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Abstract This paper is devoted to the existence of the traveling waves of the equations describing a diffusive

susceptible-exposed-infected-recovered (SEIR) model. The existence of traveling waves depends on the basic

reproduction rate and the minimal wave speed. We obtain a more precise estimation of the minimal wave speed

of the epidemic model, which is of great practical value in the control of serious epidemics. The approach in

this paper is to use the Schauder fixed point theorem and the Laplace transform. We also give some numerical

results on the minimal wave speed.
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1 Introduction

In 1927, Kermack and McKendrick [8] proposed the Kermack-McKendrick equations

d

dt
S(t) = −βS(t)I(t),

d

dt
I(t) = βS(t)I(t) − γI(t),

d

dt
R(t) = γI(t)

to describe the susceptible-infected-recovered (SIR) model, where S denotes the number of the suscep-

tible population, I and R denote the numbers of the infected and the recovered, respectively, β is the

transmission rate between the susceptible and the infected, and γ is the removing rate of the infected. Let

S(0) = S0 be the number of the susceptible at the beginning of the epidemic. If the so-called reproductive

number R0 := β/γ > 1, I(t) increases first and then decreases to 0, i.e., an epidemic takes place; whereas

R0 < 1, I(t) decreases directly to 0, indicating no epidemic happens. If the effect of spacial diffusion is

taken into account, the Kermack-McKendrick equations with standard incidences are

∂S

∂t
= d1

∂2S

∂x2
− βSI

S + I
, (1.1)
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∂I

∂t
= d2

∂2I

∂x2
+

βSI

S + I
− γI, (1.2)

∂R

∂t
= d3

∂2R

∂x2
+ γI, (1.3)

where di is the rate of diffusion of each sub-population, i = 1, 2, 3 (see [7]). There is no R in the first two

equations of the above system according to the assumption that the recovered sub-population is removed

from population. Brauer [3] gave the detailed epidemiological consideration of this assumption.

Much work has been done on the existence of traveling waves of System (1.1)–(1.3). By using the

Schauder fixed point theorem, Wang et al. [14] proved the existence of traveling wave solution of this

system. They proved that for R0 := β/γ > 1 and c > c∗ := 2
√

d2(β − γ), System (1.1)–(1.3) has

a traveling wave solution (S(x + ct), I(x + ct)) satisfying the boundary conditions S(±∞) = S±∞,

I(±∞) = 0 and S−∞ > S+∞. On the other hand, there is no non-negative non-trivial traveling wave

solution if 0 < c < c∗ or R0 6 1. More work is done to get the existence of traveling waves in other

cases, for example, the diffusion term is non-local, and the reaction term is non-local even with time delay

(see [4, 9, 10, 13, 15, 16, 18, 19]). We also notice some recent work on the traveling waves of free boundary

problems (see [5, 6]).

In this paper, we consider the corresponding SEIR model with standard incidences and use the as-

sumption that the exposed are of no infectiousness and the recovered are removed from population. We

focus on the following diffusive system:

∂S

∂t
= d1

∂2S

∂x2
− βSI

S + I + E
, (1.4)

∂E

∂t
= d2

∂2E

∂x2
+

βSI

S + I + E
− αE, (1.5)

∂I

∂t
= d3

∂2I

∂x2
+ αE − γI, (1.6)

∂R

∂t
= d4

∂2R

∂x2
+ γI, (1.7)

where E is the number of the exposed population and α is the rate of the exposed becoming infected.

The number 1/α is the average period of the exposed becoming infected. However, it should be pointed

out that this system is not the same as the SIR model (1.1)–(1.3) with a time delayed reaction term in

that the exposed population has its own spacial diffusion rate.

Many diseases reduce the mobility of the infected individuals, while the exposed individuals are not

influenced so much. The classical SIR model (1.1)–(1.3) may underestimate the spread speed of diseases

in this case. If a disease is so serious that it disables the infected immediately, it can hardly spread

without the participation of the exposed population. On the other hand, several diseases increase the

mobility of the infected and Rabies is such an example. The neglect of the exposed population will

underestimate or overestimate the spread speed of diseases.

Furthermore, in some scenarios of some serious infectious diseases, such as severe acute respiratory

syndrome (SARS) and Ebola, the exposed individuals are traced and their mobility is limited. Thus the

diffusion rate d2 which describes the mobility of the exposed is reduced significantly and the propagation

of these diseases is controlled.

The minimal wave speed c∗ is the minimum value of c such that System (1.4)–(1.6) has the solution of

the form (ξ1(x+ ct), ξ2(x+ ct), ξ2(x+ ct)), where ξ1, ξ2 and ξ3 are non-negative and non-trivial. Without

ambiguity, we will use S, E and I to denote ξ1, ξ2 and ξ3, respectively hereinafter. The minimal wave

speed c∗ is important to describe the spread speed of diseases (see [2,5,6,12]). It is interesting to give the

relation between these two speeds for our model, which is still an open problem. Our present work shows

that the minimal traveling wave speed c∗ depends not only on d3 but also on d2. Furthermore, we prove

that for R0 := β/γ > 1 and c > c∗, System (1.4)–(1.6) has a non-negative and non-trivial traveling wave

solution (S(x+ct), E(x+ct), I(x+ct)) satisfying S(∞) = S∞, S(−∞) = S−∞ and E(±∞) = I(±∞) = 0.

In addition, there is no non-negative and non-trivial traveling wave solution if 0 < c < c∗ or R0 6 1.
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The methods used in this paper are based on Wang et al. [14] and other early studies. First, we use E

presenting I and reduce System (1.4)–(1.6) into a two-dimensional problem, which is inspired by Zhao and

Wang’s work [20] on a two-population epidemic model. We will apply the Schauder fixed point theorem

to a non-monotone operator. The most challenging part is to build a suitable invariant convex set for

this operator. We use two-side Laplace transform to give the proof of the non-existence of traveling wave

solutions.

This paper is organized as follows. In Section 2, we present our main theorem on the existence and

non-existence of traveling waves. In Section 3, we outline some properties of the differential and integral

operators which will be used in the definition of a non-monotone operator. We also show that the

traveling wave solution is the fixed point of this non-monotone operator. To apply the Schauder fixed

point theorem, we give the definition of the invariant convex set of this operator. In Sections 4 and 5,

we prove some properties of the traveling wave solution and show the existence and non-existence of

traveling wave solutions under different values of c and β/γ. In Section 6, we give the discussion.

2 Main results

Since R does not appear in the SEIR model (1.4)–(1.6), it suffices to consider the three-dimensional

system for (S,E, I). We look for the non-trivial and non-negative traveling wave solution of the form

(S(x+ ct), E(x + ct), I(x+ ct)), which satisfies the following boundary conditions at infinity:

S(−∞) = S−∞, S(∞) = S∞ < S−∞, E(±∞) = I(±∞) = 0. (2.1)

Then System (1.4)–(1.6) can be reduced to an ODE system

cS′ = d1S
′′ − βSI

S + I + E
, (2.2)

cE′ = d2E
′′ +

βSI

S + I + E
− αE, (2.3)

cI ′ = d3I
′′ + αE − γI. (2.4)

Our main results are the following.

