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Abstract Simultaneously investigating multiple treatments in a single study achieves considerable efficiency in

contrast to the traditional two-arm trials. Balancing treatment allocation for influential covariates has become

increasingly important in today’s clinical trials. The multi-arm covariate-adaptive randomized clinical trial is

one of the most powerful tools to incorporate covariate information and multiple treatments in a single study.

Pocock and Simon’s procedure has been extended to the multi-arm case. However, the theoretical properties

of multi-arm covariate-adaptive randomization have remained largely elusive for decades. In this paper, we

propose a general framework for multi-arm covariate-adaptive designs which also includes the two-arm case,

and establish the corresponding theory under widely satisfied conditions. The theoretical results provide new

insights into the balance properties of covariate-adaptive randomization procedures and make foundations for

most existing statistical inferences under two-arm covariate-adaptive randomization. Furthermore, these open a

door to study the theoretical properties of statistical inferences for clinical trials based on multi-arm covariate-

adaptive randomization procedures.
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1 Introduction

The multi-arm randomized clinical trial has been an important topic in some cases [15,29,38]. Especially,

it is playing an increasingly significant role in epidemic diseases such as COVID-19 [3, 36], and cancers

such as lung cancer [46] and glioblastoma [2]. To the best of our knowledge, clinical trials are expensively

conducted [11, 28], whereas unacceptably few regimens can be put on the market. Furthermore,

personalized medicine gains more and more popularity and thus leads to increasingly complex therapies.

Hence, concerns have been raised among clinical trialists regarding how to efficiently and in less time

find beneficial treatments. Simultaneously investigating multiple treatments in a single study achieves

considerable efficiency in contrast to the traditional two-arm trials [32]. The multi-arm randomized

clinical trial is one of the most powerful tools to incorporate multiple regimens in a single clinical trial.
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On the one hand, it dramatically reduces the required sample sizes compared with conducting several

traditional two-arm randomized clinical trials separately for various involving regimens. On the other

hand, fewer patients are required to receive the placebo, and then patients would be allocated to a

promising treatment in greater probability. Therefore, multi-arm randomized clinical trials would attract

more patient recruitment to the trial. There is a growing list of literature on multi-arm randomized clinical

trials, such as development of new clinical trial procedures [5,40,42], applications in practice [27,31], and

discussion of its advantages [39,41].

Among randomized clinical trials with multiple treatments, multi-arm covariate-adaptive randomiza-

tion is preferred. It is well known that covariates play an essential role in clinical trials. Clinical trialists

are often concerned about unbalanced treatment arms with respect to key covariates of interest. In the

literature, covariate-adaptive randomization procedures are sometimes employed to balance important

covariates [30]. The similarity of covariates between treatment groups enhances statistical efficiency and

ensures convincing analysis [20]. Over the past several decades, scientists have identified many new

biomarkers [1,4,13,25,34] that may link certain diseases in the fields of translational research (genomics,

proteomics and metabolomics). Based on these biomarkers, we would like to develop personalized

medicine algorithms that help patients to receive better treatment regimens based on their individual

characteristics (which could be biomarkers or other covariates). To design a superior and efficient

clinical study for personalized medicine, one should incorporate information on important biomarkers [15].

Therefore, balancing treatment allocation for influential covariates has become increasingly important in

today’s clinical trials. In a survey of 224 randomized clinical trials published in 2014 in leading medical

journals, 183 (82%) have used the covariate-adaptive randomization [21]. Arguably, covariate-adaptive

randomization gains more popularity at the design stage of a trial.

As pointed out in [15], classical covariate-adaptive designs have several drawbacks to incorporate many

important biomarkers. For example, the stratified permuted block randomization [43] fails to achieve

overall and marginal balances when a moderate sample size and a large number of covariates are involved.

To address the potential problems of classical randomization schemes, Hu and Hu [19] developed a class of

covariate-adaptive biased coin randomization procedures and studied its theoretical properties. However,

the theoretical properties were induced under a strict condition (see [19, Condition (C) of Theorem 3.2]).

Therefore, the properties are not suitable for most existing randomization schemes, especially Pocock and

Simon’s procedure, because of the limitation of the condition. More importantly, Hu and Hu’s general

covariate-adaptive randomization [19] is merely proposed in the two-arm case. Although Pocock and

Simon [29] generalized the minimization method, which is one popular covariate-adaptive design for the

multi-arm case, little knowledge on the theoretical properties is studied.

In this paper, we first develop a general family of multi-arm covariate-adaptive randomization

procedures, which includes the two-arm case. Also, the proposed procedure includes some new designs

and many existing designs with multiple treatments as special cases. We further establish a general

theoretical foundation under widely satisfied conditions. In particular, we have theoretically proved that

under the multi-arm Pocock and Simon’s procedure, the marginal imbalances and overall imbalance are

bounded in probability, but all the within-stratum imbalances increase with the rate
√
n as the sample size

n increases. The theory provides some new insights into the theoretical properties of covariate-adaptive

randomization procedures. The theory particularly provides critical conditions for general covariate-

adaptive randomization procedures to achieve good within-stratum and marginal balances. As discussed

in the concluding remarks (see Section 5), our theoretical results make foundations for most existing

statistical inferences under two-arm covariate-adaptive randomization. Furthermore, these results also

open a door to study the theoretical behavior of inferential methods (such as estimation and hypothesis

test) of clinical trials based on multi-arm covariate-adaptive randomization procedures.

To study the theoretical properties under this general framework, one has the following main difficulties:

(i) the correlation structure of within-stratum imbalances; (ii) the relationship among within-stratum

and marginal imbalances under Pocock and Simon’s procedure; (iii) the discreteness of the allocation

function. In the literature, Taylor’s expansion and martingale approximation are two common techniques

for the study of the theoretical properties of adaptive designs with a continuous allocation function
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[16, 17, 44]. Under Pocock and Simon’s procedure, to overcome the complex relationship among within-

stratum and marginal imbalances, we have to approximate these imbalances using martingales by solving

Poisson’s equation. To deal with the discreteness of the allocation function, we use the technique of “drift

conditions” [26], which was developed for Markov chains on general state spaces.

The rest of this paper is organized as follows. The general framework of the multi-arm randomization

procedure is described in Section 2 and the theoretical results are given in Section 3. In Section 4, we

further conduct several simulation studies to corroborate the theoretical properties proposed in Section 3,

and compare various randomization schemes in different scenarios. Some concluding remarks are in

Section 5. The proofs of the theorems can be found in the appendix.

2 The general multi-arm covariate-adaptive randomization procedure

We consider the same setting as that of [29] with T (T � 2) treatments. Consider I covariates and mi

levels for the i-th covariate, resulting in m =
∏I

i=1 mi strata. Let Tj be the assignment of the j-th patient

and j = 1, . . . , n. Let Zj indicate the covariate profile of the j-th patient, i.e., Zj = (k1, . . . , kI) if his

or her i-th covariate is at level ki (1 � i � I) and 1 � ki � mi. For convenience, we use (k1, . . . , kI) to

denote the stratum formed by patients who possess the same covariate profile (k1, . . . , kI), and use (i; ki)

to denote the margin formed by patients whose i-th covariate is at level ki.

The new procedure is defined as follows:

(1) The first patient is assigned to the treatment t (t = 1, . . . , T ) with probability p = 1/T .

(2) Suppose that j − 1 patients have been assigned to treatments (1 < j � n), and the j-th patient

falls within the stratum (k�1 , . . . , k
�
I ).

(3) (Differences for each treatment) For the first j − 1 patients, let N
(t)
j−1, N

(t)
j−1(i; k

�
i ) and

N
(t)
j−1(k

�
1 , . . . , k

�
I ) be the numbers of patients in the treatment t in total, on the margin (i; k�i ) and within

the stratum (k�1 , . . . , k
�
I ), respectively. We define

N j−1 =
1

T

T∑
t′=1

N
(t′)
j−1

as the average number of patients over treatments. Furthermore, the marginal average number of patients

Nn−1(i; k
�
i ) and the within-stratum average number of patientsN j−1(k

�
1 , . . . , k

�
I ) are defined in the similar

way. Then let

D
(t)
j−1 = N

(t)
j−1 −N j−1,

D
(t)
j−1(i; k

�
i ) = N

(t)
j−1(i; k

�
i )−N j−1(i; k

�
i ),

D
(t)
j−1(k

�
1 , . . . , k

�
I ) = N

(t)
j−1(k

�
1 , . . . , k

�
I )−N j−1(k

�
1 , . . . , k

�
I )

be the differences for the treatment t, which are used to measure the imbalances at the overall, marginal,

and within-stratum levels, respectively.

(4) If the j-th patient is assigned to the treatment t (t = 1, . . . , T ), then

– N
(t)
j−1, N

(t)
j−1(i; k

�
i ) and N

(t)
j−1(k

�
1 , . . . , k

�
I ) would increase by 1, while others remain unchanged;

– the potential differences at the corresponding levels would be

D
(t′)
j,t = D

(t′)
j−1 + I(t′=t) − 1

T
,

D
(t′)
j,t (i; k

�
i ) = D

(t′)
j−1(i; k

�
i ) + I(t′=t) − 1

T
,

D
(t′)
j,t (k

�
1 , . . . , k

�
I ) = D

(t′)
j−1(k

�
1 , . . . , k

�
I ) + I(t′=t) − 1

T
,

where t′ = 1, . . . , T .



166 Hu F F et al. Sci China Math January 2023 Vol. 66 No. 1

(5) (Measurement) Define an imbalance measurement Imb
(t)
j by

Imb
(t)
j = wo

{ T∑
t′=1

(D
(t′)
j,t )

2

}
+

I∑
i=1

wm,i

{ T∑
t′=1

(D
(t′)
j,t (i; k

�
i ))

2

}

+ ws

{ T∑
t′=1

(D
(t′)
j,t (k

�
1 , . . . , k

�
I ))

2

}
, (2.1)

which is the weighted imbalance; it would be obtained if the j-th patient is assigned to the treatment t.

wo, wm,i (i = 1, . . . , I) and ws are non-negative weights placed overall, within a covariate margin and a

stratum cell, respectively. Without loss of generality, we assume

wo +
I∑

i=1

wm,i + ws = 1.

(6) (Probability generator) We define the allocation probabilities following [29]. Suppose that the

Imb
((t))
j is the t-th order statistic that is the t-th smallest value of the random samples Imb

(1)
j , . . . , Imb

(T )
j .

One thus can rank the treatments according to the values of Imb
(t)
j (t = 1, . . . , T ) in a non-decreasing

order so that

Imb
((1))
j � Imb

((2))
j � · · · � Imb

((T ))
j .

In the case of ties, a random ordering can be determined. Then conditional on the assignments of the first

j− 1 patients and the covariates’ profiles of the first j patients, assign the j-th patient to the treatment t

with the probability

P(Tj = t | Fj−1, Zj = (k�1 , . . . , k
�
I )) = pj,t, (2.2)

where Fj = σ(Z1, . . . , Zj ;T1, . . . , Tj), which is the history σ-field generated by the covariates Z1, . . . , Zj

and the assignments T1, . . . , Tj . Here, pj,t is a function with respect to the ranking of Imb
(t)
j among the

random samples Imb
(t′)
j (t′ = 1, . . . , T ), and

pj,t = pt′ , if Imb
(t)
j = Imb

((t′))
j , t′ = 1, . . . , T, (2.3)

where p1 � p2 � · · · � pT are T ordered positive constants with
∑T

t′=1 pt′ = 1.

