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Abstract We obtain rigidity results on arbitrary proper holomorphic maps F from an irreducible bounded

symmetric domain Ω of rank � 2 into any complex space Z. After lifting to the normalization of the subvariety

F (Ω) ⊂ Z, we prove that F must be the canonical projection map to the quotient space of Ω by a finite group

of automorphisms. The approach is along the line of the works of Mok and Tsai by considering radial limits of

bounded holomorphic functions derived from F and proving that proper holomorphic maps between bounded

symmetric domains preserve certain totally geodesic subdomains. In contrast to the previous works, in general

we have to deal with multivalent holomorphic maps for which Fatou’s theorem cannot be applied directly.

We bypass the difficulty by devising a limiting process for taking radial limits of correspondences arising from

proper holomorphic maps and by elementary estimates allowing us to define distinct univalent branches of the

underlying multivalent map on certain subsets. As a consequence of our rigidity result, with the exception of

Type-IV domains, any proper holomorphic map f : Ω → D of Ω onto a bounded convex domain D is necessarily

a biholomorphism. In the exceptional case where Ω is a Type-IV domain, either f is a biholomorphism or it is

a double cover branched over a totally geodesic submanifold which can be explicitly described.
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1 Introduction

In Several Complex Variables the subject of proper holomorphic maps on bounded domains is well studied
in the case of strictly pseudoconvex domains, especially in the case of complex unit balls Bn, which are
precisely the bounded symmetric domains of rank 1. By contrast proper holomorphic maps on irreducible
bounded symmetric domains Ω of rank � 2 are not well understood. Earlier works include the work of
Henkin-Novikov [4] on proper holomorphic maps on classical domains. One of the authors introduced in
a joint work with Tsai (Mok-Tsai [11]) a method for the study of proper holomorphic maps on irreducible
bounded symmetric domains of rank � 2 by considering boundary values of the holomorphic map and
associated bounded holomorphic functions defined on totally geodesic complex submanifolds which are
biholomorphic to reducible bounded symmetric domains. By the Polydisk Theorem (Wolf [17]) the
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existence of such subspaces is a main feature which distinguishes the case of rank � 2 from the rank-1
case. Inspired by results on strong rigidity concerning harmonic maps and on Hermitian metric rigidity,
Mok [5] formulated a conjecture on proper holomorphic maps from an irreducible bounded symmetric
domain Ω of rank r � 2 into a bounded symmetric domain Ω′ of rank r′ � r, according to which r′

must agree with r and such maps must necessarily be totally geodesic. This conjecture was resolved in
the affirmative by Tsai [14] which exploited further the method of considering radial limits of bounded
holomorphic functions in conjunction with methods from Kähler geometry. A new proof illustrated
by the case of Type-I classical symmetric domains was recently devised by Mok [8] in which methods
of Kähler geometry were replaced by methods concerning geometric structures for non-equidimensional
holomorphic maps between uniruled projective manifolds.

Other results on proper holomorphic maps were obtained by Tu [15] in the equidimensional case and
Tu [16] in the non-equidimensional case. In [15] it was proven that any surjective proper holomorphic
map F : Ω → Ω′ between bounded symmetric domains must necessarily be a biholomorphism provided
that Ω is irreducible and of rank � 2. In [16] rigidity results were obtained for proper holomorphic
maps F : Ω → Ω′ for certain special pairs of irreducible bounded symmetric domain (Ω, Ω′) in which
rank(Ω) � 2 and rank(Ω′) − rank(Ω) = 1, and nonexistence results of proper holomorphic maps were
also established for certain pairs of (Ω, Ω′) with the same gap of 1 between their ranks. In Mok [9]
nonexistence results were further established for certain pairs (Ω, Ω′) of irreducible bounded symmetric
domains of rank � 2 with an arbitrarily large gap between their ranks. The general structure theory of
proper holomorphic maps in the case of unequal rank and of rank � 2 remains unexplored.