Theorem 2.1. There exists a positive constant number c∗ such that if c > c∗ and R0 := β/γ > 1,

then System (2.2)–(2.4) has a non-trivial and non-negative traveling wave solution (S,E, I) satisfying

the boundary conditions (2.1). Furthermore, S monotonically decreases, 0 6 E(x) 6 S−∞ − S∞ and

0 6 I(x) 6 S−∞ − S∞ for all x ∈ R, and

∫ ∞

−∞

αE(x)dx =

∫ ∞

−∞

γI(x)dx =

∫ ∞

−∞

βS(x)I(x)

S(x) + I(x) + E(x)
dx = c[S−∞ − S∞].

On the other hand, if R0 > 1, 0 < c < c∗, or R0 6 1, there exists no non-trivial and non-negative

traveling wave solution (S,E, I) satisfying the boundary conditions (2.1).

Remark 2.2. In the SIR model (1.1)–(1.3), the minimal wave speed is given by c∗ := 2
√

d2(β − γ),

where d2 is the diffusive coefficient of I. For the SEIR model, as we will see, the minimal wave speed c∗

depends not only on d3, the diffusive rate of I ,but also on d2, the diffusive rate of E .

3 Preliminaries

Lemma 3.1. If (S,E, I) is a non-trivial and non-negative solution of System (2.2)–(2.4), satisfying

the boundary conditions (2.1), it holds that
∫∞

−∞ E(x)dx < ∞.

Proof. Integrating (2.2) from −∞ to x yields

d1S
′(x) = c[S(x)− S−∞] +

∫ x

−∞

βS(y)I(y)

S(y) + I(y) + E(y)
dy. (3.1)
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Since S(x) is uniformly bounded, the integral on the right-hand side of (3.1) should be uniformly bounded.

Otherwise, S′(x) → ∞ as x → ∞, thus S(x) → ∞, which leads to a contradiction. Hence,

∫ x

−∞

βS(y)I(y)

S(y) + I(y) + E(y)
dy (3.2)

is integrable on R and bounded. Integrating (2.3) yields

E(x) =
1

ρ2

∫ x

−∞

eλ
−

2
(x−y) βS(y)I(y)

S(y) + I(y) + E(y)
dy +

1

ρ2

∫ ∞

x

eλ
+

2
(x−y) βS(y)I(y)

S(y) + I(y) + E(y)
dy

+ C1e
λ−

2
x + C2e

λ+

2
x,

where C1 and C2 are constants and

λ±
2 :=

c±
√
c2 + 4d2α

2d2
, ρ2 :=

√

c2 + 4d2α = d2(λ
+
2 − λ−

2 ).

The integrals in the expression of E(x) are well-defined for the integrability of (3.2). Moreover, by the

boundary condition E(±∞) = 0, C1 and C2 must be zeros. By using Fubini’s theorem, we have

∫ ∞

−∞

E(x)dx =
1

α

∫ ∞

−∞

βS(x)I(x)

S(x) + I(x) + E(x)
dx < ∞.

We finish the proof.

From (2.4), we get the solution

I(x) = C1e
λ−

1
x + C2e

λ+

1
x +

α

ρ1

(
∫ x

−∞

eλ
−

1
(x−y)E(y)dy +

∫ ∞

x

eλ
+

1
(x−y)E(y)dy

)

,

where C1 and C2 are constant numbers, and λ−
1 < 0 < λ+

1 are the two roots of the equations

f1(λ) := −d3λ
2 + cλ+ γ = 0 (3.3)

and

ρ1 := d3(λ
+
1 − λ−

1 ). (3.4)

Together with the boundary condition of E in (2.1) and L’Hôpital’s rule, the only solution of (2.4)

satisfying limx→±∞ I(x) = 0 is of the form

[I(E)](x) :=
α

ρ1

(
∫ x

−∞

eλ
−

1
(x−y)E(y)dy +

∫ ∞

x

eλ
+

1
(x−y)E(y)dy

)

, (3.5)

where Lemma 3.1 guarantees the integrability of the integrals. Substituting (3.5) into (2.3), we obtain

cE′ = d2E
′′ +

βSI(E)

S + I(E) + E
− αE. (3.6)

At the equilibrium (S−∞, 0, 0), (3.6) can be linearized as cE′ = d2E
′′ + βI(E) − αE. To study the

characteristic function we use the form E(t) = eλt, where λ ∈ (λ−
1 , λ

+
1 ), then

cλ = d2λ
2 +

αβ

−d3λ2 + cλ+ γ
− α.

The characteristic function of (3.6) is defined as

f(λ, c) := −d2λ
2 + cλ+ α− αβ

−d3λ2 + cλ+ γ
(3.7)

for λ ∈ (λ−
1 , λ

+
1 ).
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Lemma 3.2. Assume β/γ > 1. There exist λ0 ∈ (0, λ+
1 ) and c∗ > 0 such that

f(λ0, c
∗) = 0 and

∂f(λ0, c
∗)

∂λ
= 0.

Furthermore, if c > c∗, f(λ, c) = 0 has two different real roots λ1 and λ2 with 0 < λ1 < λ0 < λ2 < λ+
1 and

f(λ, c) > 0 if λ ∈ (λ1, λ2); f(λ, c) < 0 if λ ∈ (0, λ1) ∪ (λ2, λ
+
1 ). If 0 < c < c∗, f(λ, c) < 0 for λ ∈ (0, λ+

1 ).

Proof. By calculation, we have

f(0, c) = α− αβ

γ
< 0, f(λ,∞) = ∞ for λ ∈ (0, λ+

1 ),

∂f(0, c)

∂λ
= c(1 + αβ/γ2) > 0,

∂f(λ, c)

∂c
= λ+

αβλ

(−d3λ2 + cλ+ γ)2
> 0 for λ ∈ (0, λ+

1 ),

∂2f(λ, c)

∂λ2
= −2d2 −

2αβd3
(−d3λ2 + cλ+ γ)2

− 2αβ(−2d3λ+ c)2

(−d3λ2 + cλ+ γ)3
< 0 for λ ∈ (0, λ+

1 ).

By a simple discussion, we can get the existence of such a pair of (λ0, c
∗) from the above inequalities.

Let c > c∗ be fixed. We use the notation

f(λ) := f(λ, c) (3.8)

and want to find a λ∗ ∈ (0, λ+
1 ) such that

f(λ∗) = 0 and f ′(λ∗) > 0. (3.9)

By Lemma 3.2, we can choose λ∗ = λ1. To get the minimal wave speed c∗, we need to deal with a quartic

equation and there is a formula giving its discriminant.

Theorem 3.3. Given positive numbers d2, d3, α, β and γ, the minimal wave speed c∗ is the unique

positive solution of ∆(c) = 0, where ∆(c) is defined as follows:

