH, Cui Y, Goodenough JB. Nano Lett, 2016, 16: 4560–4568

    PubMed  CAS  Google Scholar 

  26. He J, Lv W, Chen Y, Wen K, Xu C, Zhang W, Li Y, Qin W, He W. ACS Nano, 2017, 11: 8144–8152

    PubMed  CAS  Google Scholar 

  27. Ding N, Chen SF, Geng DS, Chien SW, An T, Hor TSA, Liu ZL, Yu SH, Zong Y. Adv Energy Mater, 2015, 5: 1401999

    Google Scholar 

  28. Xu J, Xin S, Liu JW, Wang JL, Lei Y, Yu SH. Adv Funct Mater, 2016, 26: 3580–3588

    CAS  Google Scholar 

  29. Li X, Liang J, Zhang K, Hou Z, Zhang W, Zhu Y, Qian Y. Energy Environ Sci, 2015, 8: 3181–3186

    CAS  Google Scholar 

  30. Luo C, Zhu Y, Wen Y, Wang J, Wang C. Adv Funct Mater, 2014, 24: 4082–4089

    CAS  Google Scholar 

  31. Xu GL, Ma T, Sun CJ, Luo C, Cheng L, Ren Y, Heald SM, Wang C, Curtiss L, Wen J, Miller DJ, Li T, Zuo X, Petkov V, Chen Z, Amine K. Nano Lett, 2016, 16: 2663–2673

    PubMed  CAS  Google Scholar 

  32. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Nat Mater, 2012, 11: 19–29

    CAS  Google Scholar 

  33. Choi JW, Aurbach D. Nat Rev Mater, 2016, 1: 16013

    CAS  Google Scholar 

  34. Hagen M, Hanselmann D, Ahlbrecht K, Maça R, Gerber D, Tübke J. Adv Energy Mater, 2015, 5: 1401986

    Google Scholar 

  35. Guo YG. Nanostructures and Nanomaterials for Batteries: Principles and Applications. Singapore: Springer Nature Singapore Pte Ltd., 2019

    Google Scholar 

  36. Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J. Beilstein J Nanotechnol, 2015, 6: 1016–1055

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Whittingham MS. Science, 1976, 192: 1126–1127

    PubMed  CAS  Google Scholar 

  38. Dahn JR, Zheng T, Liu Y, Xue JS. Science, 1995, 270: 590–593

    CAS  Google Scholar 

  39. Goodenough JB, Park KS. J Am Chem Soc, 2013, 135: 1167–1176

    PubMed  CAS  Google Scholar 

  40. Whittingham MS. Chem Rev, 2014, 114: 11414–11443

    PubMed  CAS  Google Scholar 

  41. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T. Energy Environ Sci, 2012, 5: 5884–5901