The imbalance measurement defined in (2.1) is a critical quantity. For all t and t′ (t′, t = 1, . . . , T ),

using the basic equation (x+ 1)2 − x2 = 2x+ 1, we can simplify the difference of Imb
(t)
j and Imb

(t′)
j as

Imb
(t)
j − Imb

(t′)
j = 2

{
woD

(t)
j−1 +

I∑
i=1

wm,iD
(t)
j−1(i; k

�
i ) + wsD

(t)
j−1(k

�
1 , . . . , k

�
I )

}

− 2

{
woD

(t′)
j−1 +

I∑
i=1

wm,iD
(t′)
j−1(i; k

�
i ) + wsD

(t′)
j−1(k

�
1 , . . . , k

�
I )

}

=: 2× [Λ
(t)
j−1(k

�
1 , . . . , k

�
I )− Λ

(t′)
j−1(k

�
1 , . . . , k

�
I )]. (2.4)

Accordingly, the order of {Imb
(t′)
j , t′ = 1, . . . , T} is the same as that of {Λ(t′)

j−1(k
�
1 , . . . , k

�
I ), t

′ = 1, . . . , T}
for the stratum (k�1 , . . . , k

�
I ). Therefore, the allocation probability pj,t is determined by the values of

Λ
(t′)
j−1(k

�
1 , . . . , k

′
I) (t′ = 1, . . . , T ), which is a weighted average of current imbalances for the treatment t′

at different levels.

Remark 2.1. This general framework includes most covariate-adaptive randomization procedures in

the literature as special cases. For example, when the marginal imbalances are only considered, i.e.,

wo = ws = 0, it reduces to Pocock and Simon’s procedure; when wm,i = wo = 0, it reduces to the

multi-arm stratified randomization. Also, if only two treatments are considered (T = 2), we obtain

the family of covariate-adaptive randomization studied in [19]. We hope that the general framework is

flexible in defining applicable randomization procedures with good properties. The theoretical results are

established under widely satisfied conditions so that they can apply to all the cases.
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3 Theoretical properties of the general multi-arm covariate-adaptive ran-
domization

We now investigate the asymptotic properties of the general multi-arm covariate-adaptive randomization.

For the first n patients, let

Dn = [D(t)
n (k1, . . . , kI) : 1 � t � T ; 1 � ki � mi, 1 � i � I]

be an array of dimension T ×m1×· · ·×mI , which stores the current imbalances in all the strata for each

treatment. Also, assume that the covariates Z1, Z2, . . . are independently and identically distributed.

Since Zn = (k1, . . . , kI) can take m =
∏I

i=1 mi different values, it in fact follows an m-dimensional

multinomial distribution with parameter p = (p(k1, . . . , kI), ∀ 1 � ki � mi, 1 � i � I), with each element

being the probability that a patient falls within the corresponding stratum (k1, . . . , kI). Obviously,

p(k1, . . . , kI) � 0 and
∑

k1,...,kI
p(k1, . . . , kI) = 1. Notice that

P(D(t)
n (k1, . . . , kI) = D

(t)
1 (k1, . . . , kI), t = 1, . . . , T, ∀n) = 1, if p(k1, . . . , kI) = 0.

Therefore, the stratum (k1, . . . , kI) with p(k1, . . . , kI) = 0 can be ignored. Hence without loss of generality,

we assume p(k1, . . . , kI) > 0 for any stratum (k1, . . . , kI).

Our purpose is to study the properties of Dn. Besides Dn, we also consider the weighted average of

the imbalances for each treatment Λ
(t)
n (k1, . . . , kI) as in (2.4). Let

Λn = [Λ(t)
n (k1, . . . , kI) : 1 � t � T ; 1 � ki � mi, 1 � i � I].

The allocation probability pn,t (t = 1, . . . , T ) in (2.2) is a function of Λn−1. Rather than explore the

properties of Dn directly, we firstly work on the properties of Λn. Then by investigating the relationship

between Dn and Λn, we further investigate the properties of Dn. It is obvious that

Λn = L(Dn) : Dn → Λn

is a linear transformation of Dn. The following proposition gives the relationship between Dn and Λn

and tells us that both (Dn)n�1 and (Λn)n�1 are Markov chains.

Proposition 3.1. (i) If ws > 0, then Λn = L(Dn) is a one-to-one linear map. If wm,i + ws > 0,

then D
(t)
n (i; ki) = D

(t)
i;ki

(Λn) is a linear transformation of Λn for any t = 1, . . . , T . For any cases,

D
(t)
n = D(t)(Λn) is a linear transformation of Λn for any t = 1, . . . , T .

(ii) (Dn)n�1 is an irreducible Markov chain on the space R
T×m with period T . For any permutations

Π(1), . . . ,Π(T ) of 1, . . . , T , the transition probabilities of

(D(Π(1))
n (k), . . . , D(Π(T ))

n (k) : 1 � ki � mi, 1 � i � I)n�1

are the same.

(iii) (Λn)n�1 is an irreducible Markov chain on the space L(RT×m) with period T . For any

permutations Π(1), . . . ,Π(T ) of 1, . . . , T , the transition probabilities of

(Λ(Π(1))
n (k), . . . ,Λ(Π(T ))

n (k) : 1 � ki � mi, 1 � i � I)n�1

are the same.

Now we give the main results of the general multi-arm covariate-adaptive randomization.

Theorem 3.2. Consider I covariates and mi levels for the i-th covariate, where I � 1, 1 � i � I and

mi > 1. wo, ws and wm,i (i = 1, . . . , I) are non-negative with

wo +
I∑

i=1

wm,i + ws = 1.
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Assume that p1 � · · · � pT are non-negative constants with
∑T

t=1 pt = 1 and p1 > pT > 0. Then (Λn)n�1

is a positive recurrent Markov chain with period T on L(RT×m) and E‖Λn‖r = O(1) for any r > 0. In

particular,

(i) if ws > 0, then (Dn)n�1 is a positive recurrent Markov chain with period T on R
T×m; E‖Dn‖r

= O(1) for any r > 0;

(ii) if ws+wm,i > 0, then D
(t)
n (i; ki) = O(1) in probability and E|D(t)

n (i; ki)|r = O(1) for any r > 0 and

t = 1, . . . , T ; furthermore, if ws = 0, then (D
(t)
n (i; ki) : wm,i �= 0, 1 � t � T ; 1 � ki � mi, 1 � i � I)n�1 is

a positive recurrent Markov chain with period T ;

(iii) for any cases, D
(t)
n = O(1) in probability and E|D(t)

n |r = O(1) for any r > 0 and t = 1, . . . , T ;

furthermore, if wm,i = ws = 0 (i = 1, . . . , I), then (D
(t)
n : t = 1, . . . , T )n�1 is a positive recurrent Markov

chain with period T .

The next theorem tells us that the within-stratum imbalances |D(t)
n (k1, . . . , kI)| (t = 1, . . . , T ) either

are bounded in probability or increase with the rate
√
n as the sample size increases.

Theorem 3.3. Under the conditions in Theorem 3.2, we have the following results:

(iv) there exist non-negative constants σ(t)(k1, . . . , kI) such that

E(D(t)
n (k1, . . . , kI))

2 = n(σ(t)(k1, . . . , kI))
2 +O(

√
nσ(t)(k1, . . . , kI)), (3.1)

D
(t)
n (k1, . . . , kI)√

n

D→ N(0, (σ(t)(k1, . . . , kI))
2) (3.2)

and

lim
n→∞E

∣∣∣∣D(t)
n (k1, . . . , kI)√

n

∣∣∣∣
r

= (σ(t)(k1, . . . , kI))
rE|N(0, 1)|r (3.3)

for all strata (k1, . . . , kI)s, r > 0 and t = 1, . . . , T , where N(0, 1) is a standard normal random variable;

(v) for any fixed stratum (k1, . . . , kI), if D
(t)
n (k1, . . . , kI) = o(

√
n) in probability, then D

(t)
n (k1, . . . , kI)

= O(1) in probability for any t = 1, . . . , T ;

(vi) if D
(t)
n (k1, . . . , kI) = o(

√
n) in probability for one stratum (k1, . . . , kI), then ws �= 0; in other words,

if ws = 0, then for all strata (k1, . . . , kI),

lim
n→∞

E(D
(t)
n (k1, . . . , kI))

2

n
= (σ(t)(k1, . . . , kI))

2 > 0, ∀ t = 1, . . . , T.

Remark 3.4. We do not have a close form of the asymptotic standard deviation σ(t)(k1, . . . , kI).

However, simulation studies show that the biased coin probabilities and weights (especially ws) are

critical to σ(t)(k1, . . . , kI) (t = 1, . . . , T ), 1 � ki � mi (i = 1, . . . , I): (i) The asymptotic variance of

D
(t)
n (k1, . . . , kI)/

√
n is maximized under complete randomization with wo = ws = wm,i = 0 (i = 1, . . . , I).

(ii) Large biased coin probability p1 reduces σ(t)(k1, . . . , kI) for the within-stratum imbalances. (iii) If we

do not choose large enough values of ws, larger values of biased coin probability p1 are recommended to

reduce the asymptotic standard deviation σ(t)(k1, . . . , kI). Similarly, if the biased coin probability is near

0.5, large values of ws are suggested to achieve a small asymptotic standard deviation σ(t)(k1, . . . , kI).

The main conclusions of Theorems 3.2 and 3.3 can be summarized in the following corollary which

indicates that the condition ws > 0 is critical to ensure that (Dn)n�1 is positive recurrent.

Corollary 3.5. The following statements are equivalent:

(i) (Dn)n�1 is a positive recurrent Markov chain;

(ii) Dn = O(1) in probability;

(iii) E‖Dn‖r = O(1) for all r > 0;

(iv) D
(t)
n (k1, . . . , kI) = o(

√
n) in probability for at least one stratum (k1, . . . , kI) for any t = 1, . . . , T ;

(v) ws > 0.

The next theorem tells us that the marginal procedures will not provide good balances with respect

to the margin if one does not consider the margin in the imbalance measure for defining the allocation

probability (2.2).
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Theorem 3.6. Suppose that the conditions in Theorem 3.2 are satisfied. If ws + wm,i = 0, then

lim
n→∞

E[D
(t)
n (i; ki)]

2

n
> 0 for all ki = 1, . . . ,mi and t = 1, . . . , T.