∆(c) := 256A3E3 − 192A2BDE2 − 128A2C2E2 + 144A2CD2E − 27A2D4

+ 144AB2CE2 − 6AB2D2E − 80ABC2DE + 18ABCD3 + 16AC4E

− 4AC3D2 − 27B4E2 + 18B3CDE − 4B3D3 − 4B2C3E +B2C2D2

= A4c
8 +A3c

6 +A2c
4 +A1c

2 +A0,

where

A = d2d3, B = −c(d2 + d3), C = c2 − d2γ − d3α,

D = c(α+ γ), E = α(γ − β),

and

A4 = −2d2d3α
2 + 4d2d3αγ − 2d2d3γ

2 − 2αd23γ + 4αd23β − 8αd2d3β − 2αd22γ + 4αd22β

+ d23α
2 + d23γ

2 + d22α
2 + d22γ

2,

A3 = −18d2d
2
3α

2γ + 24d2d
2
3αγ

2 + 24d22d3α
2γ − 18d22d3αγ

2 + 14d2d
2
3α

2β + 18αd33γβ

− 38d3d
2
2α

2β + 6αd32γβ + 14d22d3αγβ − 38αd2d
2
3γβ + 2d2d

2
3α

3 − 8d2d
2
3γ

3 − 8d22d3α
3

+ 2d22d3γ
3 − 8d33αγ

2 − 8d32α
2γ + 2d32αγ

2 + 6d33α
2β + 18d32α

2β + 2d33α
3 + 4d33γ

3

+ 4d32α
3 + 2d32γ

3 + 2d33α
2γ,

A2 = −8d22d
2
3α

4 + 8d2d
3
3α

4 − 6d43α
3β − 27α2d43β

2 − 27α2d42β
2 − 8d22d

2
3γ

4 + 8d32d3γ
4

+ 8d43α
3γ − 8d43α

2γ2 − 8d42γ
2α2 + 8d42γ

3α+ d43α
4 + d42γ

4 − 14d22d
2
3α

3β
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+ 40d2d
3
3α

3β − 12d32d3α
3β + 36d2d

3
3α

2β2 − 2d22d
2
3α

2β2 + 36d32d3α
2β2 − 40d22d

2
3α

3γ

+ 102d22d
2
3α

2γ2 − 40d22d
2
3αγ

3 − 4d2d
3
3α

3γ − 40d2d
3
3α

2γ2 + 32d2d
3
3αγ

3 + 32d32d3α
3γ

− 40d32d3α
2γ2 − 4d32d3αγ

3 − 6αd42γ
2β + 36d43α

2γβ + 36d42γα
2β − 192d22d

2
3α

2γβ

− 14d22d
2
3αγ

2β + 52d2d
3
3α

2γβ − 12d2d
3
3αγ

2β + 52d32d3α
2γβ + 40d32d3αγ

2β,

A1 = 4d2d
4
3α

5 − 4d53α
4β + 4d42d3γ

5 + 4d53α
4γ + 4αd52γ

4 + 88d32d
2
3α

3γ2 − 32d32d
2
3α

2γ3

+ 32d42d3αγ
4 + 32d2d

4
3α

4γ − 48d32d
2
3αγ

4 − 48d22d
3
3α

4γ − 48d2d
4
3α

3γ2 − 48d42d3α
2γ3

− 4αd52γ
3β + 48d32d

2
3α

3β2 − 24d2d
4
3α

4β + 60d22d
3
3α

4β − 144d2d
4
3α

3β2 − 32d22d
3
3α

3γ2

+ 88d22d
3
3α

2γ3 − 104d22d
3
3α

3γβ − 124d22d
3
3α

2γ2β + 48d22d
3
3α

2γβ2 − 124d32d
2
3α

3γβ

− 104d32d
2
3α

2γ2β + 160d32d
2
3α

2γβ2 − 24d42d3αγ
3β + 60d32d

2
3αγ

3β + 196d2d
4
3α

3γβ

+ 196d42d3α
2γ2β − 144d42d3α

2γβ2 + 160d22d
3
3α

3β2,

A0 = −352d32d
3
3α

3γ2β + 512d32d
3
3α

3γβ2 + 192d42d
2
3α

2γ3β − 128d42d
2
3α

2γ2β2 + 192d22d
4
3α

4γβ

− 16d52d3αγ
4β + 16d52d3αγ

5 + 16d2d
5
3α

5γ − 16d2d
5
3α

5β − 64d42d
2
3α

2γ4 − 64d22d
4
3α

4γ2

+ 96d32d
3
3α

3γ3 − 256d32d
3
3α

3β3 − 128d22d
4
3α

4β2.

Proof. To study the roots of f(λ), we rewrite f(λ) = 0 as

G(λ) := (−d2λ
2 + cλ+ α)(−d3λ

2 + cλ+ γ)− αβ = 0. (3.10)

f(λ) = 0 and G(λ) = 0 are of the same roots. Obviously, (3.10) always has two simple real roots

λmax > max{λ+
1 , λ

+
2 } and λmin < min{λ−

1 , λ
−
2 }; if (3.10) has other real roots, they must be in the interval

(0,min{λ+
1 , λ

+
2 }), where λ±

1 and λ±
2 are the roots of −d3λ

2 + cλ + γ = 0 and −d2λ
2 + cλ + α = 0,

respectively, and λ−
i < 0 < λ+

i , i = 1, 2. We rewrite (3.10) as

d2d3λ
4 − c(d2 + d3)λ

3 + (c2 − d2γ − d3α)λ
2 + c(α+ γ)λ+ α(γ − β) = 0. (3.11)

By the theory of the quartic equation, the discriminant of G(λ) is ∆ defined in Theorem 3.3; ∆ = 0 ⇔
(3.11) has the multiple roots; ∆ < 0 ⇔ (3.11) has two simple real roots and two simple complex roots;

∆ > 0 ⇔ the four simple roots of (3.11) are either all real or all complex (see [11]). Since (3.11) already

has two simple real roots λmax and λmin, c
∗ must be the solution of ∆(c) = 0. Furthermore, we show

that ∆(c) = 0 has only one real root on (0,∞). By Lemma 3.2, when c > c∗ > 0, (3.7) has two simple

real roots on (0,min{λ+
1 , λ

+
2 }), which means (3.10) has four simple real roots on R thus ∆(c) > 0; when

0 < c < c∗, (3.7) has no real roots on (0,min{λ+
1 , λ

+
2 }), which means (3.10) has two simple real roots

and two simple complex roots on R thus ∆(c) < 0. Thus for fixed d2, d3, α, β and γ, there exists only one

c∗ > 0 satisfying ∆(c∗) = 0.

Example 3.4. Given α = 1, β = 3, γ = 2, d2 = 4 and d3 = 7, then ∆(c) = 117c8 + 9804c6 +

115828c4 + 7085364c2 − 50878912. It can be regarded as a quartic equation of c2. We use the formula

of roots of quartic equation to solve ∆ = 0 and get the eight roots ±2.489728494362, ±9.031162429666i

and ±3.543444284346± 4.095346122859i. The only positive real root is c∗ = 2.489728494362. We choose

different values of c and the figures of G(λ) defined by (3.10) are in Figure 1.

Remark 3.5. The minimal wave speed c∗ is important for describing the transmission speed of in-

fectious diseases. We are interested in the relation between the minimal wave speed c∗ and the diffusive

rates d2 and d3. The explicit expression of c∗ is too complicated and the surfaces of c∗ about d2 and d3
are in Figure 2.

The following lemma gives a simple sufficient condition that ensures such a λ∗ satisfying (3.9).

Lemma 3.6. If d2 < d3, let c > 2
√

d3(β − γ). If d2 > d3, let c > 2
√

d2(β/γ − 1)α. Then there exists

a λ∗ ∈ (0, λ+
1 ) such that

f(λ∗) = 0 and f ′(λ∗) > 0.
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Figure 1 The curves of G(λ) when c takes different values. Let α = 1, β = 3, γ = 2, d2 = 4 and d3 = 7 be fixed. We

can see that if c = c∗ = 2.489728494362, G(λ) has two simple real roots and a double real root; if c = 1.9 < c∗, G(λ)

has two real roots; if c = 3.1 > c∗, G(λ) has four real roots
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Figure 2 The surface of c∗(d2, d3), where α, β and γ take the same values as they are in Example 3.4. As it is

expected, c∗ increases with respect to d2 and d3

Proof. First, we define some new notation

g1(λ) :=
αβ

f1(λ)
=

αβ

−d3λ2 + cλ+ γ

and

f2(λ) := −d2λ
2 + cλ+ α

such that

f(λ) = f2(λ)− g1(λ).