In this article we consider rigidity results on proper holomorphic maps F : Ω → Z for an irreducible
bounded symmetric domain of rank � 2 into any complex space Z. Replacing Z by the normalization of
the image Y ⊂ Z of Ω under the proper map F we may assume that Z is a normal complex space and
that F is surjective. In this case we prove that F is the canonical holomorphic map onto the quotient
space Z = Ω/H of Ω by the action of a finite group of automorphisms of Ω. Thus, our general result is a
factorization theorem for proper holomorphic maps of Ω onto any complex space, and we obtain rigidity
results when additional conditions are imposed on the target space. When the target space is assumed to
be smooth, for instance itself biholomorphic to a bounded domain, then excepting for a series of explicit
examples we show that F is necessarily a biholomorphism. The series of exceptions are branched double
covers of an irreducible bounded symmetric domain DIV

n of Type-IV and of dimension n � 3, and the
double covers are restrictions to open subsets of the standard branched double cover of the hyperquadric
Qn onto the projective space Pn ramified along a smooth hyperplane section of the hyperquadric. This
result strengthens the equidimensional result of Tu [15] in which the target space is assumed to be also a
bounded symmetric domain. Combined with the rigidity results of Mok-Tsai [11] on convex realizations
of irreducible bounded symmetric domains of rank � 2, our factorization result also says that with the
same exceptions of DIV

n , n � 3, any proper holomorphic map from Ω onto a bounded convex domain is
necessarily the Harish-Chandra realization up to an affine linear transformation on the target space.

As no conditions are imposed on the target complex space Z, the latter also plays no role in the proof,
and our approach is to translate the study of the proper holomorphic map F : Ω → Z to the problem of
characterizing the proper holomorphic correspondence S ⊂ Ω × Ω defined by declaring (x, y) ∈ S if and
only if F (x) = F (y). Whereas the approach of Mok-Tsai [11] and Tsai [14] is to consider boundary values
of F and associated bounded holomorphic maps when restricted to totally geodesic complex submanifolds
which are product domains, working with proper holomorphic correspondences on Ω our task is to devise
a method for defining boundary values of holomorphic families of proper holomorphic correspondences
obtained by restricting to fibers of product domains. Interpreting the correspondences as multivalent
maps the principal difficulty of taking radial limits arises from the discriminant locus. In the case of bona
fide holomorphic maps as in Tsai [14], the starting point is to prove that, taking radial boundary values,
boundary components lying on certain product domains are transformed into boundary components.
In the Harish-Chandra realization boundary components are domains on affine-linear subspaces, and
to show that they are transformed under boundary maps to boundary components one is led to prove
that the image lies on affine-linear subspaces, a property that can be checked by testing the linear
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dependence of sets of vectors obtained by taking derivatives in the fiber directions. This produces by
Cauchy estimates bounded holomorphic functions, but in the presence of the discriminant locus the
corresponding functions, even if well-defined, need not be bounded. By elementary estimates on the
domain of univalence of holomorphic maps restricted to fibers of product domains we show that it is still
possible to derive bounded holomorphic functions from the multivalent maps making it still possible to
apply Fatou’s Theorem on radial limits, and this allows us to show that boundary components are still
transformed to boundary components under the “multivalent” boundary maps. From the latter statement
we conclude a proof of the Main Theorem by applying results on analytic continuation concerning G-
structures modeled on irreducible Hermitian symmetric manifolds of the compact type and of rank � 2
due to Ochiai [12], which allows us to recover a finite group of automorphisms from the intertwining maps
of the proper holomorphic map F : Ω → Z defined by switching connected components of inverse images
of small open sets.

It is hoped that the general structural result obtained in the current article on proper holomorphic
maps on irreducible bounded symmetric domains of rank � 2 can serve as a motivation for the further
study of proper holomorphic maps between bounded symmetric domains of unequal rank.