    CAS  Google Scholar 

  42. Manthiram A, Yu X, Wang S. Nat Rev Mater, 2017, 2: 1–6

    Google Scholar 

  43. Ellis BL, Nazar LF. Curr Opin Solid State Mater Sci, 2012, 16: 168–177

    CAS  Google Scholar 

  44. Yuan H, Peng HJ, Huang JQ, Zhang Q. Adv Mater Interfaces, 2019, 6: 1802046

    CAS  Google Scholar 

  45. Greenwood NN, Earnshaw A. Chemistry of the Elements. Oxford: Elsevier Butterworth-Heinemann, 2012

    Google Scholar 

  46. Xin S, You Y, Li HQ, Zhou W, Li Y, Xue L, Cong HP. ACS Appl Mater Interfaces, 2016, 8: 33704–33711

    PubMed  CAS  Google Scholar 

  47. Yang Y, Zheng G, Cui Y. Chem Soc Rev, 2013, 42: 3018–3032

    PubMed  CAS  Google Scholar 

  48. Gao J, Lowe MA, Kiya Y, Abruña HD. J Phys Chem C, 2011, 115: 25132–25137

    CAS  Google Scholar 

  49. Xin S, Gu L, Zhao NH, Yin YX, Zhou LJ, Guo YG, Wan LJ. J Am Chem Soc, 2012, 134: 18510–18513

    PubMed  CAS  Google Scholar 

  50. Wang L, He X, Li J, Chen M, Gao J, Jiang C. Electrochim Acta, 2012, 72: 114–119

    CAS  Google Scholar 

  51. Yang Y, Zheng G, Misra S, Nelson J, Toney MF, Cui Y. J Am Chem Soc, 2012, 134: 15387–15394

    PubMed  CAS  Google Scholar 

  52. Wang J, Yang J, Nuli Y, Holze R. Electrochem Commun, 2007, 9: 31–34

    CAS  Google Scholar 

  53. Kumar D, Rajouria SK, Kuhar SB, Kanchan DK. Solid State Ion, 2017, 312: 8–16

    CAS  Google Scholar 

  54. Kummer JT, Weber N. Sae Trans, 1968: 1003–1028

  55. Cheng F, Liang J, Tao Z, Chen J. Adv Mater, 2011, 23: 1695–1715

    PubMed  CAS  Google Scholar 

  56. Qu Y, Zhang Z, Lai Y, Liu Y, Li J. Solid State Ion, 2015, 274: 71–76

    CAS  Google Scholar 

  57. Liu T, Zhang Y, Hou J, Lu S, Jiang J, Xu M. RSC Adv, 2015, 5: 84038–84043

    CAS  Google Scholar 

  58. Zhang Z, Yang X, Wang X, Li Q, Zhang Z. Solid State Ion, 2014, 260: 101–106

    CAS  Google Scholar 

  59. Yang CP, Yin YX, Guo YG. J Phys Chem Lett, 2015, 6: 256–266

    PubMed  CAS  Google Scholar 

  60. Cui Y, Abouimrane A, Sun CJ, Ren Y, Amine K. Chem Commun, 2014, 50: 5576–5579

    CAS  Google Scholar 

  61. Li Z, Yuan L, Yi Z, Liu Y, Huang Y. Nano Energy, 2014, 9: 229–236

    CAS  Google Scholar 

  62. Zhang SF, Wang WP, Xin S, Ye H, Yin YX, Guo YG. ACS Appl Mater Interfaces, 2017, 9: 8759–8765

    PubMed  CAS  Google Scholar 

  63. Li Y, Wang MQ, Chen Y, Hu L, Liu T, Bao S, Xu M. Energy Storage Mater, 2018, 10: 10–15

    Google Scholar 

  64. Yang Y, Yu G, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao Z, Cui Y. ACS Nano, 2011, 5: 9187–9193

    PubMed  CAS  Google Scholar 

  65. Xin S, Guo YG, Wan LJ. Acc Chem Res, 2012, 45: 1759–1769

    PubMed  CAS  Google Scholar 

  66. Xu DW, Xin S, You Y, Li Y, Cong HP, Yu SH. ChemNanoMat, 2016, 2: 712–718

    CAS  Google Scholar 

  67. Yang CP, Yin YX, Ye H, Jiang KC, Zhang J, Guo YG. ACS Appl Mater Interfaces, 2014, 6: 8789–8795

    PubMed  CAS  Google Scholar 

  68. Liu X, Huang JQ, Zhang Q, Mai L. Adv Mater, 2017, 29: 1601759

    Google Scholar 

  69. Xie J, Li B, Peng H, Song Y, Zhao M, Chen X, Zhang Q, Huang J. Adv Mater, 2019, 31: 1903813

    CAS  Google Scholar 

  70. Song J, Xu T, Gordin ML, Zhu P, Lv D, Jiang YB, Chen Y, Duan Y, Wang D. Adv Funct Mater, 2014, 24: 1243–1250

    CAS  Google Scholar 

  71. Pang Q, Liang X, Kwok CY, Kulisch J, Nazar LF. Adv Energy Mater, 2017, 7: 1601630

    Google Scholar 

  72. Chen W, Lei T, Lv W, Hu Y, Yan Y, Jiao Y, He W, Li Z, Yan C, Xiong J. Adv Mater, 2018, 30: 1804084

    Google Scholar 

  73. Zhang J, Li JY, Wang WP, Zhang XH, Tan XH, Chu WG, Guo YG. Adv Energy Mater, 2018, 8: 1702839

    Google Scholar 

  74. Wang Z, Shen J, Liu J, Xu X, Liu Z, Hu R, Yang L, Feng Y, Liu J, Shi Z, Ouyang L, Yu Y, Zhu M. Adv Mater, 2019, 31: 1902228