We show that if c > 0 is small enough, f(λ) = 0 has no positive solution in (λ−
1 , λ

+
1 ), where λ±

1 are the

roots of f1 = 0. If we take c = 0, then g1(0) = αβ/γ > α is its minimum value on (λ−
1 , λ

+
1 ), while for f2,

the maximum value is α. Thus f(λ) = 0 has no solution in (λ−
1 , λ

+
1 ). Furthermore, f is continuous with

respect to c, thus there is no solution in (λ−
1 , λ

+
1 ) for c > 0 small enough.

Next, we want to get such a λ∗ ∈ (λ−
1 , λ

+
1 ) satisfying (3.9) when c is large enough. Notice that

g1(0) = αβ/γ and f2(0) = α. By the assumption β/γ > 1, we obtain g1(0) > f2(0). The axis of symmetry

of g1(λ) is λ = c/(2d3) > 0 and for f2(λ), the axis of symmetry is λ = c/(2d2) > 0. Furthermore, g1(λ)
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takes its minimum value

b1 =
4αβd3

c2 + 4d3γ

at λ = c/(2d3), while f2(λ) takes its maximum value

b2 =
c2

4d2
+ α

at λ = c/(2d2). If c is large enough, b1 is a sufficiently small positive number and b2 can be sufficiently

large, thus there must be a λ∗ satisfying (3.9).

If c/(2d2) > c/(2d3), g1(λ) decreases on [0, c/(2d3)). When c > 2
√

d3(β − γ),

g1

(

c

2d3

)

< α.

Since f2 increases on [0, c
2d3

] and f2(0) = α, we can see that

f2

(

c

2d3

)

> α.

Hence, there exists a solution λ∗ ∈ (0, c/(2d3)) such that

f(λ∗) = 0, f ′(λ∗) > 0.

If c/(2d2) 6 c/(2d3), f2(λ) increases on [0, c/(2d2)). Let

c > 2

√

d2

(

β

γ
− 1

)

α.

Then

f2

(

c

2d2

)

>
αβ

γ
,

while g1(0) = αβ/γ and g1 decreases on [0, c
2d2

), which means

g1

(

c

2d2

)

<
αβ

γ
.

Thus there exists a solution λ∗ ∈ (0, c/(2d2)) such that f(λ∗) = 0, f ′(λ∗) > 0.

For i = 1, 2, we give the second-order linear differential operator ∆i and its inverse ∆−1
i . Given a1 > β

and a2 > α, the roots of the equation

−diΛ
2 + cΛ + ai = 0

are

Λ±
i :=

c±
√
c2 + 4diai
2di

.

ai is chosen so large that

−Λ−
i > λ∗.

We introduce a new symbol

Ri := di(Λ
+
i − Λ−

i ) =
√

c2 + 4diai.

The differential operator ∆i is defined by

∆i(h) := −dih
′′ + ch′ + aih
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for h ∈ C2(R). The corresponding inverse operator ∆−1
i is

∆−1
i (h(x)) :=

1

Ri

∫ x

−∞

eΛ
−

i
(x−y)h(y)dy +

1

Ri

∫ ∞

x

eΛ
+

i
(x−y)h(y)dy

for h ∈ Cµ−,µ+(R), where

µ− > Λ−
i , µ+ < Λ+

i

and

Cµ−,µ+(R) :=
{

h ∈ C2(R) : sup
x60

h(x)e−µ−x + sup
x>0

h(x)e−µ+x < ∞
}

. (3.12)

Furthermore, by a simple calculation,

(∆−1
i h)′(x) =

Λ−
i

Ri

∫ x

−∞

eΛ
−

i
(x−y)h(y)dy +

Λ+
i

Ri

∫ ∞

x

eΛ
+

i
(x−y)h(y)dy

and

(∆−1
i h)′′(x) =

(Λ−
i )

2

Ri

∫ x

−∞

eΛ
−

i
(x−y)h(y)dy +

(Λ+
i )

2

Ri

∫ ∞

x

eΛ
+

i
(x−y)h(y)dy +

Λ−
i

Ri
h(x)− Λ+

i

Ri
h(x).

The following Lemmas 3.7 and 3.8 on the properties of operators ∆i and ∆−1
i are from Wang et al. [14].

These two lemmas can be checked by a direct calculation.

Lemma 3.7. For i = 1, 2,

∆−1
i (∆ih) = h

for any h ∈ C2(R) such that h, h′, h′′ ∈ Cµ−,µ+(R). Furthermore,

∆i(∆
−1
i h) = h

for h ∈ Cµ−,µ+(R), where µ− > Λ−
i and µ+ < Λ+

i .

Next, define

g(x) :=

{

eλx(1 −Meεx), x 6 x∗,

0, x > x∗,
(3.13)

where x∗ = −(lnM)/ε. g(x) can be rewritten as

g(x) = eλx(1−Meεx) ∨ 0

by using the new symbol ∨ defined as follows:

a ∨ b := max{a, b}.

Lemma 3.8. For i = 1, 2, given any M > 0 and ε > 0,

∆−1
i (∆ig) > g

holds for g(x) = eλx(1−Meεx) ∨ 0, where

Λ−
i < λ < λ+ ε < Λ+

i .

Remark 3.9. Although g(x) is not differentiable at x∗, the integral ∆−1
i (∆ig) is well-defined in the

sense of distribution.

Choosing µ such that

λ∗ < µ < −Λ−
i < Λ+

i , i = 1, 2, (3.14)

we define the functional space

Bµ(R,R
2) =

{

φ = (φ1, φ2) : φi ∈ C(R), sup
x∈R

e−µ|x||φi(x)| < ∞, i = 1, 2
}
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with the norm

|φ|µ := max{|φi|µ, i = 1, 2}, (3.15)

where

|φi|µ := sup
x∈R

e−µ|x||φi(x)|.

We give the definitions as follows:

S+ := S−∞, (3.16)

S− := S−∞(1 −M1e
ε1x) ∨ 0, (3.17)

E+ := eλ∗x, (3.18)

E− := eλ∗x(1 −M2e
ε2x) ∨ 0, (3.19)

where Mi > 0 is sufficiently large and εi > 0 is sufficiently small, i = 1, 2. We denote

F1(S,E) := ∆−1
1

[

a1S − βSI(E)

S + I(E) + E

]

, (3.20)

F2(S,E) := ∆−1
2

[

a2E +
βSI(E)

S + I(E) + E
− αE

]

. (3.21)

Γ is the convex cone defined by using (3.16)–(3.19), i.e.,

Γ := {(S,E) ∈ Bµ(R,R
2) : S− 6 S 6 S+, E− 6 E 6 E+}.

We can see that Γ is uniformly bounded under the norm | · |µ defined in (3.15). We show that Γ is

invariant under the map F = (F1, F2).

Lemma 3.10. F = (F1, F2) maps Γ to Γ, i.e., for (S,E) ∈ Γ, S− 6 S 6 S+ and E− 6 E 6 E+, we

have

S− 6 F1(S,E) 6 S+

and

E− 6 F2(S,E) 6 E+.

Proof. First, since

∆1F1(S,E) = a1S − βSI(E)

S + I(E) + E
6 a1S+ = ∆1S+,

by Lemma 3.7, we have

F1(S,E) 6 ∆−1
1 (∆1S+) = S+.