2 Statement of results

In this article we prove a general result on the structure of proper holomorphic maps defined on irreducible
bounded symmetric domains Ω of rank � 2, where the target space is an arbitrary complex space. Our
principal result is given by

Main Theorem. Let Ω be an irreducible bounded symmetric domain of rank � 2, Z be a complex
space and F : Ω → Z be a proper holomorphic map. Then, there exists a finite group H of automorphisms
of Ω such that, denoting by X = Ω/H the quotient space equipped with the unique structure as a normal
complex space with respect to which the canonical projection π : Ω → X is holomorphic, we have the
factorization F = ν ◦π of the proper holomorphic map F : Ω → Z, where ν : X → Z is the normalization
of its image Y := F (Ω) (which is a complex-analytic subvariety of Z).

When the target space is a complex manifold and the proper holomorphic mapping F : Ω → Z is
surjective, we deduce from the Main Theorem the following result.

Theorem 1. Let Ω be an irreducible bounded symmetric domain of rank � 2, Z be a complex manifold,
and F : Ω → Z be a surjective proper holomorphic map. Then,

(a) If Ω is not isomorphic to a Type-IV classical symmetric domain DIV
n of dimension n � 3, then

F : Ω → Z is necessarily a biholomorphic map.
(b) If Ω = DIV

n , n � 3, then either F : DIV
n → Z is a biholomorphism, or F is a two-fold branched

covering of Z ramified along a totally geodesic smooth complex hypersurface J ⊂ DIV
n (which is necessarily

biholomorphic to DIV
n−1 and embedded in DIV

n in the standard way).

Combining Theorem 1 with the rigidity results of Mok-Tsai [11] on convex realizations of irreducible
bounded symmetric domains of rank � 2 we have

Corollary 1. Let Ω be an irreducible bounded symmetric domain of rank � 2 which is not isomorphic to
a Type-IV classical symmetric domain DIV

n of dimension n � 3. Let F : Ω → D be a proper holomorphic
map onto a bounded convex domain D. Then, F is a biholomorphism and D is up to an affine-linear
transformation the Harish-Chandra realization of Ω.

3 Background on characteristic subdomains of irreducible bounded symmet-

ric domains

Let Ω � C
n ⊂ S be an irreducible bounded symmetric domain of rank � 2 in its Harish-Chandra

realization, where Ω ⊂ S is the Borel embedding. Let α ∈ T0(Ω) be a non-zero highest weight vector
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of the isotropy representation of K := Aut0(Ω; 0) at 0, equivalently a minimal rational tangent of S as
a uniruled projective manifold of Picard number 1. Thus, there exists a minimal rational curve Cα on
S passing through 0 such that T0(Cα) = Cα. (We refer the reader to Hwang-Mok [3] for the notion
of minimal rational tangents, and to Mok [6] for minimal rational tangents on irreducible Hermitian
symmetric manifolds of the compact type.) Denote by R the curvature tensor of (Ω, g) with respect
to the Bergman metric on Ω. Denote by Nα ⊂ T0(Ω) the null-space associated to α, i.e., the vector
subspace consisting of all (1,0)-tangent vectors ζ at 0 such that Rααζζ = 0. Then Nα is orthogonal to
α. Write q = dim(Nα). There is a q-dimensional totally geodesic complex submanifold Θα ⊂ Ω such
that T0(Θα) = Nα. Θα ⊂ Ω will be called a maximal characteristic subdomain on Ω passing through 0.
A maximal characteristic subdomain on Ω is by definition given by γ(Θα) for some Θα as in the above
and for some γ ∈ Aut(Ω). There is a (q + 1)-dimensional totally geodesic complex submanifold Πα ⊂ Ω
passing through 0 ∈ Ω such that T0(Πα) = Cα ⊕ Nα. Πα is a domain on a complex vector subspace
Vα ⊂ Cn. Moreover, there exists a complex linear isometry η : Vα

∼= Cq+1 such that η(Πα) = Δ × Ω′,
and η(Θα) = {0} × Ω′ where Ω′ � Cq is a bounded domain in its Harish-Chandra realization.