Remark 3.7. By Theorems 3.2, 3.3 and 3.6, the conditions ws > 0 and ws + wm,i > 0 (i = 1, . . . , I)

are critical to ensure that the within-stratum D
(t)
n (k1, . . . , kI) = O(1) and the marginal imbalances

D
(t)
n (i; ki) = O(1) in probability, respectively. However, we have not discussed the selection of these

weights in practice. Here are some suggestions based on the results of this paper: (i) Always choose

ws > 0. (ii) When the sample size is relatively large and the total number of strata is relatively small,

there are enough patients in each stratum. In these cases, the balance within each stratum is important,

and ws plays an important role; we may choose a relatively large ws. For example, we may use ws = 1/2

in these situations. (iii) When the number of covariates (I) is increasing and the number of strata is

relatively large, we may select weights according to the number of covariates (I) and the importance of

each covariate. For example, we may select ws = wm,i = (I+1)−1 or ws = (I+1)−1 and wm,i according to

the importance of the i-th covariate (i = 1, . . . , I). Note that putting too much emphasis on the within-

stratum imbalances results in relatively significant increases in the overall and marginal imbalances.

Consequently, a relatively small value of ws is recommended if the primary goal of randomization is not

to achieve the within-stratum imbalance, in the case of a small sample size compared with the number

of strata. (iv) Large weights lead to more well-balanced performances at the corresponding levels. Thus,

if a covariate is deemed essential, more weights can be shifted towards the within-stratum and marginal

imbalances of the covariate.

When ws = 0, the design reduces to the marginal procedure which includes Pocock and Simon’s

procedure [29] as a special case. Based on Theorems 3.2 and 3.3, we conclude the asymptotic properties

for Pocock and Simon’s procedure.

Corollary 3.8. For Pocock and Simon’s procedure (wo = ws = 0), then we have the following results:

(i) All the within-stratum imbalances increase with the rate
√
n as the sample size increases, and also

D
(t)
n (k1, . . . , kI)/

√
n is asymptotically normally distributed with a positive variance (σ(t)(k1, . . . , kI))

2.

(ii) When wm,i > 0, the corresponding marginal imbalance (the i-th covariate) and the overall imbalance

are bounded in probability, i.e., D
(t)
n (i; ki) = O(1) and D

(t)
n = O(1) in probability for any t = 1, . . . , T .

Furthermore, the collection of all the marginal imbalances

[D(t)
n (i; ki) : 1 � t � T, 1 � ki � mi, 1 � i � I]n�1

is a positive recurrent Markov chain with period T .

(iii) When wm,i = 0, the corresponding marginal imbalance increases with the rate
√
n, i.e., D

(t)
n (i; ki) =

Op(
√
n) for any t = 1, . . . , T .

Remark 3.9. The theoretical result (i) has been obtained in [19] under very strict conditions of the

weights ws and wm,i (i = 1, . . . , I) when T = 2. The condition (C) in [19, Theorem 3.2] for the general case

is very restrictive and usually not satisfied in practice. When the number of strata is large, this condition

can be satisfied only when ws is very close to 1 and the design reduces to the stratified randomization.

Both [19, Theorem 3.1] for the special case of 2× 2 strata and [19, Theorem 3.2] for the general case of

many strata do not apply to Pocock and Simon’s procedure [29] (with ws = 0) and the design with equal

weights wo, wm,i and ws. Our theorems eliminate Hu and Hu’s condition (C) [19] so that they can apply

to most covariate-adaptive randomization procedures, in particular the family of Hu and Hu’s general

covariate-adaptive randomization. Then we conclude the main theorems when T = 2 as follows.

Let Dn be the difference between the numbers of patients assigned to the treatments 1 and 2. Dn(i; ki)

and Dn(k1, . . . , kI) are defined in the similar way. Consider I covariates and mi levels for the i-th

covariate, where I � 1, 1 � i � I and mi > 1. wo, ws and wm,i (i = 1, . . . , I) are non-negative with

wo +
I∑

i=1

wm,i + ws = 1.
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Then the main results for the general family of two-arm covariate-adaptive randomization are as follows:

(i) if ws > 0, then (Dn)n�1 is a positive recurrent Markov chain with period 2 on Z
m, and E‖Dn‖r

= O(1) for any r > 0;

(ii) if ws + wm,i > 0, then Dn(i; ki) = O(1) in probability and E|Dn(i; ki)|r = O(1); furthermore,

if ws = 0, then the collection of all the marginal imbalances ((Dn(i; ki) : wm,i �= 0, ki = 1, . . . ,mi,

i = 1, . . . , I))n�1 is a positive recurrent Markov chain;

(iii) for any case Dn = O(1) in probability and E|Dn|r = O(1) for any r > 0; furthermore, if ws =

wm,1 = · · · = wm,I = 0, then (Dn)n�1 is a positive recurrent Markov chain;

(iv) if ws = 0, then for all strata (k1, . . . , kI),

lim
n→∞

ED2
n(k1, . . . , kI)

n
> 0;

(v) if ws + wm,i = 0, then

lim
n→∞ =

E[D2
n(i; ki)]

n
> 0 for all ki = 1, . . . ,mi.

As in [19], to prove Theorem 3.2, we use the technique of “drift conditions” [26], which was developed

for Markov chains on general state spaces. Instead of considering Dn directly as in [19], we have to

consider Λn in this paper. In order to prove the positive recurrence of (Λn)n�1, we need to find a test

function V : L(RT×m) → R
+, a bounded test set C on L(RT×m) and a positive constant b such that

ΔλV (Λ) :=
∑

Λ′∈L(RT×m)

Pλ(Λ,Λ′)V (Λ′)− V (Λ) (3.4)

satisfies the following condition:

ΔλV (Λ) � −1 + bIΛ∈C , (3.5)

where Pλ(Λ,Λ′) is the transition probability from Λ to Λ′ on the state space L(RT×m) of the chain

(Λn)n�1, and IΛ∈C is a function with the value 1 if Λ is in C , and 0 if not. V is often a norm-like

function on L(RT×m). For considering the convergence of moments of the Markov chain, we also find the

drift condition of ΔλV
r(Λ). The test function V is the key component in the proofs. We have to choose

a good V such that it is a norm-like function and the drift ΔλV is also very close to the norm of Λ, so

that the drift condition is satisfied without any additional condition on the weights wo, ws, and wm,i.

When ws = 0 (Pocock and Simon’s procedure), the within-stratum imbalance D
(t)
n (k1, . . . , kI) is not

considered in the allocation procedure. We need to introduce a new technique (Poisson’s equation) to

deal with the complicated structures of the within-stratum imbalances and marginal imbalances. In fact,

we approximate D
(t)
n (k1, . . . , kI) as a martingale plus a function of Λn by solving Poisson’s equation in

the proof of Theorem 3.3. We prove that this martingale is a constant when the asymptotic variance

(σ(t)(k1, . . . , kI))
2 is zero so that D

(t)
n (k1, . . . , kI) is a function of Λn, which leads to a contradiction when

ws = 0. All the proofs are stated in the appendix.

4 Simulation studies

This section presents three simulation studies to explore the theoretical results and evaluate the

performances under various covariate-adaptive randomization designs in achieving general balances. We

compare the multi-arm general covariate-adaptive randomization with Pocock and Simon’s procedure,

and the stratified permuted block randomization [43]. For clarity, we choose the weighted squares of the

marginal imbalances for Pocock and Simon’s procedure [29] and consider the three-arm case hereafter.

First, we simulate a case of 2×2 strata with a relatively large sample size to verify the asymptotic behavior

of imbalances, which is stated in Section 3. Considering the case where the number of strata becomes

large, whereas the number of patients is relatively small, we further conduct a study to compare different

randomization procedures’ performances. To put the multi-arm general covariate-adaptive randomization

into a wide application, we thus mimic a real-world example from [7]. Replication of 104 is used throughout

the following simulations.
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4.1 The case of 2× 2 strata

In designing covariate-adaptive randomized clinical trials, we aim to ensure that the imbalances at the

corresponding levels (overall, marginal and within-stratum) are bounded in probability. If the imbalances

at all the three levels are bounded in probability, it leads to a well-balanced randomized clinical trial.

The parameters are specified as follows:

• the multinomial probability: (p(1, 1), p(1, 2), p(2, 1), p(2, 2)) = (0.1, 0.2, 0.3, 0.4);

• the sample size: the sample size n traverses from 200 to 2,000 with increment 300;

• the the allocation probability of the probability generator: p1 = 0.75, p2 = 0.20 and p3 = 0.05 for

the general procedure and Pocock and Simon’s procedure;

• the weights: (wo, ws, wm,1, wm,2) = (0.3, 0.5, 0.1, 0.1) for the general procedure, while (wo, ws, wm,1,

wm,2) = (0, 0, 0.5, 0.5) for the Pocock and Simon’s procedure;

• the block size: the block size is set to be 6.

The standard deviations of imbalances at different levels under various randomization procedures

are represented in Figure 1. Since the specified imbalances among different treatments have the same

properties, we only illustrate the results for the treatment 1, i.e., the standard deviations of D
(1)
n (·).

For simplicity, only the standard deviations at the overall levels, two of the within-stratum levels (1, 1)

and (2, 2) and two of the marginal levels (1; 1) and (2; 2) are displayed. As shown in Figure 1, the

standard deviations at the three levels under the general multi-arm covariate-adaptive randomization

and stratified permuted block randomization remain unchanged nearly, depicting the stability of the

corresponding imbalances for both randomization procedures. As for Pocock and Simon’s procedure,

the overall and marginal imbalances stabilize, whereas the standard deviations of the within-stratum

imbalances increase considerably as the sample size increases, implying a convergence rate OP (
√
n).

These findings are consistent with those in Theorems 3.2 and 3.3.

On the other hand, although the imbalances at the three levels under the general multi-arm covariate-

adaptive randomization and stratified permuted block randomization are bounded in probability, the

imbalances are stabler under the general multi-arm covariate-adaptive randomization. Taking the overall

imbalance for example, we see that the standard deviations with different sample sizes approximate 1

under stratified permuted block randomization, and the standard deviations are much smaller under the

general multi-arm covariate-adaptive randomization, approximating 0.65.

Therefore, Pocock and Simon’s procedure misbehaves at the within-stratum level, while all of the

imbalances under the general multi-arm covariate-adaptive randomization and stratified permuted

block randomization are bounded in probability. However, the general multi-arm covariate-adaptive

randomization outperforms the stratified permuted block randomization.
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Figure 1 (Color online) The standard deviations (SDs) of D
(1)
n (·) in the case of 2 × 2 strata with different sample

sizes under the general multi-arm covariate-adaptive randomization (GMulCAR) (a), the multi-arm Pocock and Simon’s

minimization (MulPocSimMIN) procedure (b) and the multi-arm stratified permuted block randomization (MulStrPBR) (c)
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4.2 The case of 210 strata

We further simulate a case wherein 10 covariates with 2 levels for each covariate resulting in 1,024 strata

were considered, and 600 patients were involved. The specified parameters are as follows:

• the allocation probabilities and the block size are congruent with those in Subsection 4.1;

• the weights: wo = 0.1, wm,i = 0.8/10 and ws = 0.1, i = 1, . . . , 10 for the general multi-arm

covariate-adaptive randomization; wo = 0, wm,i = 1/10 and ws = 0, i = 1, . . . , 10 for Pocock and Simon’s

procedure;

• the covariates generating process: independence assumptions between patients and between covariates

within each patient are followed. Different levels within each covariate are generated with a uniform

probability. Therefore, the covariate profile of the j-th patient Zj = (k1, . . . , kI), j = 1, . . . , 600, I = 10,

is sampled from {1, 2}10 independently with probability 1/1024.