Next, we show that F1(S,E) > S−. For x > x1 := −ε−1
1 lnM1, S−(x) = 0, thus ∆1S− = 0. Since a1 > β,

we have

a1S − βSI(E)

S + I(E) + E
> a1S − βS > 0 = ∆1S−,

which implies that F1(S,E) > S− holds for x > x1. For x < x1, we need to show

−βI(E+) > −d1S
′′
− + cS′

−.

Since S−(x) = S−∞(1−M1e
ε1x), the above inequality is

−βI(E+) > −d1S−∞(1−M1e
ε1x)′′ + cS−∞(1 −M1e

ε1x)′.

By the definition of I(E) and E+(x) = eλ∗x, it implies to prove

S−∞M1ε1(−d1ε1 + c) >
αβ

−d3λ2
∗ + cλ∗ + γ

e(λ∗−ε1)x.
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Choosing ε1 ∈ (0, λ∗) sufficiently small, since the right-hand side of the above inequality monotonically

increases with respect to x and x 6 −ε−1
1 lnM1, we only need to show

S−∞M1ε1(−d1ε1 + c) >
αβ

−d3λ2
∗ + cλ∗ + γ

e−ε−1

1
(λ∗−ε1) lnM1 .

This inequality holds for 0 < ε1 < min{λ∗, c/d1} and M1 large enough.

Next, we verify E− 6 F2(S,E) 6 E+. Since f(λ∗) = 0 in (3.8), it holds that

a2E +
βSI(E)

S + I(E) + E
− αE 6 a2E+ + βI(E+)− αE+ = a2E+ − d2E

′′
+ + cE′

+ = ∆2E+. (3.22)

By Lemma 3.7, it holds that

F2(S,E) 6 ∆−1
2 (∆2E+) = E+.

Next, to check

a2E +
βSI(E)

S + I(E) + E
− αE > a2E− +

βS−I(E−)

S− + I(E−) + E+
− αE− > a2E− − d2E

′′
− + cE′

− = ∆2E−,

it suffices to show
βS−I(E−)

S− + I(E−) + E+
− αE− > −d2E

′′
− + cE′

−.

For x > x2 := −ε−1
2 lnM2, E−(x) = 0 and the above inequality holds. For x < x2, we subtract both

sides by βI(E−)− αE− and obtain

− βI2(E−)

S− + I(E−) + E+
− βI(E−)E+

S− + I(E−) + E+
> −d2E

′′
− + cE′

− + αE− − βI(E−). (3.23)

In view of f(λ∗) = 0 and E− = eλ∗x(1−M2e
ε2x), we obtain

−d2E
′′
− + cE′

− + αE− − βI(E−) = f(λ∗)e
λ∗x −M2f(λ∗ + ε2)e

(λ∗+ε2)x = −M2f(λ∗ + ε2)e
(λ∗+ε2)x.

To prove (3.23), it suffices to show

βI2(E−) + βI(E−)E+

S−
6 M2f(λ∗ + ε2)e

(λ∗+ε2)x. (3.24)

We take ε2 ∈ (0,min{ε1, λ∗, λ2 − λ∗}) small enough, where λ2 is defined in Lemma 3.2. It holds that

I(E−)(x) =
αeλ∗x

−d3λ2
∗ + cλ∗ + γ

−M2
αe(λ∗+ε2)x

−d3(λ∗ + ε2)2 + c(λ∗ + ε2) + γ
. (3.25)

For simplicity, we introduce new notation K1 and K2 such that I(E−) can be rewritten as

I(E−)(x) = K1e
λ∗x −K2(ε2)M2e

(λ∗+ε2)x > 0

for x < x2. (3.24) becomes

βe2λ∗x[(K1 −K2(ε2)M2e
ε2x)2 +K1 −K2(ε2)M2e

ε2x]

S−∞(1−M1eε1x)
6 M2f(λ∗ + ε2)e

(λ∗+ε2)x.

It suffices to verify

M2f(λ∗ + ε2)S−∞(1 −M1e
ε1x) > βe(λ∗−ε2)x(K2

1 +K1)

holds for small ε2. For x < x2 = −ε−1
2 lnM2, we need to show

M2f(λ∗ + ε2)S−∞(1−M1M
−ε1/ε2
2 ) > βM

−(λ∗−ε2)/ε2
2 (K2

1 +K1).

Let M2 = 1/f(λ∗ + ε2). As ε2 goes to zero, the left-hand side of the above inequality goes to S−∞ while

the right-hand side goes to zero and thus (3.24) holds. Together with Lemma 3.8, it yields that

F2(S,E) > ∆−1
2 (∆2E−) > E−.
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Lemma 3.11. For E ∈ C−µ,µ(R) whose norm |E|µ is bounded, where | · |µ is defined in (3.15), there

exists a constant K0 > 1 such that |I(E)|µ < K0|E|µ.

Proof. Recall the integral form of I(E)(x) is

I(E)(x) =
α

ρ1

∫ x

−∞

eλ
−

1
(x−y)E(y)dy +

α

ρ1

∫ ∞

x

eλ
+

1
(x−y)E(y)dy,

where ρ1 and λ±
1 are defined in (3.4) and (3.3). For any x, we have

e−µ|x|I(E)(x) =
α

ρ1

(
∫ x

−∞

eλ
−

1
(x−s)e−µ|x|E(s)ds+

∫ ∞

x

eλ
+

1
(x−s)e−µ|x|E(s)ds

)

6
α

ρ1

(
∫ x

−∞

eλ
−

1
(x−s)ds+

∫ ∞

x

eλ
+

1
(x−s)ds

)

|E|µ

=
α

ρ1

(−1

λ−
1

+
1

λ+
1

)

|E|µ = (α/γ)|E|µ.

Take K0 = max{1, α/γ}. This completes the proof.

Lemma 3.12. The map F = (F1, F2) : Γ → Γ is continuous and compact with respect to the norm | · |µ.

Proof. For (S1, E1) ∈ Γ and (S2, E2) ∈ Γ, since

∣

∣

∣

∣

βS1I(E1)

S1 + I(E1) + E1
− βS2I(E2)

S2 + I(E2) + E2

∣

∣

∣

∣

6 β(|S1 − S2|+ |I(E1)− I(E2)|),

we have
∣

∣

∣

∣

a1S1 − a1S2 −
βS1I(E1)

S1 + I(E1) + E1
+

βS2I(E2)

S2 + I(E2) + E2

∣

∣

∣

∣

6 (a1 + β)(|S1 − S2|+ |I(E1)− I(E2)|).

By the definition of the norm | · |µ and Lemma 3.11,

|F1(S1, E1)− F1(S2, E2)|(x)e−µ|x|
6 e−µ|x|

∫ x

−∞

eΛ
−

1
(x−y)(a1 + β)(|S1 − S2|+ |I(E1)− I(E2)|)dy

+ e−µ|x|

∫ ∞

x

eΛ
+

1
(x−y)(a1 + β)(|S1 − S2|+ |I(E1)− I(E2)|)dy

6
a1 + β

R1
(|S1 − S2|µ +K0|E1 − E2|µ)C(x)

6
(a1 + β)K0

R1
(|S1 − S2|µ + |E1 − E2|µ)C(x),

where

C(x) := e−µ|x|

(
∫ x

−∞

eΛ
−

1
(x−y)+µ|y|dy +

∫ ∞

x

eΛ
+

1
(x−y)+µ|y|dy

)

.