Replacing Ω by any Θα we obtain analogously maximal characteristic subdomains on Θα. Proceeding
inductively we have obtained the characteristic subdomains Θ ⊂ Ω passing through 0. Their images under
automorphisms of Ω will be referred to as characteristic subdomains on Ω. Characteristic subdomains on
Ω enjoy the remarkable property that given any γ ∈ Aut(Ω), γ(Θ) is the intersection of Ω with an affine-
linear subspace A ⊂ C

n. The latter property defines the more general notion of invariantly affine-linear
subdomains, which were introduced and completely classified in Tsai [14].

A minimal rational tangent on Ω will be referred to as a maximal characteristic vector. For a general
reference on the role of such vectors in Hermitian metric rigidity cf. Mok [5, Chapter 6] (called charac-
teristic vectors there) and [7, (2.1)]. For the notion of (maximal) characteristic subdomains of a bounded
symmetric domain we refer the reader to Mok-Tsai [11], where the notion is introduced.

On an irreducible Hermitian symmetric manifold S of rank � 2 the varieties of minimal rational
tangents define a geometric structure called a flat (an integrable) holomorphic S-structure. For such
geometric structures we have the following result of Ochiai [12] which serves as a prototype of results on
analytic continuation of local holomorphic maps preserving varieties of minimal rational tangents.

Theorem 2 (Ochiai [12]). Let S be an irreducible compact Hermitian symmetric manifold of the
compact type and of rank � 2; U, V ⊂ S be connected open subsets, and g : U → V be a biholomorphism.
Suppose for every x ∈ U , dg(x) preserves characteristic vectors. Then, there exists an automorphism
γ ∈ Aut(S) such that γ|U ≡ g.

The following lemma will be needed when we apply Theorem 2 to the study of proper holomorphic
correspondences.

Lemma 1 (Mok-Ng [10]). Let Ω � Cn ⊂ S be an irreducible bounded symmetric domain of rank � 2
in its Harish-Chandra realization, where furthermore Ω ⊂ S denotes the Borel embedding. Suppose b

is a smooth point on ∂Ω. Let Ub ⊂ Cn be an open neighborhood of b in Cn and γ ∈ Aut(S) such that
γ(Ub ∩ Ω) ⊂ Ω and γ(Ub ∩ ∂Ω) ⊂ ∂Ω. Then, γ(Ω) = Ω, i.e., γ|Ω ∈ Aut(Ω).

A much stronger statement is true. In fact, if γ ∈ Aut(S) is replaced by a holomorphic map f : Ub → Cn

such that f(Ub ∩ Ω) ⊂ Ω and f(Ub ∩ ∂Ω) ⊂ ∂Ω, then we have proved in Mok-Ng [10, (3.1), Theorem 2]
that f is the restriction of some γ ∈ Aut(Ω) to Ub. The latter result is an Alexander-type extension
result which is based on the method of taking radial limits of bounded holomorphic functions on totally
geodesic complex submanifolds of Ω of the form Δ × Ω′ ⊂ Ω, where Ω′ ⊂ Ω is a maximal characteristic
subdomain on Ω, together with an application of Ochiai’s Theorem on S-structures in the above. The
special case of Lemma 1 is used in the final step of the proof of [10, (3.1), Theorem 2]. For a proof of
Lemma 1 we refer the reader to [10, (3.3), last paragraph].

Regarding characteristic subdomains Θ ⊂ Ω the following discussion in relation to invariantly affine-
linear subdomains is helpful to streamline our discussion on boundary values of proper holomorphic
correspondences on Ω. We briefly recall the basic notions that can be read from Mok-Tsai [11] and
Tsai [14]. Let Ω � C