Figure 2 illustrates the mean absolute imbalances under various randomization procedures. For the

same sake, we only depict the results for the treatment 1. By the Monte Carlo method, the mean absolute

imbalances at corresponding levels are calculated as follows: for the overall level, we take the average of

the absolute imbalances over the 104 simulations; for the marginal level, the mean absolute imbalance is

averaged over 20 margins and over the 104 simulations; for the within-stratum level with 6a+ i patients,

where a is a non-negative integer and i = 0, 1, . . . , 5, the mean absolute imbalances are obtained by taking

the average of the absolute imbalances over all the strata with 6a + i (�= 0) patients and over the 104

simulations.
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Figure 2 (Color online) The mean absolute imbalances |D(1)
n (·)| for the treatment 1 in the case of 210 strata with 600

patients under the GMulCAR, MulPocSimMIN and MulStrPBR
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The subfigures in the first row of Figure 2 show the mean absolute imbalances at the overall, marginal,

and within-stratum levels, respectively. As can be seen, the mean absolute imbalances at the overall and

marginal levels are considerable under stratified permuted block randomization. Thus, if the number of

strata is relatively large compared with the sample size, the stratified permuted block randomization

fails to achieve good balances at the overall and marginal levels. Pocock and Simon’s procedure

consistently outperforms the general multi-arm covariate-adaptive randomization and stratified permuted

block randomization at the marginal level. The general multi-arm covariate-adaptive randomization gives

an overall balance advantage over the other two randomization procedures; furthermore, it is suboptimal

compared with Pocock and Simon’s procedure regarding balancing performances at the marginal level.

The mean absolute within-stratum imbalances among strata with 6a+ i (�= 0, i = 0, 1, . . . , 5) patients

are represented, respectively, in the subfigures in the last two rows of Figure 2. The stratified permuted

block randomization gives the smallest imbalances, especially at the strata with 6a patients. It, in fact,

achieves the exact balance at the strata with 6a patients. The other two randomization procedures have

relatively large mean absolute imbalances, and the general multi-arm covariate-adaptive randomization

behaves slightly better than Pocock and Simon’s procedure. However, of the 1024 strata, approximately

55.64% contains no patients, 11.7% contains more than 2 patients, and only 3.07× 10−5 have 6 patients.

Hence, the imbalances are chiefly caused by the overall and marginal levels, implying the limitation of

the stratified permuted block randomization in this case.

To conclude, the general multi-arm covariate-adaptive randomization takes a significant advantage at

the overall level, and no single type of imbalances becomes too extreme. Hence, the general multi-arm

covariate-adaptive randomization behaves best in achieving a general balance of a trial. Pocock and

Simon’s procedure is preferred when clinical trialists focus on achieving marginal balances. The stratified

permuted block randomization has the best performance at the within-stratum level, but it fails when

the number of strata becomes considerable.

We further conduct simulation studies to explore the sensitivity of the general multi-arm covariate-

adaptive randomization to different choices of weights. In general, the choice of the weights is quite

flexible, and we could choose any weights according to pre-specified design objectives as long as the

weights could be summed up to 1. As a matter of fact, a specific choice of weights corresponds to a

specific randomization scheme, as discussed in Remark 2.1. The parameters are specified as follows:

• the allocation probabilities are congruent with those above;

• the sample size: the sample size n = 600;

• the weights: five choices of the weights are considered in the case of 2× 2 strata:

– equal weights are imposed on the within-stratum imbalance and each marginal imbalance:

(wo, ws, wm,1, wm,2) = (0.1, 0.3, 0.3, 0.3);

– equal weights are imposed on each marginal imbalance and no weight is imposed on the within-

stratum imbalance: (wo, ws, wm,1, wm,2) = (0.2, 0.0, 0.4, 0.4);

– solely consider the within-stratum imbalance: (wo, ws, wm,1, wm,2) = (0.0, 1.0, 0.0, 0.0);

– more weights are imposed on the within-stratum and marginal imbalances of the first covariate:

(wo, ws, wm,1, wm,2) = (0.1, 0.3, 0.5, 0.1);

– more weights are imposed on the within-stratum and marginal imbalances of the second covariate:

(wo, ws, wm,1, wm,2) = (0.1, 0.3, 0.1, 0.5);

also, five choices of the weights are considered in the case of 210 strata:

– equal weights are imposed on the within-stratum imbalance and each marginal imbalance: ws = 0.3,

and wo = wm,i =
0.7
11 , i = 1, . . . , 10;

– equal weights are imposed on each marginal imbalance and no weight is imposed on the within-

stratum imbalance: ws = 0.0, and wo = wm,i =
1.0
11 , i = 1, . . . , 10;

– solely consider the within-stratum imbalance: ws = 1.0, and wo = wm,i = 0.0, i = 1, . . . , 10;

– more weights are imposed on the within-stratum and marginal imbalances of the first covariate:

ws = 0.3, wm,1 = 0.5, and wo = wm,i =
0.5
11 , i = 2, . . . , 10;

– more weights are imposed on the within-stratum and marginal imbalances of the second covariate:

ws = 0.3, wm,2 = 0.5, and wo = wm,i =
0.5
11 , i = 1, 3, . . . , 10.
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Table 1 The mean absolute imbalances |D(1)
n (·)| for the treatment 1 in both cases of 2× 2 and 210 strata with different

weights and 600 patients under the general multi-arm covariate-adaptive randomization

2× 2 strata 210 strata

Mean absolute imbalances Mean absolute imbalances

Weights Overall (1, 1) (2, 2) (1; 1) (2; 2) Weights Overall Level1 Level2 (1; 1) (2; 2)

(0.1, 0.3, 0.3, 0.3) 0.40 0.45 0.44 0.46 0.46 ( 0.7
11

, 0.3, 0.7
11

, 0.7
11

, . . .) 0.38 0.21 0.21 0.91 0.92

(0.2, 0.0, 0.4, 0.4) 0.32 2.33 2.31 0.47 0.47 ( 1.0
11

, 0.0, 1.0
11

, 1.0
11

, . . .) 0.36 0.21 0.21 0.90 0.88

(0.0, 1.0, 0.0, 0.0) 0.76 0.40 0.40 0.57 0.57 (0.0, 1.0, 0.0, 0.0, . . .) 174.54 0.24 0.23 87.26 87.22

(0.1, 0.3, 0.5, 0.1) 0.41 0.45 0.45 0.42 0.56 ( 0.5
10

, 0.3, 0.2, 0.5
10

, . . .) 0.38 0.20 0.20 0.56 1.03

(0.1, 0.3, 0.1, 0.5) 0.41 0.46 0.45 0.56 0.41 ( 0.5
10

, 0.3, 0.5
10

, 0.2, . . .) 0.39 0.21 0.21 1.03 0.56

Note. (1) The “Level1” corresponds to the level of (1, 1, 1, 1, 1, 1, 1, 1, 1, 1), and the “Level2” corresponds to the level

of (2, 2, 2, 2, 2, 2, 2, 2, 2, 2). (2) “. . .” in the weights represents the weights imposed on the marginal imbalances of the

last 8 covariates, the values of which are equal to the value of the weight imposed on the overall imbalance; for example,

( 0.7
11

, 0.3, 0.7
11

, 0.7
11

, . . .) is detailed as ( 0.7
11

, 0.3, 0.7
11

, 0.7
11

, 0.7
11

, 0.7
11

, 0.7
11

, 0.7
11

, 0.7
11

, 0.7
11

, 0.7
11

, 0.7
11

).

For the same sake, we merely outline the mean absolute imbalances |D(1)
n (·)| for the treatment 1 at

the overall level, within two of the margins (1; 1) and (2; 2) and two of the strata ((1, 1) and (2, 2) in the

case of 2 × 2 strata, and (1, . . . , 1) and (2, . . . , 2) in the case of 210 strata) in Table 1. We first discuss

the results in the case of 2 × 2 strata, in which the number of strata is moderate. As can be seen from

the mean absolute overall imbalances, in the event that more weights are shifted towards the overall

imbalance, we achieve a smaller one. If no weight is imposed on the within-stratum imbalance (ws = 0 in

the second row), the randomization method brings considerable imbalances at the within-stratum level;

for comparison, if we solely consider the within-stratum imbalance (ws = 1 in the third row), we achieve

relatively small imbalances at all the three levels and the smallest within-stratum imbalance compared

with those in the other cases. As regards the marginal level, more weights are shifted to a specific

covariate (wm,1 = 0.3 in the fourth row and wm,2 = 0.3 in the fifth row), and the randomization scheme

is well balanced with respect to the covariate. The general guidance concluded from these results is that

if a covariate is predetermined to be important, more weights can be imposed on the within-stratum and

marginal imbalances of the covariate.

As for the case of 210 strata, the similar conclusions can be drawn for the overall and marginal levels.

It is worth noting that, however, if we only consider the within-stratum imbalances (ws = 1 in the third

row), almost negligible reduction in the within-stratum imbalances is achieved at the cost of considerable

increases in the overall and marginal imbalances. This is because when the number of strata is relatively

large compared with the sample size, most strata contain no patients or very few patients, such as 1

patient; then the reduction in the within-stratum imbalances is extremely limited. These results agree

with our discussion about the choice of weights in Remark 3.7.

4.3 An example mimicking real clinical data

In this subsection, we illustrate the advantages of the general multi-arm covariate-adaptive randomization

procedure by mimicking a clinical study of the brief intervention [7]. The study was conducted to contrast

the effects of a brief intervention with telephone boosters (BI-B), with those of screening, assessment and

referral (SAR) to treatment and minimal screening only (MSO) among drug using. In total, 1,285 patients

have been chosen for the study. For each patient, 9 categorical covariates are considered, such as the

sex, race and martial status. For ease of reading, we only select 8 covariates of interest and approximate

the distribution in Table 2 based on the original study. Since some levels of some margins are with a

low account, resulting in considerably low probability to the corresponding stratum, we combine these

levels as a category. For example, we view the levels of American Indian or Alaska Native, Asian, Native

Hawaiian or Pacific Islander, Other, Multiracial and Unknown within the margin of race, as a category

of Others.
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Table 2 Baseline characteristics and the distribution for the clinical trial of the brief intervention

Characteristic Proportion

Sex Male 70%

Female 30%

Ethnicity Hispanic or Latino 24%

Not Hispanic or Latino 76%

Race Black or African American 34%

White 50%

Others 16%

Education completed 1–11 y 32%

General Educational Development (GED)/12 y 32%

Some college or above 36%

Marital status Married 19%

Widowed, separated, or divorced 21%

Never married 60%

Employment in the past 3 y Full-time, homemaker, or student 38%

Part-time or retired/disable 37%

Unemployed or in controlled environment 25%

Annual household income $0−$15,000 62%

> $15,000 26%

Declined to answer 12%

Primary substance Cannabis 44%

Cocaine 27%

Others 29%

Table 3 The distribution of patients among 2,916 strata for the clinical trial of the brief intervention

# of patients within-stratum 0 1 2 3 4 5 6

Proportion 73.0% 17.8% 5.3% 2.0% 0.9% 0.4% 0.2%

# of strata 938.1 228.7 68.1 25.7 11.6 5.1 2.6

Note. # of patients within-stratum: the number of patients within-stratum; # of strata: the number of strata.