We have

C(−∞) =
1

µ+ Λ+
1

− 1

µ+ Λ−
1

and

C(∞) =
1

−µ+ Λ+
1

+
1

µ− Λ−
1

.

Thus C(x) is uniformly bounded on R and consequently F1 is continuous with respect to the norm | · |µ.
Similarly, F2 is also continuous with respect to this norm. To prove the compactness of F , we use the

Arzela-Ascoli theorem and the diagonal process. Denote

Ik := [−k, k], k ∈ N
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and consider Γ as the bounded subset of C(Ik,R
2) with the maximum norm. Obviously, F is uniformly

bounded on Ik. Next, we show that F is equi-continuous on Ik. For any (S,E) ∈ Γ,

|F ′
1(S,E)| 6 −Λ−

1 a1S−∞

R1

∫ x

−∞

eΛ
−

1
(x−y)dy +

Λ+
1 a1S−∞

R1

∫ ∞

x

eΛ
+

1
(x−y)dy

=
2a1S−∞

R1
,

and

|F ′
2(S,E)| 6

−Λ−
2 (a2 +

αβ
−d3λ2

∗
+cλ∗+γ − α)

R2

∫ x

−∞

eΛ
−

2
(x−y)+λ∗ydy

+
Λ+
2 (a2 +

αβ
−d3λ2

∗
+cλ∗+γ − α)

R2

∫ ∞

x

eΛ
+

2
(x−y)+λ∗ydy

=
1

R2

( −Λ−
2

λ∗ − Λ−
2

+
Λ+
2

Λ+
2 − λ∗

)(

a2 +
αβ

−d3λ2
∗ + cλ∗ + γ

− α

)

eλ∗x.

Let {un} be a subsequence of Γ. {un} can also be regarded as a bounded subsequence of C(Ik). Since

{F (un)} is uniformly bounded and equi-continuous on Ik, by the Arzela-Ascoli theorem, we can choose

a subsequence {unk
} such that

vnk
= Funk

converges in C(Ik), k ∈ N.

Let v denote the limit of {vnk
}. We can see that v ∈ C(R,R2). Since F (Γ) ⊂ Γ and Γ is closed, thus

v ∈ Γ. Furthermore, µ > λ∗ > 0, hence |E+|µ is bounded and Γ is also uniformly bounded under the

norm | · |µ. Thus |vnk
− v|µ is uniformly bounded for all n ∈ N. Given any ε > 0, we can choose M ∈ N

independent of unk
such that

e−µ|x||vnk
(x) − v(x)| < ε, n ∈ N

holds for any |x| > M . On the compact interval [−M,M ], {vnk
} converges to v with the maximum norm.

Thus there exists K ∈ N such that

e−µ|x||vnk
(x)− v(x)| < ε

for |x| < M and n > K. Hence, {vnk
} converges to v under the norm | · |µ. We have finished the proof

of the compactness of the map F .

4 Existence theorem

Since F is continuous and compact on Γ, by the Schauder fixed point theorem, F has a fixed point

(S,E) ∈ Γ such that

S = F1(S,E) = ∆−1
1

(

a1S − βSI(E)

S + I(E) + E

)

,

E = F2(S,E) = ∆−1
2

(

a2E +
βSI(E)

S + I(E) + E
− αE

)

.

Since S,E ∈ C−µ,µ(R) and Λ−
i < −µ < µ < Λ+

i , i = 1, 2, it holds that

∆1S = a1S − βSI(E)

S + I(E) + E
, (4.1)

∆2E = a2E +
βSI(E)

S + I(E) + E
− αE. (4.2)
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By the definition of ∆i, (S,E) satisfies

cS′ = d1S
′′ − βSI(E)

S + I(E) + E
, (4.3)

cE′ = d2E
′′ +

βSI(E)

S + I(E) + E
− αE. (4.4)

Next, we verify that the boundary conditions hold. Since

S− 6 S 6 S+ and E− 6 E 6 E+,

it holds that

S(x) → S−∞, E(x) ∼ eλ∗x as x → −∞.

In the proof of Lemma 3.1, we have

d1S
′(x) = c[S(x)− S−∞] +

∫ x

−∞

βS(y)I(y)

S(y) + I(E)(y) + E(y)
dy.

Together with the integrability of (3.2), it holds that S′ is uniformly bounded. We have

(e−cx/d1S′(x))′ = e−cx/d1(S′′(x)− cS′(x)/d1) = e−cx/d1
βS(x)I(E)(x)

d1[S(x) + I(E)(x) + E(x)]
.

Integrating the above equality yields

e−cx/d1S′(x) = −
∫ ∞

x

e−cy/d1
βS(y)I(E)(y)

d1[S(y) + I(E)(y) + E(y)]
dy.

Hence S is non-increasing. Since I(x) is not trivial, the integral

∫ ∞

x

e−cy/d1
βS(y)I(E)(y)

d1[S(y) + I(E)(y) + E(y)]
dy

cannot be identically 0. Thus S′ is not trivial and

S(∞) < S(−∞).

By L’Hopital’s rule and

I(x) =
α

ρ1

(
∫ x

−∞

eλ
−

1
(x−y)E(y)dy +

∫ ∞

x

eλ
+

1
(x−y)E(y)dy

)

,

we obtain

lim
x→−∞

I(x) = lim
x→−∞

α

ρ1

(

e−λ−

1
xE(x)

−λ−
1 e

−λ−

1
x

)

+ lim
x→−∞

α

ρ1

(

e−λ+

1
xE(x)

λ+
1 e

−λ+

1
x

)

= lim
x→−∞

α

γ
E(x) = 0.

Recall the integral representation of the first derivative

(∆−1
i h)′(x) =

Λ−
i

Ri

∫ x

−∞

eΛ
−

i
(x−y)h(y)dy +

Λ+
i

Ri

∫ ∞

x

eΛ
+

i
(x−y)h(y)dy,

where h ∈ C−µ,µ(R). By the definition of F1 and L’Hopital’s rule, we obtain

lim
x→−∞

S′(x) = lim
x→−∞

Λ−
1

R1

(

e−Λ−

1
xa1S(x)

−Λ−
1 e

−Λ−

1
x

)

+ lim
x→−∞

Λ+
1

R1

(

e−Λ+

1
xa1S(x)

Λ+
1 e

−Λ+

1
x

)

= 0.

Similarly, by the definition of F2 and L’Hopital’s rule,

E′(x) → 0, I ′(x) → 0, as x → −∞.
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By (2.2)–(2.4), we obtain the limits of the second derivatives

S′′(x) → 0, E′′(x) → 0, I ′′(x) → 0, as x → −∞.

Next, we give the asymptotic behaviors of S(x), E(x) and I(x) as x → ∞.

Similarly, by (3.5), we have

∫ ∞

−∞

I(x)dx =
α

γ

∫ ∞

−∞

E(x)dx =
1

γ

∫ ∞

−∞

βS(x)I(E)(x)

S(x) + I(E)(x) + E(x)
dx. (4.5)

Since

E′(x) =
λ−
2

ρ2

∫ x

−∞

eλ
−

2
(x−y) βS(y)I(E)(y)

S(y) + I(E)(y) + E(y)
dy +

λ+
2

ρ2

∫ ∞

x

eλ
+

2
(x−y) βS(y)I(E)(y)

S(y) + I(E)(y) + E(y)
dy,

we obtain

|E′(x)| 6 β

d2

∫ ∞

−∞

I(E)(x)dx.