n ⊂ S denote simultaneously the Harish-Chandra realization Ω � Cn and the
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Borel embedding Ω ⊂ S of an irreducible bounded symmetric domain Ω of arbitrary rank. Let g be
the canonical Kähler-Einstein metric on Ω and gc be the dual Kähler-Einstein metric on S. A complex
submanifold Q ⊂ S is said to be invariantly geodesic if and only if (γ(Q), gc|γ(Q)) ↪→ (S, gc) is a totally
geodesic submanifold for any γ ∈ Aut(S). Invariantly geodesic complex submanifolds on S can be
determined in Lie-theoretic terms. For any such complex submanifold Q ⊂ S either Q ∩ Cn is empty
or it is an affine-linear subspace of Cn. In the latter case we call W := Q ∩ Cn an invariantly geodesic
affine-linear subspace. Furthermore, Q∩Ω is either empty or it is a bounded domain on the affine-linear
subspace W . In the latter case we call Γ := Q ∩ Ω an invariantly affine-linear subdomain. In this case
(Γ, g|Γ) ↪→ (Ω, g) is a totally geodesic submanifold. By [11] the characteristic subdomains Γ ⊂ Ω are
examples of invariantly affine-linear subdomains. The set of invariantly geodesic complex submanifolds
Q ⊂ S are completely classified. They form a finite number of connected components in the Chow space
Chow(S) of the projective manifold S. Each of these connected component is a projective manifold which
is an Aut(S)-orbit in Chow(S).

As an illustration consider S = G(p, q), the Grassmannian of p-planes in Cp+q. Then, up to auto-
morphisms of G(p, q), an invariantly geodesic complex submanifold Q ⊂ G(p, q) is precisely of the form
G(r, s) ↪→ G(p, q), where 1 � r � p. 1 � s � q, embedded by the standard embedding. The maximal
characteristic subspaces in G(p, q) are up to biholomorphisms of G(p, q) given by G(p−1, q−1) ↪→ G(p, q).
If q = p + 1, then there are precisely two connected components of invariantly geodesic complex subman-
ifolds of dimension p(p − 1), given up to an automorphism of G(p, q) by G(p − 1, p) ↪→ G(p, p + 1) and
G(p, p−1) ↪→ G(p, p+1) embedded by standard embeddings. The first connected component corresponds
to the maximal characteristic subspaces.

4 On boundary values of holomorphic correspondences

In this section we lay out the scheme for the proof of the Main Theorem. Recall that Ω is an irreducible
bounded symmetric domain of rank � 2, and F : Ω → Z is a proper holomorphic map into a complex
space Z. For each point z ∈ Z, by properness the inverse image F−1(z) ⊂ Ω is a compact complex-
analytic subvariety, which is necessarily finite since Ω is a domain. By the Proper Mapping Theorem,
Y := F (Ω) ⊂ Z is a complex-analytic subvariety. For the proof of the Main Theorem, replacing Z by
Y ⊂ Z if necessarily without loss of generality we may assume that the finite proper holomorphic map
F : Ω → Z is also surjective. Let B ⊂ Z be union of the branching locus of F and the singular part of
Z and let R = F−1(B). Then F : Ω − R → Z − B is a finite unbranched holomorphic covering map.
Suppose F is not generically one-to-one. Choose a point a ∈ Z − B, and x, y ∈ Ω − R, x 
= y, such that
F (x) = F (y) = a. By our choice, there exist neighborhoods Ux and Uy of x and y respectively such that
Fx : Ux → F (Ux) and Fy : Uy → F (Uy) are biholomorphisms, where Fx = F |Ux

and Fy = F |Uy
. We can

define the intertwining map ϕx,y : Ux → Uy by ϕx,y(z) = F−1
y (Fx(z)).

Our main goal is to show that the intertwining map ϕx,y preserves the space of maximal characteristic
vectors. We will adopt a similar approach as in the work of Mok-Tsai [11] and Tsai [14]. One of the
main steps in these works is to consider radial limits of certain bounded holomorphic functions, which
are the restrictions of a proper holomorphic map of Ω into its subdomains of the form Δ × Ω′, where
Ω′ is a maximal characteristic subdomain of Ω. In our situation, the intertwining map ϕx,y is only
locally defined and its extension is a “multivalent” map in general and hence we have difficulty in taking
the radial limit of it. To bypass this difficulty, we consider the underlying correspondences, and devise
a method for taking radial limits of such correspondences. In so doing, there is the difficulty caused
by the discriminant loci associated to the correspondences, and the holomorphic functions arising from
considering boundary behavior of such correspondences may no longer be bounded. We solve the problem
nonetheless by an estimate of such functions which allows us to derive from them bounded holomorphic
functions, making it possible still to apply Fatou’s Theorem.