For simplicity, we assume independence between covariates. Thus, the distribution of each stratum

can be calculated easily with the product of corresponding marginal distributions. Then the covariate

profile of each patient is simulated from a multinomial distribution generated according to Table 2. In this

simulation study, the allocation probabilities and the block size are congruent with those in Subsection 4.1.

Table 3 presents the distribution of 1,285 patients among 2,916 strata. In this simulated case, 73% of

the strata contain no patients, 17.8% contain 1 patient, 8.6% contain 2, 3, 4 or 5 patients, and 0.6% have

6 or more patients, in which only 0.2% of the strata contain exactly 6 patients. For stratified permuted

block randomization, it is of high risk to cause imbalances within the strata with 2, 3, 4 or 5 patients.

Although this method behaves entirely well in a complete block, the effect is almost negligible in this case.

The incomplete blocks further result in a massive imbalance at the overall level. Moreover, few weights

should be imposed on the within-stratum imbalances, as discussed in Remark 3.7. In the event that

the primary substance is determined of significant importance, more weights should be shifted towards

the marginal imbalance of this covariate. Then we set wm,8 = 0.3, ws = 0.1 and wo = wm,i = 0.6/8,

i = 1, . . . , 7 for the general multi-arm covariate-adaptive randomization procedure. For comparison, we

also explored the performance of Pocock and Simon’s procedure with wm,8 = 0.3 as well as wm,i = 0.7/7,

i = 1, . . . , 7.

The variances of numbers of patients in each treatment at the three levels are compared (i.e., the

overall number N
(t)
n , the marginal number N

(t)
n (i, ki) and the within-stratum number N

(t)
n (k1, . . . , kI),

t = 1, 2, 3) and are outlined in Tables 4–6, respectively. Table 4 illustrates the mean, median and
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Table 4 Comparison for variances of the overall numbers of patients in the three treatments: N
(t)
1285 (t = 1, 2, 3) among

various randomization methods

GMulCAR MulPocSimMIN MulStrPBR

Mean 0.79 0.88 311.96

Median 0.33 0.33 214.33

95%-quantile 2.33 2.33 937.33

Table 5 Comparison for variances of the marginal numbers of patients in the three treatments: N
(t)
1285(i; ki) (t = 1, 2, 3)

among various randomization methods

Characteristic GMulCAR MulPocSimMIN MulStrPBR

Sex Male 2.10 1.80 203.83

Female 2.09 1.81 107.92

Average mean variance 2.10 1.80 155.88

Ethnicity Hispanic or Latino 2.13 1.78 89.23

Not Hispanic or Latino 2.16 1.78 222.19

Average mean variance 2.14 1.78 155.71

Race Black or African American 2.67 2.21 112.75

White 2.66 2.24 144.00

Others 2.66 2.21 58.61

Average mean variance 2.66 2.22 105.12

Employment in the past 3 y Full-time, homemaker, or student 2.65 2.20 101.97

Part-time, or retired/disable 2.66 2.24 102.59

Unemployed or in controlled environment 2.65 2.25 108.09

Average mean variance 2.65 2.23 104.22

Education completed 1-11 y 2.64 2.23 70.50

General Educational Development (GED)/12 y 2.63 2.20 76.78

Some college or above 2.65 2.26 165.45

Average mean variance 2.64 2.23 104.24

Martial status Married 2.69 2.22 113.67

Widowed, separated, or divorced 2.67 2.18 113.41

Never married 2.65 2.23 84.74

Average mean variance 2.67 2.21 103.94

Annual household income $0 – $15,000 2.64 2.20 174.50

> $15,000 2.61 2.20 92.41

Declined to answer 2.63 2.23 47.49

Average mean variance 2.63 2.21 104.80

Primary substance Cannabis 0.74 0.80 127.03

Cocaine 0.74 0.80 90.06

Others 0.74 0.80 94.83

Average mean variance 0.74 0.80 103.97

95%-quantile of the variances of overall numbers of patients in the three treatments. The general multi-

arm covariate-adaptive randomization procedure achieves the smallest mean, median and 95%-quantile

of the variances, while those under Pocock and Simon’s procedure are slightly larger. Moreover, the mean

overall variances under both procedures are smaller than those in the clinical study, wherein 427, 427 and

431 patients are allocated to the three different treatments, respectively, and thus result in the overall

variance (32/6 = 16/3). As can be seen, all of the three quantities are extremely large for the stratified

permuted block randomization.
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Table 6 Comparison for variances of the within-stratum numbers of patients in the three treatments:

N
(t)
1285(k1, . . . , kI) (t = 1, 2, 3) among various randomization methods

# of patients GMulCAR MulPocSimMIN MulStrPBR

6a+ 0 0.00 0.01 0.00

6a+ 1 0.34 0.35 0.33

6a+ 2 0.59 0.69 0.53

6a+ 3 0.77 1.02 0.60

6a+ 4 0.92 1.34 0.54

6a+ 5 1.04 1.64 0.33

Note. a is a non-negative integer.

Table 5 summarizes the mean marginal variances, which are calculated by taking an average over 104

simulations of the variance of the numbers of patients in the three treatments within a specific covariate

at different levels. We also outline the average mean variance by taking the average of mean variances

over all the levels within a particular covariate. It can be seen that the mean variance at all the levels of

each covariate is the smallest under Pocock and Simon’s procedure, and thus the smallest average mean

variance, whereas the mean variances under the general procedure are slightly larger, resulting in a slightly

larger average mean variance. However, considerable mean variances and thus average mean variances

are obtained under stratified permuted block randomization. Therefore, Pocock and Simon’s procedure

has a balance advantage over the general procedure and stratified permuted block randomization at the

marginal level; the general multi-arm covariate-adaptive randomization performs acceptably worse; the

stratified permuted block randomization fails to achieve the marginal balance in this case. On the other

hand, the covariate imbalances of primary substance reduce more significantly due to the more weights

imposed on this covariate. The result agrees with the discussion in Remark 3.7.

We average the variances of the numbers of patients in the three treatments over 104 simulations and

over the strata with 6a + i patients, where a is a non-negative integer and i = 0, 1, 2, . . . , 5, which are

shown in Table 6. Among the strata containing 3, 4, 5 and 6 patients, the stratified permuted block

randomization procedure achieves the minimum mean variance, especially 0 for strata with exactly 6a

patients, whereas under the general procedure, slightly larger values of the mean variances are achieved.

As for the variances among strata including 2 patients for the general procedure and the stratified

permuted block randomization, the 2 involved patients assigned to different treatments would make

the smallest imbalances at overall, marginal and within-stratum levels; thus the minimum imbalance is

achieved on the whole defined in Step (5). Therefore, the stratified permuted block randomization causes

relatively larger variances because of the randomness of choosing blocks. Under Pocock and Simon’s

procedure, all the mean variances are a bit larger among the three randomized procedures. Thus it is

not effective in achieving the within-stratum balance.

To conclude, although the stratified permuted block randomization performs outstandingly at the

within-stratum level, it is not recommended in this case. There are two reasons: firstly, the stratified

permuted block randomization behaves somewhat worse at both overall and marginal levels with fairly

significant variances; secondly, an extremely small percentage of strata contain over 6 patients. Thus, the

advantage at the within-stratum level can be ignored. Pocock and Simon’s procedure is more applicable

to this case than the stratified permuted block randomization, but it has relatively large variances at

the within-stratum level. In contrast to the stratified permuted block randomization and Pocock and

Simon’s procedure, the balancing performances at the three levels are satisfactory under the general multi-

arm covariate-adaptive randomization procedure. Therefore, the general multi-arm covariate-adaptive

randomization procedure takes a general balance advantage.

5 Concluding remarks

In this paper, we study the theoretical properties of a general family of multi-arm covariate-adaptive

designs. These results provide a unified and fundamental theory about the balance properties of covariate-
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adaptive randomization procedures. In the literature, it is well known that the imbalance is a positive

recurrent Markov chain for Efron’s biased coin design (without involving covariates) [12]. Markaryan and

Rosenberger [24] studied some exact properties of Efron’s biased coin design. Hu and Hu [19] showed

that the imbalances (Dn)n�1 are positive recurrent Markov chains for a very limited family of two-arm

covariate-adaptive designs with Efron’s biased coin allocation function. The condition (C) in their paper

is too restrictive, and it is almost impossible to check this condition in real applications. The proposed

general multi-arm randomization procedure in this paper includes the two-arm case proposed by Hu and

Hu [19], and the results in this paper also provide new insights into imbalances under covariate-adaptive

randomization procedures: (i) when ws > 0 (the within-stratum weight is positive), the imbalances

(Dn)n�1 are positive recurrent Markov chains, and therefore, all the three types of imbalances (within-

stratum, marginal and overall) are bounded in probability; (ii) when ws = 0 and wm,i > 0, then the

marginal (the i-th covariate) and overall imbalances are bounded in probability, but the within-stratum

imbalance is not; (iii) when ws = wm,i = 0 for all i = 1, . . . , I and w0 = 1, only the overall imbalance is

bounded in probability.

It is very important to understand statistical inferences under covariate-adaptive randomization.

Birkett [6] and Forsythe [14] have raised concerns about the conservativeness of the unadjusted analysis

(such as two-sample t-test) under covariate-adaptive randomization based on simulation studies. Shao

et al. [35] studied this problem theoretically under a very special covariate-adaptive biased coin

randomization procedure, which is a stratified randomization procedure and only applies to a single

covariate case. Also, they focused on a simple homogeneous linear model and only considered a two-

sample t-test. Ma et al. [22] derived the asymptotic distributions of the test statistics of testing both

the treatment effects and the significance of covariates under null and alternative hypotheses for a large

family of two-arm covariate-adaptive randomization procedures, while Zhu and Hu [47] focused on the

sequential statistics instead of on the final test statistic and derived the joint distribution of the sequential

test statistics for several scenarios. However, the theoretical properties induced in [22, 47] are based

on the assumptions that the overall and marginal imbalances are bounded in probability, which were

only verified for Pocock and Simon’s procedure with two treatments in [22]. In this paper, we derive

the comprehensive theoretical properties under a broad spectrum of covariate-adaptive randomization,

including the two-arm case, and thus providing a theoretical foundation for existing statistical inferences.

Ma et al. [23] loosed the strong balancing assumptions and derived the properties of statistical inferences

following general covariate-adaptive randomization (CAR) procedures under the linear model framework.

However, most of the discussion about statistical inferences for covariate-adaptive randomized clinical

trials in the literature is limited to the two-arm case. The theoretical properties for statistical inferences

under multi-arm covariate-adaptive randomization are rarely touched. Based on the work of [8], Bugni

et al. [9] generalized the results to the multi-arm case. However, the discussion focused on a single

special case of covariate-adaptive randomization. This is because the theoretical properties of multi-arm

covariate-adaptive randomization procedures are usually not available in the literature. The results in

this paper open the door to study the theoretical behavior of classical statistical inferences under multi-

arm covariate-adaptive randomization. For example, based on Corollary 3.8, we can study the behavior

of testing hypotheses and other methods under Pocock and Simon’s procedure with multiple treatments.