We can see that

E(x) → 0, as x → ∞.

Otherwise, since |E′| is bounded, we can choose a sequence xi → ∞, ε > 0 and δ > 0, such that E(x) > ε

on (xi − δ, xi + δ), which contradicts the integrability of E on R. Similarly,

I(x) → 0, as x → ∞.

Furthermore, we use the same methods dealing with I ′(x) and E′(x) and obtain

E′(x) → 0, I ′(x) → 0, as x → ∞.

From (2.2)–(2.4), we also have

S′′(x) → 0, E′′(x) → 0, I ′′(x) → 0, as x → ∞.

Integrating (4.3) from −∞ to ∞ yields

∫ ∞

−∞

βS(x)I(E)(x)

S(x) + I(E)(x) + E(x)
dx = c[S(−∞)− S(∞)].

We want to prove that

E(x) 6 S(−∞)− S(∞)

for all x ∈ R. Define

J(x) := E(x) +
α

c

∫ x

−∞

E(y)dy +
α

c

∫ ∞

x

e
c

d2
(x−y)E(y)dy. (4.6)

By the property at infinity of E(x) and L’Hopital’s rule,

lim
x→−∞

J(x) = 0, lim
x→∞

J(x) =
α

c

∫ ∞

−∞

E(y)dy = S(−∞)− S(∞).

Similarly, by differentiating (4.6), together with E(x) → 0 as x → ±∞, we obtain

J ′(x) = E′(x) +
α

d2

∫ ∞

x

e
c

d2
(x−y)

E(y)dy.

Hence,

lim
x→−∞

J ′(x) = 0, lim
x→∞

J ′(x) = 0
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from the above equality. We differentiate (4.6) twice, i.e.,

J ′′(x) = E′′(x) − α

d2
E(x) +

cα

d22

∫ ∞

x

e
c

d2
(x−y)E(y)dy

and obtain

−d2J
′′ + cJ ′ = −d2E

′′ + cE′ + αE = βSI(E)/(S + I(E) + E).

We integrate the above equality from x to ∞ and obtain

J ′(x) =
1

d2

∫ ∞

x

e
c

d2
(x−y) βS(y)I(E)(y)

S(y) + I(E)(y) + E(y)
dy > 0. (4.7)

We have

J(∞) = S(−∞)− S(∞)

and from (4.7) we can see that J(x) is non-decreasing and thus

J(x) 6 S(−∞)− S(∞)

for all x ∈ R. Recall that E(x) 6 J(x) by (4.6), so

E(x) 6 S(−∞)− S(∞)

for all x ∈ R.

To study I, define

H(x) := I(x) +
γ

c

∫ x

−∞

I(y)dy +
γ

c

∫ ∞

x

e
c

d3
(x−y)

I(y)dy.

Using the similar methods as in studying (4.6), we obtain

lim
x→−∞

H(x) = 0, lim
x→∞

H(x) =
γ

c

∫ ∞

−∞

I(y)dy = S(−∞)− S(∞).

Differentiating H(x) we obtain

H ′(x) = I ′(x) +
γ

d3

∫ ∞

x

e
c

d3
(x−y)I(y)dy,

and furthermore,

lim
x→−∞

H ′(x) = 0, lim
x→∞

H ′(x) = 0.

Differentiate H(x) twice, i.e.,

H ′′(x) = I ′′(x) − γ

d3
I(x) +

cγ

d23

∫ ∞

x

e
c

d3
(x−y)I(y)dy,

and thus

−d3H
′′ + cH ′ = −d3I

′′ + cI ′ + γI = αE.

From the above equality, we have

H ′(x) =
1

d3

∫ ∞

x

e
c

d3
(x−y)E(y)dy.

Since H(∞) = S(−∞)− S(∞) and H ′(x) > 0,

I(x) 6 H(x) 6 S(−∞)− S(∞)

holds for all x ∈ R. This completes the proof.
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5 Non-existence

Theorem 5.1. If β/γ 6 1, for any c > 0, there is no non-trivial non-negative traveling wave solution

satisfying the boundary conditions (2.1).

Proof. Recall (4.5), i.e.,

∫ ∞

−∞

I(x)dx =
1

γ

∫ ∞

−∞

βS(x)I(E)(x)

S(x) + I(E)(x) + E(x)
dx.

If β 6 γ and I(x) is a non-trivial and non-negative function, then

∫ ∞

−∞

I(x)dx =
β

γ

∫ ∞

−∞

S(x)I(E)(x)

S(x) + I(E)(x) + E(x)
dx <

β

γ

∫ ∞

−∞

I(x)dx 6

∫ ∞

−∞

I(x)dx.

We get a contradiction.

Theorem 5.2. If β/γ > 1 and 0 < c < c∗, there is no non-negative and non-trivial traveling wave

solution satisfying the boundary conditions (2.1).

Proof. Let (S,E) be the solution of (2.2)–(2.3) satisfying the boundary conditions (2.1). Since

βS

S + I + E
→ β, αE(x) → γI(x)

as x → −∞, there exists an x̄ < 0 such that for x < x̄,

βSI/(S + I + E)− αE > δE > 0,

where δ := α(β − γ)/(2γ). Applying the above inequality to (2.3), we obtain

cE′ − d2E
′′ > δE > 0 (5.1)

for x < x̄. Since

E(±∞) = 0, E′(±∞) = 0, E′′(±∞) = 0, (5.2)

we can see that cE′ − d2E
′′ is integrable at −∞. Together with the Lebesgue dominated convergence

theorem and (5.1), E is also integrable at −∞. We denote

K(x) :=

∫ x

−∞

E(y)dy.

Integrating (5.1) yields

δK(x) 6 cE(x)− d2E
′(x)

for x < x̄. Integrate the above inequality again and we obtain

∫ x

−∞

K(y)dy 6
c

δ
K(x)

for all x < x̄. We also notice that K(x) is non-decreasing, hence

ηK(x− η) 6

∫ x

x−η

K(y)dy 6
c

δ
K(x)

for all η > 0 and x < x̄. By choosing η > 2c/δ,

K(x− η) < K(x)/2

for all x < x̄. Denote µ0 := min{(ln 2)/η, λ+
1 /2} and

L(x) := K(x)e−µ0x.
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It holds that

L(x− η) < L(x)

for x < x̄, which implies that L(x) is bounded as x → −∞. (5.1) and (5.2) yield

cE′ > d2E
′′, cE > d2E

′, cK > d2E.

Hence, we conclude that

E′′(x)e−µ0x, E′(x)e−µ0x and E(x)e−µ0x

are all bounded as x → −∞. Together with (5.2), they are uniformly bounded on R. By (3.5),

lim
x→±∞

E(x)/I(x) = γ/α

and we can see that I(x)e−µ0x is also bounded onR. Since I/(S+I+E) 6 1 and S(x)+I(x)+E(x) → S−∞

as x → −∞, both
I(x)e−µx

S(x) + I(x) + E(x)

and
[I2(x)/E(x)]e−µx

S(x) + I(x) + E(x)

are uniformly bounded on R for µ ∈ (0, µ0]. Since

βSI

S + I + E
= βI − βI2

S + I + E
− βIE

S + I + E
,

together with (2.3) we obtain

−d2E
′′ + cE′ + αE − βI = − βI2

S + I + E
− βIE

S + I + E
. (5.3)

Moreover, it holds that
∫ ∞

−∞

e−µxI(x)dx =

∫ ∞

−∞

e−µx[I(E)](x)dx

=
α

ρ1

∫ ∞

−∞

e−µx

(
∫ x

−∞

eλ
−

1
(x−y)E(y)dy +

∫ ∞

x

eλ
+

1
(x−y)E(y)dy

)

dx

=
α

ρ1

∫ ∞

−∞

e−µx

(
∫ ∞

0

eλ
−

1
yE(x− y)dy −

∫ ∞

0

eλ
+

1
yE(x − y)dy

)

dx

=
α

ρ1

∫ ∞

−∞

e−µ(x−y)E(x− y)

(
∫ ∞

0

e(λ
−

1
−µ)ydy −

∫ ∞

0

e(λ
+

1
−µ)ydy

)

dx

=
α

−d3µ2 + cµ− γ

∫ ∞

−∞

e−µxE(x)dx.

