Skip to main content
Log in

Identify crystal structures by a new paradigm based on graph theory for building materials big data

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Material identification technique is crucial to the development of structure chemistry and materials genome project. Current methods are promising candidates to identify structures effectively, but have limited ability to deal with all structures accurately and automatically in the big materials database because different material resources and various measurement errors lead to variation of bond length and bond angle. To address this issue, we propose a new paradigm based on graph theory (GT scheme) to improve the efficiency and accuracy of material identification, which focuses on processing the “topological relationship” rather than the value of bond length and bond angle among different structures. By using this method, automatic deduplication for big materials database is achieved for the first time, which identifies 626,772 unique structures from 865,458 original structures. Moreover, the graph theory scheme has been modified to solve some advanced problems such as identifying highly distorted structures, distinguishing structures with strong similarity and classifying complex crystal structures in materials big data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hautier G, Fischer CC, Jain A, Mueller T, Ceder G. Chem Mater, 2010, 22: 3762–3767

    Article  CAS  Google Scholar 

  2. Hautier G, Fischer C, Ehrlacher V, Jain A, Ceder G. Inorg Chem, 2011, 50: 656–663

    Article  CAS  PubMed  Google Scholar 

  3. Hautier G, Jain A, Ong SP, Kang B, Moore C, Doe R, Ceder G. Chem Mater, 2011, 23: 3495–3508

    Article  CAS  Google Scholar 

  4. Jain A, Hautier G, Moore CJ, Ping Ong S, Fischer CC, Mueller T, Persson KA, Ceder G. Comput Mater Sci, 2011, 50: 2295–2310

    Article  CAS  Google Scholar 

  5. Mueller T, Hautier G, Jain A, Ceder G. Chem Mater, 2011, 23: 3854–3862

    Article  CAS  Google Scholar 

  6. Wu Y, Lazic P, Hautier G, Persson K, Ceder G. Energy Environ Sci, 2013, 6: 157–168

    Article  CAS  Google Scholar 

  7. Yang L, Ceder G. Phys Rev B, 2013, 88: 224107

    Article  CAS  Google Scholar 

  8. Raccuglia P, Elbert KC, Adler PDF, Falk C, Wenny MB, Mollo A, Zeller M, Friedler SA, Schrier J, Norquist AJ. Nature, 2016, 533: 73–76

    Article  CAS  PubMed  Google Scholar 

  9. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA. APL Mater, 2013, 1: 011002

    Article  CAS  Google Scholar 

  10. Crystallography Open Database. https://doi.org/www.crystallography.net/cod/index.php

  11. Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C. JOM, 2013, 65: 1501–1509

    Article  CAS  Google Scholar 

  12. Downs RT, Hall-Wallace M. Am Mineral, 2003, 88: 247–250

    Article  CAS  Google Scholar 

  13. Kirklin S, Saal JE, Meredig B, Thompson A, Doak JW, Aykol M, Rühl S, Wolverton C. npj Comput Mater, 2015, 1: 15010

    Article  CAS  Google Scholar 

  14. Wang Y, Lv J, Zhu L, Ma Y. Phys Rev B, 2010, 82: 094116

    Article  CAS  Google Scholar 

  15. Lonie DC, Zurek E. Comput Phys Commun, 2012, 183: 690–697

    Article  CAS  Google Scholar 

  16. Sadeghi A, Ghasemi SA, Schaefer B, Mohr S, Lill MA, Goedecker S. J Chem Phys, 2013, 139: 184118

    Article  CAS  PubMed  Google Scholar 

  17. Zhu L, Amsler M, Fuhrer T, Schaefer B, Faraji S, Rostami S, Ghasemi SA, Sadeghi A, Grauzinyte M, Wolverton C, Goedecker S. J Chem Phys, 2016, 144: 034203

    Article  CAS  PubMed  Google Scholar 

  18. Liu X, Prewitt C. Phys Chem Miner, 1990, 17: 168–172

    Article  CAS  Google Scholar 

  19. Han MH, Gonzalo E, Singh G, Rojo T. Energy Environ Sci, 2015, 8: 81–102

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Lin-Wang Wang from Lawrence Berkeley National Laboratory and Dr. Wenfei Fan from the University of Edinburgh for their helpful discussions. This work was supported by the National Key R&D Program of China (2016YFB0700600), the National Natural Science Foundation of China (21603007, 51672012), Soft Science Research Project of Guangdong Province (2017B030301013), and New Energy Materials Genome Preparation & Test Key-Laboratory Project of Shenzhen (ZDSYS201707281026184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Pan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, M., Wang, Z., Qian, G. et al. Identify crystal structures by a new paradigm based on graph theory for building materials big data. Sci. China Chem. 62, 982–986 (2019). https://doi.org/10.1007/s11426-019-9502-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9502-5

Keywords

Navigation