We leave these as future research projects.

In this paper, we only consider balancing discrete (categorical) covariates. In the literature, continuous

covariates are typically discretized in order to be included in the randomization scheme [37]. We may

apply the proposed designs to balancing continuous covariates after discretization. However, as discussed

in [33], the breakdown of a continuous covariate into subcategories means increased effort and loss of

information. Ciolino et al. [10] also pointed out the lack of publicity for practical methods for continuous

covariate balancing and lack of knowledge on the cost of failing to balance continuous covariates. We

may consider balancing continuous covariates under a similar framework to that in this paper. However,

it is usually challenging to obtain the corresponding theoretical properties. There are not many studies

in the literature.

The proposed procedures and their properties may be generalized in several ways. First, we may
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apply the same idea to problems of unequal ratios [16]. Sometimes, if one treatment is superior to

(or less costly than) the other, then assigning more patients to the treatment would be more ethical

(economical). Second, we may combine the idea in this paper with the efficient randomized-adaptive

designs (ERADE) of [18] to obtain a new family of covariate-adjusted response-adaptive (CARA)

randomization procedures [45]; it could be a real challenge to study the corresponding theoretical

properties. Third, we only consider the fixed weights in this paper. It is, however, of great importance

and interest to determine the values of the weights based on specific data to better achieve pre-specified

randomization objects, such as the good balance of a specific covariate. Therefore, we may propose a

data-driven covariate-adaptive randomization design in which the weights are sequentially modified based

on the accrued data information and explore theoretical properties. Finally, we derive the asymptotic

normality for the within-stratum imbalances. However, the close formula of the asymptotic variances

remains unknown, which is the grounding of statistical inferences. Little research about the statistical

inferences for multi-arm covariate-adaptive randomization is available heretofore. It thus would be an

interesting topic to extend our work to obtain the close formula of the asymptotic variances for within-

stratum imbalances and further establish the theoretical properties for statistical inferences under our

proposed general multi-arm covariate-adaptive randomization procedure in the future. We leave all these

as future research topics.
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Appendix A Proofs

Our proofs are based on the properties of Markov chains on a finite state space. For simplification, we

write k = (k1, . . . , kI). Let ΔD be the state space of ΔDn = Dn −Dn−1, i.e., each d ∈ ΔD is in the

form

d(t)n (k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− 1

T
for a specific k and a specific t,

− 1

T
for a specific k,

0 for others.

Proof of Proposition 3.1. For (i), based on the fact that

D(t)
n =

∑
k

D(t)
n (k),

D(t)
n =

mi∑
ki=1

D(t)
n (i; ki), ∀ i = 1, . . . , I,

D(t)
n (i; ki) =

∑
k\ki

D(t)
n (k), ∀ ki, i = 1, . . . , T,

where
∑

k\ki
means that taking summation over all k1, . . . , ki−1, ki+1, . . . , kI , and then taking the

summation of Λ
(t)
n (k) over all k yields

∑
k

Λ(t)
n (k) =

(
wom+

I∑
i=1

wm,i

∏
j �=i

mj + ws

)
D(t)

n , ∀ t = 1, . . . , T. (A.1)

Let i(k, t) be the index of D
(t)
n (k) in Dn. Define x ∈ R

T×m, of which the i(k, t)-th (∀k) elements are 1

and others are 0. For two vectors a = (al, l = 1, . . . , T ×m) and b = (bl, l = 1, . . . , T ×m) on R
T×m, we

write

a · b =
∑
k

ai(k,t)bi(k,t)

for any fixed t (t = 1, . . . , T ). Thus (A.1) can be written as

x ·Λn =

(
wom+

I∑
i=1

wm,i

∏
j �=i

mj + ws

)
D(t)

n , ∀ t = 1, . . . , T.

So D
(t)
n is a linear transformation of Λn. Taking the summation of Λ

(t)
n (k) over all k1, . . . , kI except ki

yields

∑
k\ki

Λ(t)
n (k) =

(
wo

∏
j �=i

mj +
∑
l �=i

wm,l

∏
j �=i,l

mj

)
D(t)

n +

(
wm,i

∏
j �=i

mj + ws

)
D(t)

n (i; ki), (A.2)

which is true for all ki and i = 1, . . . , I, t = 1, . . . , T . Similarly, define y ∈ R
T×m, of which the i(k, t)-th

(∀k with the fixed ki) elements are 1 and others are 0. Then (A.2) can be written as

y ·Λn =

(
wo

∏
j �=i

mj +
∑
l �=i

wm,l

∏
j �=i,l

mj

)
D(t)

n +

(
wm,i

∏
j �=i

mj + ws

)
D(t)

n (i; ki).

Thus, when wm,i + ws > 0, each D
(t)
n (i; ki) is a linear transformation of Λn and D

(t)
n , so it is a linear

transformation of Λn. Finally, when ws > 0, it is obvious from the definition of Λ
(t)
n (k) that for all k and

t = 1, . . . , T , each D
(t)
n (k) is a linear transformation of Λ

(t)
n (k), D

(t)
n (1; k1), . . . , D

(t)
n (I; kI) and D

(t)
n , and

hence it is a linear transformation of Λn. Therefore, when ws > 0, Λn = L(Dn) is a one-to-one linear

map.
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For (ii) and (iii), it is sufficient to show the Markov property. Note that

D(t)
n (k) = D

(t)
n−1(k) +

(
I(Tn=t) − 1

T

)
I(Zn=k).

We know that the allocation probability pn,t is a function of Λn−1. For any fixed k, let dk ∈ R
T×m, of

which the i(k, t)-th (∀ t = 1, . . . , T ) elements are 1 and others are 0. Also, for two arbitrary vectors x

and y, we define an operator ◦ such that

x ◦ y = {xlyl : xlyl �= 0}.

Then we further define the function rn−1,t(k) that returns to the ranking of Λ
(t)
n−1(k) in the increasing

order among

dk ◦Λn−1 = {Λ(t′)
n−1 : 1 � t′ � T},

which can be written as r(Λ
(t)
n−1(k),dk◦Λn−1), i.e., rn−1,t′(k) = s if Λ

(t′)
n−1(k) = Λ

((s))
n−1 (k), s, t

′ = 1, . . . , T .

Hence,

P

(
ΔD(t)

n (k) = 1− 1

T

∣∣∣∣Fn−1

)
= P(Tn = t, Zn = k | Fn−1) = prn−1,t(k)p(k), (A.3)

P

(
ΔD(t)

n (k) = − 1

T

∣∣∣∣Fn−1

)
= P(Tn �= t, Zn = k | Fn−1) = (1− prn−1,t(k))p(k) (A.4)

and

P(ΔDn(k) = 0 | Fn−1) = P(Zn �= k | Fn−1) = 1− p(k). (A.5)

Define d1/T ∈ R
T×m, of which for any fixed k, the i(k, t′)-th (∀ t′ = 1, . . . , T ) elements are 1/T and

others are 0 (only T elements are nonzero). Also, let v1 ∈ R
T×m, of which the i(k′, t′)-th (∀k′) elements

are t′ for all t′ = 1, . . . , T . Let v2 ∈ R
T×m, of which the i(k′, t′)-th (∀ t′ = 1, . . . , T ) elements are p(k′)

for all k′. Let v3 ∈ R
T×m, of which the i(k′, t′)-th (∀ t′ = 1, . . . , T ) elements are k′ for all k′. Define

t̄ = (d+ d1/T ) · v1

and

k̄ = (d+ d1/T ) · v3.

Then we can conclude that

P(ΔDn = d | Fn−1) = prn−1,t̄(k̄)
|(d+ d1/T ) · v2| = p

r(Λ
(t̄)
n−1(k̄),dk̄◦L(Dn−1))

|(d+ d1/T ) · v2|, (A.6)

which depends only on Λn−1 = L(Dn−1) and is positive. Thus, conditional on Dn−1, Dn is conditionally

independent of (D1, . . . ,Dn−2). It follows that (Dn)n�1 is a Markov chain on R
T×m and is irreducible.

For the period, assume that the initial state of (Dn)n�1 is D0, whose i(k′, t′)-th element is written as

yk
′

t′ for all k′ and t′ = 1, . . . , T . For example,

D0 = (yk1
1 , . . . , ykm

1 , . . . , yk1

T , . . . , ykm

T ),

and in the event that the first patient who falls within stratum k� was assigned to treatment t, then we

got D1, whose i(k�, t)-th element is yk
�

t + 1 − 1
T , the i(k�, t′)-th (t′ �= t) elements are yk

�

t − 1
T , and the

others are 0. For example, if k� = k1 and t′ = 1, then

D1 =

(
yk1
1 − 1

T
+ 1, 0, . . . , 0; yk1

2 − 1

T
, 0, . . . , 0; . . . ; yk1

T − 1

T
, 0, . . . , 0

)
.

Hence, starting with D1, we can see that it takes at least T − 1 more steps to return to D0, in the event

where all of the next T − 1 patients fall within k� and the assignments T2, . . . , TT traverse {1, . . . , T}\t.
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It is easy to see that this case occurs with positive probability. In other cases, it will take s steps to

return to the initial state, where s is a multiple of T . It follows that the period of (Dn)n�1 is T . From

(A.3)–(A.5), it is easily seen that the transition probabilities of

ΠD=̂(D(Π(1))
n (k), . . . , D(Π(T ))

n (k) : 1 � ki � mi, 1 � i � I)n�1

are the same for any permutation Π(1), . . . ,Π(T ) of 1, . . . , T .

For (iii), we consider a more general case. Let D̃ = F (D) be a linear transformation of D. We consider

the chain En = (D̃n,Λn). For any e in the state space {(F (d),L(d)) : d ∈ ΔD} of En,

P(ΔEn = e | Fn−1) =
∑

d∈ΔD:(F (d),L(d))=e

P(ΔDn = d | Fn−1). (A.7)

According to (A.6), we obtain that (A.7) depends on Λn−1 and is positive. So, conditional on En−1, En

is conditionally independent of (E1, . . . ,En−2). It follows that

(En = (F (Dn),Λn))n�1 is an irreducible Markov chain with period T . (A.8)

Also, it is easily seen that for any permutation Π(1), . . . ,Π(T ) of 1, . . . , T , the transition probabilities of

ΠE=̂(F (ΠD),L(ΠD))

are the same.

Proof of Theorem 3.2. Define

Vn =
T∑

t=1

{
wo[D

(t)
n ]2 +

I∑
i=1

mi∑
ki=1

wm,i[D
(t)
n (i; ki)]

2 + ws

∑
k

[D(t)
n (k)]2

}
.

We write

D = [D(t)(k) : 1 � t � T, 1 � ki � mi, 1 � i � I],

and define Λ and V with D taking the place of Dn. By Proposition 3.1(i), Vn is a function of Λn. We

write

Vn = V (Λn).