We use the two-side Laplace transform on both sides of (5.3) and then obtain

f(µ)

∫ ∞

−∞

E(x)e−µxdx = −β

∫ ∞

−∞

(

I2(x)/E(x)

S(x) + I(x) + E(x)
+

I(x)

S(x) + I(x) + E(x)

)

E(x)e−µxdx, (5.4)

where

f(µ) = −d2µ
2 + cµ+ α− αβ

−d3µ2 + cµ+ γ
.

The integrals on both sides of the above equality are well-defined for any µ ∈ (0, µ0). By the assumption

that c < c∗, f(µ) is always negative for all µ ∈ [0, λ+
1 ). All the three integrals in (5.4) can be analytically

continued to the interval [0, λ+
1 ). Otherwise, by the theory of convergence region of two-side Laplace

transform (see [14, 16, 17]), the integral
∫ ∞

−∞

E(x)e−µxdx
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has a singularity at µ = µ∗ ∈ (0, λ+
1 ) and is analytic for all µ ∈ (0, µ∗). At the same time, we check the

integral
∫ ∞

−∞

(

I2(x)/E(x)

S(x) + I(x) + E(x)
+

I(x)

S(x) + I(x) + E(x)

)

E(x)e−µxdx. (5.5)

Notice
I(x)

S(x) + I(x) + E(x)
e−µ1x

and
I2(x)/E(x)

S(x) + I(x) + E(x)
e−µ1x

are uniformly bounded for µ1 = min{(λ+
1 −µ∗)/2, µ0}, so the integral (5.5) is analytic for all µ < µ∗+µ1.

We get a contradiction.

We rewrite (5.4) as

∫ ∞

−∞

e−µxE(x)

[

f(µ) +
βI2(x)/E(x)

S(x) + I(x) + E(x)
+

βI(x)

S(x) + I(x) + E(x)

]

dx = 0.

This leads to a contradiction again in that

f(µ) +
βI2(x)/E(x)

S(x) + I(x) + E(x)
+

βI(x)

S(x) + I(x) + E(x)
→ −∞

as µ → λ+
1 − 0, while e−µxE(x) > 0 for all µ ∈ (0, λ+

1 ). Thus we conclude that if R0 > 1 and c < c∗ there

is no non-negative and non-trivial traveling wave solution satisfying the boundary conditions (2.1).

6 Discussion

Due to the significant epidemic meaning of our diffusive SEIR model, the speed of spatial spread of

epidemics is an important problem in mathematical epidemiology. Aronson and Weinberger [2] have

proved the coincidence of the minimal wave speed and the asymptotic speed of propagation for the

Fisher’s equation, where c0 > 0 is the asymptotic speed if for any c > c0 the solution tends to zero

uniformly in the spatial-time region {(x, t) : |x| > ct}, while for any 0 < c < c0 the solution is bounded

and away from zero uniformly in the region {(x, t) : |x| 6 ct} as t → ∞. Aronson [1] also gave an

analogous result for an SIR epidemic model with non-local reaction, which is called the Kendall model.

This result implies that if you travel toward +∞, then you escape from the epidemic region if your speed is

larger than the minimal speed c∗, but if your speed is less than c∗, the infection eventually overtakes you.

Recently, the spreading speed of reaction-diffusion has been intensively studied by many researchers.

Thieme and Zhao [12] generalized the concept of spreading speeds and monotone traveling waves to the

non-linear integral equations and their results can be used to a large number of non-local reaction-diffusion

population models. They showed the spreading speed coincides with the minimal wave speed. Despite

these existing results, the relation between these two speeds of our diffusive SEIR model is still an open

problem and it will be our successive work. Furthermore, as it is mentioned in [16], the non-locality of the

reaction and time delay may increase or decrease the speed of traveling waves of a diffusive SIR model.

We also get some analogous results for the corresponding diffusive SEIR model.
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3 Brauer F, Castillo-Chávez C. Mathematical Models in Population Biology and Epidemiology. Texts in Applied Math-

ematics, vol. 40. New York: Springer, 2001

4 Cheng H, Yuan R. Traveling waves of a nonlocal dispersal Kermack-McKendrick epidemic model with delayed trans-

mission. J Evol Equ, 2016, doi:10.1007/s00028-016-0362-2

5 Du Y, Lin Z. The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor.

Discrete Contin Dyn Syst Ser B, 2014, 19: 3105–3132

6 Du Y, Lou B. Spreading and vanishing in nonlinear diffusion problems with free boundaries. J Eur Math Soc, 2015,

17: 2673–2724

7 Hethcote H W, van den Driessche P. Some epidemiological models with nonlinear incidence. J Math Biol, 1991, 29:

271–287

8 Kermack W O, McKendrick A G. A contribution to the mathematical theory of epidemics. Proc R Soc Lond Ser A

Math Phys Eng Sci, 1927, 115: 700–721

9 Li Y, Li W T, Yang F Y. Traveling waves for a nonlocal dispersal SIR model with delay and external supplies. Appl

Math Comput, 2014, 247: 723–740

10 Lin G, Ruan S. Traveling wave solutions for delayed reaction-diffusion systems and applications to diffusive Lotka-

Volterra competition models with distributed delays. J Dynam Differential Equations, 2014, 26: 583–605

11 Rees E L. Graphical discussion of the roots of a quartic equation. Amer Math Monthly, 1922, 29: 51–55

12 Thieme H R, Zhao X Q. Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-

diffusion models. J Differential Equations, 2003, 195: 430–470

13 Wang J B, Li W T, Yang F Y. Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission.

Commun Nonlinear Sci Numer Simul, 2015, 27: 136–152

14 Wang X S, Wang H, Wu J. Traveling waves of diffusive predator-prey systems: Disease outbreak propagation. Discrete

Contin Dyn Syst, 2012, 32: 3303–3324

15 Wang Z C, Li W T, Ruan S. Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion

systems. Sci China Math, 2016, 59: 1869–1908

16 Wang Z C, Wu J. Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed trans-

mission. Proc R Soc Lond Ser A Math Phys Eng Sci, 2010, 466: 237–261

17 Widder D V. The Laplace Transform. Princeton: Princeton University Press, 1941

18 Wu J, Zou X. Traveling wave fronts of reaction-diffusion systems with delay. J Dynam Differential Equations, 2001,

13: 651–687

19 Yang F Y, Li W T, Wang Z C. Traveling waves in a nonlocal dispersal SIR epidemic model. Nonlinear Anal Real

World Appl, 2015, 23: 129–147

20 Zhao X Q, Wang W. Fisher waves in an epidemic model. Discrete Contin Dyn Syst Ser B, 2004, 4: 1117–1128