    Google Scholar 

  75. Wang P, Ye H, Yin YX, Chen H, Bian YB, Wang ZR, Cao FF, Guo YG. Adv Mater, 2019, 31: 1805134

    Google Scholar 

  76. Yuan Z, Peng HJ, Huang JQ, Liu XY, Wang DW, Cheng XB, Zhang Q. Adv Funct Mater, 2014, 24: 6105–6112

    CAS  Google Scholar 

  77. Fu Y, Su YS, Manthiram A. Angew Chem Int Ed, 2013, 52: 6930–6935

    CAS  Google Scholar 

  78. Zhou G, Paek E, Hwang GS, Manthiram A. Nat Commun, 2015, 6: 7760

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Qie L, Zu C, Manthiram A. Adv Energy Mater, 2016, 6: 1502459

    Google Scholar 

  80. Cavallo C, Agostini M, Genders JP, Abdelhamid ME, Matic A. J Power Sources, 2019, 416: 111–117

    CAS  Google Scholar 

  81. Yu X, Manthiram A. J Phys Chem C, 2014, 118: 22952–22959

    CAS  Google Scholar 

  82. Jin J, Wen Z, Ma G, Lu Y, Cui Y, Wu M, Liang X, Wu X. RSC Adv, 2013, 3: 2558–2560

    CAS  Google Scholar 

  83. Sun L, Wang D, Luo Y, Wang K, Kong W, Wu Y, Zhang L, Jiang K, Li Q, Zhang Y, Wang J, Fan S. ACS Nano, 2016, 10: 1300–1308