We prove the theorem via two steps. First, we show that there are a bounded set C and a constant b for

which

PλV (Λ)− V (Λ) � −1 + bIΛ∈C , (A.9)

where Pλ is the transition probability matrix of Λ, i.e.,

PλV (Λ) =
∑

Λ′∈L(RT×m)

Pλ(Λ,Λ′)V (Λ′),

and Pλ(Λ,Λ′) is the transition probability from state Λ to state Λ′. In the second step, we show that

for any integer r � 2, there are a bounded set C and a constant b for which

PλV
r+1(Λ)− V r+1(Λ) � −[V (Λ) + 1]r + bIΛ∈C . (A.10)

The drift condition (A.9) is utilized to show the convergence in probability, and the refined drift

condition (A.10) is utilized to show the convergence of moments. In fact, (A.9) implies that (Λn)n�1

is a positive (Harris) recurrent Markov chain (see [26, Theorem 11.3.4]), so it is bounded in probability

and has an invariant probability measure πλ. On the other hand, by (A.10) and [26, Theorem 14.3.7] we

conclude that πλ[V (Λ+ 1)]r � b, which implies that

sup
n

E(V (Λn) + 1)r < ∞ (A.11)
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by [26, Theorem 14.3.6]. Notice that by Cauchy’s inequality,

|Λ(t)
n (k)|2 �

(
wo|D(t)

n |+
I∑

i=1

wm,i|D(t)
n (i; ki)|+ ws|D(t)

n (k)|
)2

�
(
wo|D(t)

n |2 +
I∑

i=1

wm,i|D(t)
n (i; ki)|2 + ws|D(t)

n (k)|2
)(

wo +
I∑

i=1

wm,i + ws

)

= wo|D(t)
n |2 +

I∑
i=1

wm,i|D(t)
n (i; ki)|2 + ws|D(t)

n (k)|2,

which implies that ‖Λn‖2 � mV (Λn). It follows that supn E‖Λn‖2r < ∞. Thus, we conclude that

(Λn)n�1 is a positive recurrent Markov chain with E‖Λn‖r = O(1) for all r > 0. (i)–(iii) follow from

Proposition 3.1(i).

Now, we begin the proofs of (A.9) and (A.10). Given Zn = k, if Tn = (t), then

Vn − Vn−1 = 2Λ
((t))
n−1(k) +

T − 1

T
(A.12)

by the fact that
T∑

t=1

D(t)
n = 0,

T∑
t=1

D(t)
n (i; ki) = 0

and
T∑

t=1

D(t)
n (k) = 0.

Hence,

E[Vn − Vn−1 | Zn = k, Tn = (t),Fn−1] = 2Λ
((t))
n−1(k) +

T − 1

T
.

It follows that

E[Vn | Fn−1]− Vn−1 = −2S(Λn−1) +
T − 1

T
, (A.13)

where

S(Λn−1) = −
∑
k

T∑
t=1

Λ
((t))
n−1(k)ptp(k).

Recall that Dn and Λn are irreducible Markov chains with period T on R
T×m and L(RT×m),

respectively. Note that Vn = V (Λn) is a non-negative function of Λn. Equation (A.13) tells us that

the drift function of the Markov chain Λn is

E[V (Λn) | Λn−1]− V (Λn−1) = E[Vn − Vn−1 | Fn−1] = −2S(Λn−1) +
T − 1

T

by the Markov property, i.e.,

PλV (Λ)− V (Λ) = −2S(Λ) +
T − 1

T
.

Next, we need to check the drift-criteria condition (A.9). It is sufficient to show that

Λ is bounded ⇔ S(Λ) is bounded. (A.14)

Note that
T∑

t=1

Λ
((t))
n−1(k) = 0

and

(pt − ph)[Λ
((t))
n−1(k)− Λ

((h))
n−1 (k)] � 0.
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We have

2T

T∑
t=1

pt · Λ((t))
n−1(k) = 2T

T∑
t=1

pt · Λ((t))
n−1(k)− 2

[ T∑
t=1

pt

][ T∑
t=1

Λ
((t))
n−1(k)

]

=

T∑
t,h=1

(pt − ph)[Λ
((t))
n−1(k)− Λ

((h))
n−1 (k)]

� −(p1 − pT )[Λ
((T ))
n−1 (k)− Λ

((1))
n−1 (k)]

� −(p1 − pT )
1

T

T∑
t=1

|Λ(t)
n−1(k)|.

It follows that S(Λn−1) � 0 and

(p1 − pT )mink p(k)

2T 2

∑
k

T∑
t=1

|Λ(t)
n−1(k)| � S(Λn−1) �

∑
k

T∑
t=1

|Λ(t)
n−1(k)|.

Hence, (A.14) is proved. From (A.14), it follows that there are a bounded set C and a constant b such

that the drift condition (A.9) is satisfied.

For verifying (A.10), we shall refine the drift condition (A.9). For given Zn = k and Tn = (t), by (A.12)

we have

Vn = Vn−1 + ξ +
T − 1

T
,

where ξ = 2Λ
((t))
n−1(k). It is obvious by Cauchy’s inequality and Equation (A.13) that

|ξ| = 2|Λ((t))
n−1 | � 2

√
Vn−1 and E[ξ | Fn−1] = −2S(Λn−1).

It follows that

V r+1
n − V r+1

n−1 = (r + 1)

(
Vn−1 +

T − 1

T

)r

ξ

+

{(
Vn−1 +

T − 1

T

)r+1

− V r+1
n−1 +

r+1∑
i=2

(
r + 1

i

)
ξi
(
Vn−1 +

T − 1

T

)r+1−i}

� (r + 1)

(
Vn−1 +

T − 1

T

)r

ξ + Cr

(
Vn−1 +

T − 1

T

)r

,

where Cr is a constant which depends on r. It follows that

E[V r+1
n | Fn−1]− V r+1

n−1 � −2(r + 1)

(
Vn−1 +

T − 1

T

)r

S(Λn−1) + Cr

(
Vn−1 +

T − 1

T

)r

,

i.e.,

PλV
r+1(Λ)− V r+1(Λ) �

[
V (Λ) +

T − 1

T

]r
{−2(r + 1)S(Λ) + Cr},

which together with (A.14) implies (A.10). The proof of Theorem 3.2 is now completed.

Proof of Theorem 3.3. We first prove that

sup
n

E

∣∣∣∣D(t)
n (k)√
n

∣∣∣∣
r

< ∞, ∀k, r > 0. (A.15)

Notice that

D(t)
n (k) = D

(t)
n−1(k) +

(
I(Tn=t) − 1

T

)
· IZn=k.
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Thus,

E[D(t)
n (k) | Fn−1] = D

(t)
n−1(k) +

(
1− 1

T

)
prn−1,t(k)p(k)−

1

T
(1− prn−1,t(k))p(k)

= D
(t)
n−1(k) +

[
prn−1,t(k) −

1

T

]
· p(k)

= D
(t)
n−1(k) + ḡ

(t)
n−1,k · p(k), (A.16)

where ḡ
(t)
n−1,k = ḡ(Λ

(t)
n−1(k),Λn−1) = prn−1,t(k) − 1

T , and for simplification, we write ḡ
(t)
k = ḡ(Λ(t)(k),Λ).

Hence,

D(t)
n (k) =

n∑
l=1

[D
(t)
l (k)− E(D

(t)
l (k) | Fl−1)] +

n−1∑
l=0

ḡ
(t)
l,k · p(k). (A.17)

The first term on the right-hand side of (A.17) is O(
√
n) in Lr, because {D(t)

n (k)−E(D
(t)
n (k) | Fn−1)} is a

sequence of bounded martingale differences. Now we consider the second term. Notice that ḡ
(t)
k (� T−1

T )

is bounded by 1. By (A.9) and [26, Theorem 17.4.2], there is a constant R such that Poisson’s equation

ĝ − Pλĝ = ḡ
(t)
k − πλḡ

(t)
k (A.18)

has a solution ĝ = ĝ
(t)
k = ĝ

(t)
k (Λ) which is a function of Λ defined on the state space of Λ with ĝ �

R(V + 1), where Pλ is the transition probability matrix of Λ. On the other hand, it is easily seen

from Proposition 3.1(iii) that the transition probabilities of the Markov chain (Λn)n�1 are symmetric

about treatments. It follows that the invariant probability measure πλ of (Λn)n�1 is symmetric about

treatments. So

πλ[prn−1,t(k)] =
1

T
and πλḡ

(t)
k = 0.

It follows that

ĝ − Pλĝ = ḡ
(t)
k . (A.19)

Now, write ĝn = ĝ
(t)
k (Λn). It follows that

n−1∑
l=0

ḡ
(t)
l,k =

n−1∑
l=0

{ĝl − Pλĝl} =
n−1∑
l=0

{ĝl − E[ĝl+1 | Fl]}

=
n−1∑
l=0

{ĝl − E[ĝl | Fl−1]}+ Eĝ0 − E[ĝn | Fn−1].

Hence, for any r � 1,

E

∣∣∣∣ 1√
n

n−1∑
l=0

ḡ
(t)
l,k

∣∣∣∣
2r

� C
1

nr
E

∣∣∣∣
n−1∑
l=0

{ĝl − E(ĝl | Fl−1)}
∣∣∣∣
2r

+ C
1

nr
E|ĝ0 − E(ĝn | Fn−1)|2r

� C
1

nr
E

∣∣∣∣
n−1∑
l=0

E[(ĝl − E[ĝl | Fl−1])
2 | Fl−1]

∣∣∣∣
r

+ C
1

nr
E[ĝ2r0 + ĝ2rn ]

� C
1

n

n∑
l=0

Eĝ2rl � C sup
0�l�n

Eĝ2rl � CR2r sup
n

E(Vn + 1)2r < ∞

by (A.11). Thus, (A.15) is now proved.

Next, we prove (iv). We prove (3.1) first. Fix k = (k1, . . . , kI) and t ∈ {1, . . . , T}. Let ĝ = ĝ
(t)
k be the

solution to Poisson’s equation (A.19) which is a function of Λ. Let Bt,k ∈ L(ΔD) be the element whose

value is Λn −Λn−1 with D
(t)
n (k)−D

(t)
n−1(k) = 1− 1

T , i.e., the i(l, t′)-th element of Bt,k is(
It′=t − 1

T

)
wo +

∑
i=1

wm,i

(
It′=t − 1

T

)
Ili=ki + ws

(
It′=t − 1

T

)
Il=k
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for all strata l and t′ = 1, . . . , T . We show that (3.1) holds with

(σ(t)(k))2 = πλ[hk,k(t,Λ)],

where

hk,k(t,Λ) =

(
1− 2

T

)
prn−1,t(k)p(k) +

1

T 2
p(k) + 2p2(k)ĝ

(t)
k (Λn−1 +Bt,k)prn−1,t(k)

− 2p2(k)
1

T

T∑
t′=1

ĝ
(t)
k (Λn−1 +Bt′,k)prn−1,t′ (k).

Denote

ΔM
(t)
n,k = D(t)

n (k)−D
(t)
n−1(k) + p(k)[ĝ

(t)
k (Λn)− ĝ

(t)
k (Λn−1)]. (A.20)

Then

E[ΔM
(t)
n,k | Fn−1] = E[D(t)

n (k) | Fn−1]−D
(t)
n−1(k) + p(k)[Pλĝ

(t)
k (Λn−1)− ĝ

(t)
k (Λn−1)]

= E[D(t)
n (k) | Fn−1]−D

(t)
n−1(k)− ḡ

(t)
n−1,k · p(k) = 0

by (A.16) and (A.19). So, {ΔM
(t)
n,k} is a sequence of martingale differences with

M
(t)
n,k =

n∑
l=1

ΔM
(t)
l,k = D(t)

n (k)−D
(t)
0 (k) + p(k)[ĝ

(t)
k (Λn)− ĝ

(t)
k (Λ0)] (A.21)

and

E[(ΔM
(t)
n,k)

2 | Fn−1] = E[(ΔD(t)
n (k))2 | Fn−1] + p2(k)E[(ĝ

(t)
k (Λn)− ĝ

(t)
k (Λn−1))

2 | Fn−1]

+ 2p(k)E[ΔD(t)
n (k)(ĝ

(t)
k (Λn)− ĝ

(t)
k (Λn−1)) | Fn−1]

= E[(ΔD(t)
n (k))2 | Fn−1]− 2p2(k)ĝ

(t)
k (Λn−1){E[ĝ(t)k (Λn) | Fn−1]− ĝ

(t)
k (Λn−1)}

+ p2(k){E[(ĝ(t)k (Λn))
2 | Fn−1]− (ĝ

(t)
k (Λn−1))

2}
+ 2p(k)E[ĝ

(t)
k (Λn)ΔD(t)

n (k) | Fn−1]− 2p(k)ĝ
(t)
k (Λn−1)E[ΔD(t)

n (k) | Fn−1]

= hk,k(t,Λn−1) + p2(k){E[(ĝ(t)k (Λn))
2 | Fn−1]− (ĝ

(t)
k (Λn−1))

2},

where the last equality is due to the equation (A.19). It follows that

E(M
(t)
n,k)

2 =

n−1∑
l=0

Ehk,k(t,Λl) + p2(k){E(ĝ(t)k (Λn))
2 − E(ĝ

(t)
k (Λ0))

2}.

For hk,k(t, ·), it is easily seen that πλ[hk,k(t, ·)] = (σ(t)(k))2 � 0 and

|hk,k(t,Λ)| � 1 + 4 sup
t′

|ĝ(t)k (Λ+Bt′,k)|

� 1 + 4R sup
t′

(V (Λ+Bt′,k) + 1) � c0(V (Λ) + 1),

where c0 is a constant. By (A.10) (with r = 1) and applying [26, Theorem 17.4.2] again, we have a

function ĥ(t,Λ) such that

ĥ− Pλĥ = hk,k(t,Λ)− πλ[hk,k(t,Λ)] and |ĥ| � c(V 2 + 1).

It follows that

E[(M
(t)
n,k)

2] =
n−1∑
l=0

πλ[hk,k(t,Λl)] +
n−1∑
l=0

E{ĥ(t,Λl)− Pλĥ(t,Λl)}+ p2(k){E(ĝ(t)k (Λn))
2 − E(ĝ

(t)
k (Λ0))

2}
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= n(σ(t)(k))2 + {Eĥ(t,Λ0)− Eĥ(t,Λn)}+ p2(k){E(ĝ(t)k (Λn))
2 − E(ĝ

(t)
k (Λ0))

2}
= n(σ(t)(k))2 +O(1) (A.22)

by (A.11) (with r = 2); notice that EV 2(Λn) is bounded. Hence, (3.1) is proved.

Notice

E|ΔM
(t)
n,k|r � c+ c sup

n
E|ĝ(t)k (Λn)|r � c+ c sup

n
EV r(Λn) < ∞

by (A.11). By the central limit theorem for martingales, we conclude that

D
(t)
n (k)√
n

=
M

(t)
n,k +OP (1)√

n

d→ N(0, (σ(t)(k))2).

The asymptotic normality (3.2) is proved. The asymptotic normality together with (A.15) implies (3.3).

The proof of (iv) is completed.

For (v) and (vi), notice that if D
(t)
n (k) = oP (

√
n), then D

(t)
n (k) = o(

√
n) in L2 by (A.15). So

σ(t)(k) = 0. Hence,

E(D(t)
n (k))2 = O(1)

by (3.1). (v) is proved.

Furthermore,

E[M
(t)
n,k]

2 = O(1)

by (A.22). By the martingale convergence theorem, there is a random variable M
(t)
∞ such that

M
(t)
n,k → M (t)

∞ a.s. and M
(t)
n,k = E[M (t)

∞ | Fn]. (A.23)

On the other hand, the sequence ((D
(t)
n (k),Λn))n�1 is an irreducible Markov chain by (A.8). Hence, it is

a positive (Harris) recurrent Markov chain by [26, Proposition 18.3.1] due to the fact that it is bounded

in probability. Recall the equation (A.21). The left-hand side is a martingale which is convergent almost

surely due to (A.23), while the right-hand side is a function of a positive (Harris) recurrent Markov chain.

It follows that the limit M
(t)
∞ must be a constant. So

M
(t)
n,k = E[M (t)

∞ | Fn] = const. a.s.

It is obvious from (A.21) that M
(t)
0 = 0. Hence M

(t)
n,k ≡ 0 a.s. It follows that

D(t)
n (k) = D

(t)
0 (k)− p(k)[ĝ

(t)
k (Λn)− ĝ

(t)
k (Λ0)], (A.24)

which implies that D(t)(k) is a function of Λ. Up to now, we arrive at the conclusion that if

D(t)
n (k) = oP (

√
n),

then D(t)(k) is a function of Λ.

Finally, we show that we will get a contradiction in (A.24) when ws = 0. Recall that for any fixed

t ∈ {1, . . . , T} and k, Bt,k is the value of Λn − Λn−1 with ΔD
(t)
n (k) = 1 − 1

T . We write the i(l, t′)-th
element of Bt,k as Bt,k(l, t

′), and

Bt,k(l, t
′) = wo

(
It′=t − 1

T

)
+

I∑
i=1

wm,i

(
It′=t − 1

T

)
· Ili=ki .

Choose a stratum k� such that k�i �= ki (1 � i � I). It follows that

T−1∑
t̄=1

[Bt̄,k(l, t
′) +Bt̄,k�(l, t′)] +BT,(k�

1 ,k2,...,kI)(l, t
′) +BT,(k1,k�

2 ,...,k
�
I )
(l, t′)
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= wo

[ T∑
t̄=1

It′=t̄ − 1

]
+

I∑
i=1

wm,i

[ T∑
t̄=1

It′=t̄ − 1

]
· I(li=ki or k�

i )
= 0,

i.e.,
T−1∑
t̄=1

[Bt̄,k +Bt̄,k� ] +BT,(k�
1 ,k2,...,kI) +BT,(k1,k�

2 ,...,k
�
I )

= 0,

where 0 ∈ R
T×m and all the values are 0. Define

ΔN (t)
n (k) = N (t)

n (k)−N
(t)
n−1(k).

It follows that on the event

E = {ΔN
(t̄)
n+2(t̄−1)(k) = 1,ΔN

(t̄)
n+2t̄−1(k

�) = 1, t̄ = 1, . . . , T − 1,

ΔN
(T )
n+2(T−1)(k

�
1 , k2, . . . , kI) = 1,ΔN

(T )
n+2T−1(k1, k

�
2 , . . . , k

�
I ) = 1},

the value of Λ does not change, so the value of the right-hand side of (A.24) does not change, i.e.,

− p(k)[ĝ
(t)
k (Λn+2T−1)− ĝ

(t)
k (Λn−1)] = 0.

However, on the event E,

D
(t)
n+2T−1(k)−D

(t)
n−1(k) =

1

T
.

On the other hand, it is easily seen that conditional on Dn−1, the probability of E is positive. We obtain

a contradiction to (A.24). The proof of Theorem 3.3 is now completed.

Proof of Theorem 3.6. Define

hk,l(t,Λ) = p(k)E[ΔD(t)
n (l)ĝ

(t)
k (Λn) | Fn−1] + p(l)E[ΔD(t)

n (k)ĝ
(t)
l (Λn) | Fn−1].

For the martingale difference in (A.20), by (A.19) we can also show that

E[ΔM
(t)
n,kΔM

(t)
n,l | Fn−1]

= p(k)E[ΔD(t)
n (l)ĝ

(t)
k (Λn) | Fn−1] + p(l)E[ΔD(t)

n (k)ĝ
(t)
l (Λn−1) | Fn−1]

+ p(k)p(l)[E[ĝ
(t)
k (Λn)ĝ

(t)
l (Λn) | Fn−1]− ĝ

(t)
k (Λn−1)ĝ

(t)
l (Λn−1)]

= hk,l(t,Λn−1) + p(k)p(l)[E[ĝ
(t)
k (Λn)ĝ

(t)
l (Λn) | Fn−1]− ĝ

(t)
k (Λn−1)ĝ

(t)
l (Λn−1)]

for k �= l. We know that |hk,l(t,Λ)| is bounded by c2(V (Λ) + 1). With the same argument as that for

obtaining (A.22), we have

E[M
(t)
n,kM

(t)
n,l] =

n∑
l=1

E[ΔMl,kΔM
(t)
l,l ] = nπ[hk,l] +O(1).

Define

Mn(i; ki)
(t) =

∑
k\ki

M
(t)
n,k.

It follows that

E[(M (t)
n (i; ki))

2] = n(σ(t)(i; ki))
2 +O(1).

Taking summation on both sides of (A.21) over k\ki yields

M (t)
n (i; ki) = D(t)

n (i; ki)−D
(t)
0 (i; ki) + g

(t)
i;ki

(Λn),

where

g
(t)
i;ki

(Λn) =
∑
k\ki

p(k)[ĝ
(t)
k (Λn)− ĝ

(t)
k (Λ0)]
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is a function of Λn. Hence,

E[(D(t)
n (i; ki))

2] = n(σ(t)(i; ki))
2 +O(

√
nσ(t)(i; ki)). (A.25)

With the same argument as that for obtaining (A.24), if σ(t)(i; ki) = 0, then we have

M (t)
n (i; ki) ≡ 0

and

D(t)
n (i; ki)−D

(t)
0 (i; ki) = −g

(t)
i;ki

(Λn). (A.26)

Under the condition ws + wm,i = 0, Λn is a linear transformation of (D
(t)
n (j; kj) : j = 1, . . . , i − 1,

i + 1, . . . , I, kj = 1, . . . ,mj) which excludes the values of marginal imbalances D(t)(i; li) (li = 1, . . . ,mi)

of the i-th covariate. It follows that for ΔN
(t)
n (k) = 1 and ΔN

(t)
n (k1, . . . , ki−1, k

�
i , ki+1, . . . , kI) = 1, ΔΛn

is the same, so the values changed on the right-hand side of (A.26) are the same. Obviously, the values

changed on the left-hand side of (A.26) are different, one of which is 1− 1
T , and the other is 0. We obtain

a contradiction.


