Skip to main content
Log in

Variable selection via quantile regression with the process of Ornstein-Uhlenbeck type

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Based on the data-cutoff method, we study quantile regression in linear models, where the noise process is of Ornstein-Uhlenbeck type with possible jumps. In single-level quantile regression, we allow the noise process to be heteroscedastic, while in composite quantile regression, we require that the noise process be homoscedastic so that the slopes are invariant across quantiles. Similar to the independent noise case, the proposed quantile estimators are root-n consistent and asymptotic normal. Furthermore, the adaptive least absolute shrinkage and selection operator (LASSO) is applied for the purpose of variable selection. As a result, the quantile estimators are consistent in variable selection, and the nonzero coefficient estimators enjoy the same asymptotic distribution as their counterparts under the true model. Extensive numerical simulations are conducted to evaluate the performance of the proposed approaches and foreign exchange rate data are analyzed for the illustration purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barndorff-Nielsen O E. Processes of normal inverse Gaussian type. Finance Stoch, 1998, 2: 41–68

    Article  MathSciNet  Google Scholar 

  2. Barndorff-Nielsen O E. Superposition of Ornstein-Uhlenbeck type processes. Theory Probab Appl, 2001, 45: 175–194

    Article  MathSciNet  Google Scholar 

  3. Barndorff-Nielsen O E, Shephard N. Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J R Stat Soc Ser B Stat Methodol, 2001, 63: 167–241

    Article  MathSciNet  Google Scholar 

  4. Barndorff-Nielsen O E, Shephard N. Modelling by Lévy processes for financial econometrics. In: Lévy Processes. Boston: Birkhäuser, 2001, 283–318

    Chapter  Google Scholar 

  5. Barndorff-Nielsen O E, Shephard N. Integrate OU processes and non-Gaussian OU-based stochastic volatility models. Scand J Statist, 2003, 30: 277–295

    Article  MathSciNet  Google Scholar 

  6. Belloni A, Chernozhukov V, Kato K. Valid post-selection inference in high-dimensional approximately sparse quantile regression models. J Amer Statist Assoc, 2019, 114: 749–758

    Article  MathSciNet  Google Scholar 

  7. Benth F E, Kiesel R, Nazarova A. A critical empirical study of three electricity spot price models. Energy Econom, 2012, 34: 1589–1616

    Article  Google Scholar 

  8. Bodnarchuk S V, Kulyk O M. Conditions for the existence and smoothness of the distribution density of the Ornstein-Uhlenbeck process with Lévy noise. Theory Probab Math Statist, 2009, 79: 23–38

    Article  Google Scholar 

  9. Bosq D. Nonparametric Statistics for Stochastic Processes. New York: Springer-Verlag, 1998

    Book  Google Scholar 

  10. Cheng Y, Zerom D. A quantile regression model for time series data in the presence of additive components. Comm Statist Theory Methods, 2015, 44: 4354–4379

    Article  MathSciNet  Google Scholar 

  11. Davydov Yu A. Mixing conditions for Markov chains. Theory Probab Appl, 1973, 18: 312–328

    Article  Google Scholar 

  12. Halgreen C. Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions. Probab Theory Related Fields, 1979, 47: 13–17

    MathSciNet  MATH  Google Scholar 

  13. Jiang L, Wang H, Bondell H. Interquantile shrinkage in regression models. J Comput Graph Statist, 2013, 22: 970–986

    Article  MathSciNet  Google Scholar 

  14. Jongbloed G, van der Meulen F H, van der Vaart A W. Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes. Bernoulli, 2005, 11: 759–791

    Article  MathSciNet  Google Scholar 

  15. Knight K. Limiting distributions for L1 regression estimators under general conditions. Ann Statist, 1998, 26: 755–770

    Article  MathSciNet  Google Scholar 

  16. Koenker R. Quantile Regression. Cambridge: Cambridge University Press, 2005

    Book  Google Scholar 

  17. Koenker R, Basset G. Regression quantiles. Econometrica, 1978, 46: 33–50

    Article  MathSciNet  Google Scholar 

  18. Masuda H. On multidimensional Ornstein-Uhlenbeck processes driven by a general Lévy process. Bernoulli, 2004, 10: 97–120

    Article  MathSciNet  Google Scholar 

  19. Rosenblatt M. Asymptotic normality, strong mixing and spectral density estimates. Ann Probab, 1984, 12: 1167–1180

    Article  MathSciNet  Google Scholar 

  20. Sato K. Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge University Press, 1999

    MATH  Google Scholar 

  21. Schoutens W, Cariboni J. Lévy processes in credit risk. Hoboken: John Wiley & Sons, 2009

    MATH  Google Scholar 

  22. Schwarz G. Estimating the dimension of a model. Ann Statist, 1978, 6: 461–464

    Article  MathSciNet  Google Scholar 

  23. Shiga T. A recurrence criterion for Markov processes of Ornstein-Uhlenbeck type. Probab Theory Related Fields, 1990, 85: 425–447

    Article  MathSciNet  Google Scholar 

  24. Tang Y, Wang H. Penalized regression across multiple quantiles under random censoring. J Multivariate Anal, 2015, 141: 132–146

    Article  MathSciNet  Google Scholar 

  25. Tang Y L, Song X Y, Zhu Z Y. Variable selection via composite quantile regression with dependent errors. Statist Neerlandica, 2015, 69: 1–20

    Article  MathSciNet  Google Scholar 

  26. Tibshirani R J. Regression shrinkage and selection via the LASSO. J R Stat Soc Ser B Stat Methodol, 1996, 58: 267–288

    MathSciNet  MATH  Google Scholar 

  27. Tweedie R L. Criteria for rates of convergence of Markov chains with application to queueing and storage theory. In: Probability, Statistics and Analysis. London Mathematical Society Lecture Note Series, vol. 79. Cambridge: Cambridge University Press, 1983, 260–276

    Chapter  Google Scholar 

  28. Wang H, Li G, Tsai C L. Regression coefficients and autoregressive order shrinkage and selection via the LASSO. J R Stat Soc Ser B Stat Methodol, 2007, 69: 63–78

    MathSciNet  Google Scholar 

  29. Wu W. M-estimation of linear models with dependent errors. Ann Statist, 2007, 35: 495–521

    MathSciNet  MATH  Google Scholar 

  30. Wu W, Zhou Z. Nonparametric inference for time-varying coefficient quantile regression. J Bus Econom Statist, 2017, 35: 98–109

    Article  MathSciNet  Google Scholar 

  31. Zhang S, Zhang X. Exact simulation of IG-OU processes. Methodol Comput Appl Probab, 2008, 10: 337–355

    Article  MathSciNet  Google Scholar 

  32. Zou H. The adaptive lasso and its oracle properties. J R Stat Soc Ser B Stat Methodol, 2006, 101: 1418–1429

    MathSciNet  MATH  Google Scholar 

  33. Zou H, Yuan M. Composite quantile regression and the oracle model selection theory. Ann Statist, 2008, 36: 1108–1126

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11801355 and 11971116). The authors thank the reviewers for constructive comments and helpful suggestions. The authors also thank Dr. Yanlin Tang from East China Normal University for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinsheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, X. Variable selection via quantile regression with the process of Ornstein-Uhlenbeck type. Sci. China Math. 65, 827–848 (2022). https://doi.org/10.1007/s11425-019-1723-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-019-1723-4

Keywords

MSC(2020)

Navigation