    PubMed  CAS  Google Scholar 

  84. Cao J, Chen C, Zhao Q, Zhang N, Lu Q, Wang X, Niu Z, Chen J. Adv Mater, 2016, 28: 9629–9636

    PubMed  CAS  Google Scholar 

  85. Chung SH, Chang CH, Manthiram A. Small, 2016, 12: 939–950

    PubMed  CAS  Google Scholar 

  86. Song J, Yu Z, Xu T, Chen S, Sohn H, Regula M, Wang D. J Mater Chem A, 2014, 2: 8623–8627

    CAS  Google Scholar 

  87. Lu Q, Wang X, Cao J, Chen C, Chen K, Zhao Z, Niu Z, Chen J. Energy Storage Mater, 2017, 8: 77–84

    Google Scholar 

  88. Zhang K, Xie K, Yuan K, Lu W, Hu S, Wei W, Bai M, Shen C. J Mater Chem A, 2017, 5: 7309–7315

    CAS  Google Scholar 

  89. Han K, Liu Z, Ye H, Dai F. J Power Sources, 2014, 263: 85–89

    CAS  Google Scholar 

  90. He J, Chen Y, Lv W, Wen K, Li P, Wang Z, Zhang W, Qin W, He W. ACS Energy Lett, 2016, 1: 16–20

    CAS  Google Scholar 

  91. Han K, Liu Z, Shen J, Lin Y, Dai F, Ye H. Adv Funct Mater, 2015, 25: 455–463

    CAS  Google Scholar 

  92. Kim I, Kim CH, Choi S, Ahn JP, Ahn JH, Kim KW, Cairns EJ, Ahn HJ. J Power Sources, 2016, 307: 31–37

    CAS  Google Scholar 

  93. Zeng L, Wei X, Wang J, Jiang Y, Li W, Yu Y. J Power Sources, 2015, 281: 461–469

    CAS  Google Scholar 

  94. Song Y, Cai W, Kong L, Cai J, Zhang Q, Sun J. Adv Energy Mater, 2020, 10: 1901075

    CAS  Google Scholar 

  95. He JR, Manthiram A. Energy Storage Mater, 2019, 20: 55–70

    Google Scholar 

  96. Li Y, Fan J, Zhang J, Yang J, Yuan R, Chang J, Zheng M, Dong Q. ACS Nano, 2017, 11: 11417–11424

    PubMed  CAS  Google Scholar 

  97. Deng DR, Xue F, Jia YJ, Ye JC, Bai CD, Zheng MS, Dong QF. ACS Nano, 2017, 11: 6031–6039

    PubMed  CAS  Google Scholar 

  98. Li Y, Xu P, Chen G, Mou J, Xue S, Li K, Zheng F, Dong Q, Hu J, Yang C, Liu M. Chem Eng J, 2020, 380: 122595

    CAS  Google Scholar 

  99. Al Salem H, Babu G. V. Rao C, Arava LMR. J Am Chem Soc, 2015, 137: 11542–11545

    PubMed  CAS  Google Scholar 

  100. Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF. Nat Commun, 2015, 6: 5682

    PubMed  Google Scholar 

  101. Yun JH, Kim JH, Kim DK, Lee HW. Nano Lett, 2018, 18: 475–481

    PubMed  CAS  Google Scholar 

  102. Ye JC, Chen JJ, Yuan RM, Deng DR, Zheng MS, Cronin L, Dong QF. J Am Chem Soc, 2018, 140: 3134–3138

    PubMed  CAS  Google Scholar 

  103. Du Z, Chen X, Hu W, Chuang C, Xie S, Hu A, Yan W, Kong X, Wu X, Ji H, Wan LJ. J Am Chem Soc, 2019, 141: 3977–3985

    PubMed  CAS  Google Scholar 

  104. Zhang BW, Sheng T, Liu YD, Wang YX, Zhang L, Lai WH, Wang L, Yang J, Gu QF, Chou SL, Liu HK, Dou SX. Nat Commun, 2018, 9: 4082

    PubMed  PubMed Central  Google Scholar 

  105. Yim T, Park MS, Yu JS, Kim KJ, Im KY, Kim JH, Jeong G, Jo YN, Woo SG, Kang KS, Lee I, Kim YJ. Electrochim Acta, 2013, 107: 454–460

    CAS  Google Scholar 

  106. Lacey MJ, Yalamanchili A, Maibach J, Tengstedt C, Edström K, Brandell D. RSC Adv, 2016, 6: 3632–3641

    CAS  Google Scholar 

  107. Li WY, Yao HB, Yan K, Zheng GY, Liang Z, Chiang Y-M, Cui Y. Nat Commun, 2015, 6: 1–8

    Google Scholar 

  108. Aurbach D, Pollak E, Elazari R, Salitra G, Scordilis Kelley C, Affinito J. J Electrochem Soc, 2009, 156: A694

    CAS  Google Scholar 

  109. Yang T, Qian T, Liu J, Xu N, Li Y, Grundish N, Yan C, Goodenough JB. ACS Nano, 2019, 13: 9067–9073

    PubMed  CAS  Google Scholar 

  110. Zheng J, Ji G, Fan X, Chen J, Li Q, Wang H, Yang Y, DeMella KC, Raghavan SR, Wang C. Adv Energy Mater, 2019, 9: 1803774

    Google Scholar 

  111. Suo L, Hu YS, Li H, Armand M, Chen L. Nat Commun, 2013, 4: 1481

    PubMed  Google Scholar 

  112. Wang L, Liu J, Yuan S, Wang Y, Xia Y. Energy Environ Sci, 2016, 9: 224–231

    CAS  Google Scholar 

  113. Lang SY, Xiao RJ, Gu L, Guo YG, Wen R, Wan LJ. J Am Chem Soc, 2018, 140: 8147–8155

    PubMed  CAS  Google Scholar 

  114. Yue J, Yan M, Yin YX, Guo YG. Adv Funct Mater, 2018, 28: 1707533

    Google Scholar 

  115. Liu FQ, Wang WP, Yin YX, Zhang SF, Shi JL, Wang L, Zhang XD, Zheng Y, Zhou JJ, Li L, Guo YG. Sci Adv, 2018, 4: eaat5383

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Yang CP, Yin YX, Guo YG, Wan LJ. J Am Chem Soc, 2015, 137: 2215–2218

    PubMed  CAS  Google Scholar 

  117. Li Z, Zhang J, Lu Y, Lou XWD. Sci Adv, 2018, 4: eaat1687

    PubMed  PubMed Central  Google Scholar 

  118. Freni M, Giusto D, Valenti V. J Inorg Nucl Chem, 1965, 27: 755–756

    CAS  Google Scholar 

  119. Cooper R, Culka JV. J Inorg Nucl Chem, 1967, 29: 1217–1224

    CAS  Google Scholar 

  120. Hansen M, Anderko K, Salzberg HW. JElectrochem Soc, 1958, 105: 260C

    Google Scholar 

  121. Kotkata MF, Nouh SA, Farkas L, Radwan MM. J Mater Sci, 1992, 27: 1785–1794

    CAS  Google Scholar 

  122. Sharma RC, Chang YA. JPE, 1996, 17: 148

    CAS  Google Scholar 

  123. Laitinen RS, Oilunkaniemi R. In: Comprehensive Inorganic Chemistry Ii (2nd ed). Reedijk J, Poeppelmeier K, Eds. Amsterdam: Elsevier, 2013. 197–231

  124. Cui Y, Abouimrane A, Lu J, Bolin T, Ren Y, Weng W, Sun C, Maroni VA, Heald SM, Amine K. J Am Chem Soc, 2013, 135: 8047–8056

    PubMed  CAS  Google Scholar 

  125. Xu GL, Sun H, Luo C, Estevez L, Zhuang M, Gao H, Amine R, Wang H, Zhang X, Sun CJ, Liu Y, Ren Y, Heald SM, Wang C, Chen Z, Amine K. Adv Energy Mater, 2019, 9: 1802235

    Google Scholar 

  126. Li DT, Sharma RC, Chang YA. Bull Alloy Phase Diagrams, 1989, 10: 348–350

    CAS  Google Scholar 

  127. Xu K, Liu X, Liang J, Cai J, Zhang K, Lu Y, Wu X, Zhu M, Liu Y, Zhu Y, Wang G, Qian Y. ACS Energy Lett, 2018, 3: 420–427

    CAS  Google Scholar 

  128. Seo JU, Seong GK, Park CM. Sci Rep, 2015, 5: 7969

    PubMed  PubMed Central  CAS  Google Scholar 

  129. He J, Chen Y, Lv W, Wen K, Wang Z, Zhang W, Li Y, Qin W, He W. ACS Nano, 2016, 10: 8837–8842

    PubMed  CAS  Google Scholar 

  130. Chivers T, Laitinen RS, Schmidt KJ, Taavitsainen J. Inorg Chem, 1993, 32: 337–340

    CAS  Google Scholar 

  131. Li J, Yuan Y, Jin H, Lu H, Liu A, Yin D, Wang J, Lu J, Wang S. Energy Storage Mater, 2019, 16: 31–36

    Google Scholar 

  132. Nanda S, Bhargav A, Manthiram A. Joule, 2020, 4: 1121–1135

    CAS  Google Scholar 

  133. Eftekhari A. Sustain Energy Fuels, 2017, 1: 14–29

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2019YFA0705700), the National Natural Science Foundation of China (21975266, 21805062) and the Beijing National Laboratory for Molecular Sciences (BNLMS-CXXM-201906). S.X. acknowledges the support from the Start-up Funds from the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Xin.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YH., Li, XT., Wang, WP. et al. Chalcogen cathode and its conversion electrochemistry in rechargeable Li/Na batteries. Sci. China Chem. 63, 1402–1415 (2020). https://doi.org/10.1007/s11426-020-9845-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9845-5

Keywords

Navigation