First of all we consider the correspondence S ⊂ Ω × Ω associated to the map F : Ω → Z defined by
(x, y) ∈ S ⇐⇒ F (x) = F (y). S is an analytic subvariety of Ω × Ω and it is symmetric in the sense that
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it is invariant by the transformation of Ω × Ω given by (x, y) 
→ (y, x). For i = 1, 2 the restriction on S

of the projection map onto the ith direct factor ρi : Ω × Ω → Ω is finite as f is finite. We will still use
ρi to denote the restriction, and write ρ for ρ1. Let p be the number of elements in ρ−1(x) for a general
point x ∈ Ω. Note that S can be considered as the graph of the multivalent extension of ϕx,y over Ω.
From now on we will forget about our initial choice of (x, y) and view S as a graph of a multivalent map
f from Ω into Ω. There is a subset R ⊂ S ⊂ Ω × Ω consisting of points where either ρ1 or ρ2 fails to be
a local biholomorphism. We call R ⊂ S the ramification locus of the correspondence S, and its image
B = ρ(R) ⊂ Ω will be called the branching locus of S. (In Section 3, following standard conventions
the symbol S was used as a generic symbol for an irreducible Hermitian symmetric space of the compact
type and of rank � 2, e.g., in the term ‘S-structure’. From now on the symbol S will stand for the
holomorphic correspondence as defined. For the irreducible bounded symmetric domain Ω of rank � 2
we will use Ω ⊂ M to denote the Borel embedding of Ω into its dual compact manifold M .)

Taking the correspondence S ⊂ Ω × Ω as the graph of a multivalent holomorphic map we will define
boundary values of the correspondence S and formulate a reduction of the proof of the Main Theorem.
The proof of the Main Theorem will be given in Section 5.

Let Ω′ be a maximal characteristic symmetric subspace of Ω (c.f. [11, 14]). We have rank(Ω′) =
rank(Ω) − 1 = r − 1. There are totally geodesic subdomains of Ω biholomorphic to Δ × Ω′ and Ω is a
union of such subdomains. Fix a subdomain Δ × Ω′ containing 0 ∈ Ω and for each {x} × Ω′ ⊂ Δ × Ω′,
we define Sx = S ∩ (({x} × Ω′) × Ω). In other words, Sx is the restriction of the correspondence to
the maximal symmetric subdomain {x} × Ω′. Following the line of thought in [11, 14], we would like to
consider the radial limit of Sx towards the boundary of Δ. That is, to obtain a limiting correspondence
Sb defined on ({b} × Ω′) × Cn when x tends to b ∈ ∂Δ radially.

For a generic point z ∈ Ω, we can find p branches of f over a neighborhood Uz of z. We may take
z = 0 and denote the branches by f (α) : U0 → Ω, 1 � α � p, where U0 is an open neighborhood of
0 ∈ Ω. Denote also the component functions of each f (α) by f

(α)
j , 1 � j � n. For the purpose of

proving the Main Theorem we want to study boundary values of the proper holomorphic correspondence
when restricted to fibers {x} × Ω′ of Δ × Ω′ as x converges radially to a boundary point b ∈ ∂Δ. For
this purpose we are free to perform linear transformations on the target domain Ω. We will now choose
Euclidean coordinates (ζ1, . . . , ζn) of the target domain Ω such that, writing f = (f1, . . . , f�), more
precisely f (α) = (f (α)

1 , . . . , f
(α)
n ), for 1 � � � n and for a general point z ∈ Ω − B, the complex numbers

f
(1)
� (z), . . . , f (p)

� (z) are distinct. Thus, we are in general using different coordinates for the two factors of
Ω × Ω. This choice of coordinates is for convenience only and not absolutely necessary in the argument.
It is chosen so that the discriminant function D� for each of the multivalent holomorphic function f�,
1 � � � n, defined by

D� =
∏

α�=β

(f (α)
� − f

(β)
� )

does not vanish identically on Ω. Define D := D1 · · ·Dn. We may assume that D 
= 0 on the neighborhood
U0 of 0 ∈ Ω.

To study the radial limits of the correspondence S ⊂ Ω × Ω we first “enlarge” S to a bigger corre-
spondence so as to facilitate the limiting process. Fix a component index l, we can form the elementary
symmetric polynomials σk

� , 1 � k � p, so that {f (α)
� : 1 � α � n} are the solutions of the equation

ξp − σ1
� ξp−1 + σ2

� ξp−2 − · · · + (−1)pσp
� = 0.

Note that the elementary symmetric polynomials are globally defined holomorphic functions on Ω. Now
we define a correspondence S̃ ⊂ Ω × Cn by

(z, ξ) ∈ S̃ ⇐⇒ ξp
� − σ1

� (z)ξp−1
� + σ2

� (z)ξp−2
� − · · · + (−1)pσp

� (z) = 0,

where ξ = (ξ1, . . . , ξn). By our construction, we obviously have S ⊂ S̃. Fixed a maximal symmetric
subdomain {x}×Ω′ ⊂ Δ×Ω′, we similarly define S̃x = S̃∩(({x} × Ω′) × C

n). If we write the coordinates
in ({x}×Ω′)×Cn as ((x, w), ξ), then S̃x is the correspondence in ({x}×Ω′)×Cn defined by the equations

ξp
� − σ1

� (x, w)ξp−1
� + σ2

� (x, w)ξp−2
� − · · · + (−1)pσp

� (x, w) = 0,
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where ξ = (ξ1, . . . , ξn).
Regarding bounded holomorphic functions on the unit disk we will use the following version of Fatou’s

Theorem (cf. Rudin [13, Theorem 11.32, Theorem 17.18]).

Lemma 2. To every bounded holomorphic function h defined on the unit disk Δ, there corresponds a
function h� ∈ L∞(∂Δ), defined almost everywhere by h�(eiθ) = limr→1 h(reiθ). The Cauchy Integral
Formula is valid for h in terms of the radial limits h�. In other words, for z ∈ Δ, we have

h(z) =
1

2πi

∫

∂Δ

h�(ζ)dζ

ζ − z
.

Moreover, if h is not identically zero on Δ, we have h�(ζ) 
= 0 for almost all ζ ∈ ∂Δ.

An application of Fatou’s Theorem on the disk gives the following result for a product domain Δ×W

(cf. Mok-Tsai [11, Proposition 2.2]).

Lemma 3. Suppose that f is a bounded holomorphic function defined on the space Δ × W , and W is
a bounded domain in Ck. Write (z, w), w = (w1, . . . , wk), for the holomorphic coordinates of Δ × W .
Define fr(eiθ, w) = f(reiθ, w) for r < 1. Then there exists a measurable function f�(eiθ, w) which is
defined on ∂Δ × W and satisfies

lim
r→1

fr(eiθ, w) = f�(eiθ, w)

for almost everywhere on ∂Δ × W . As a consequence, limr→1 fr(eiθ, ·) = f�(eiθ, ·) in L1(W ) for almost
all θ. Moreover, for almost all θ, the function f�(eiθ, w) is holomorphic in w.

We can now define the radial limit of S̃x by applying the above proposition on the elementary symmetric
functions σk

� (x, w), where (x, w) ∈ Δ × Ω′. Write σk�
� (b, w) as the limit functions given by Lemma 3,

where (b, w) ∈ ∂Δ × Ω′. For almost all b, σk�
� (b, w) are holomorphic in w. We define the correspondence

S̃b ⊂ ({b} × Ω′) × Cn by the equations

ξp
� − σ1�

� (b, w)ξp−1
� + σ2�

� (b, w)ξp−2
� − · · · + (−1)pσp�

� (b, w) = 0,

where ((b, w), ξ) ∈ ({b} × Ω′) × Cn and ξ = (ξ1, . . . , ξn). Obviously S̃b lies in the closure of S̃.
Since D = D1 · · ·Dn is non-zero on the neighborhood U0 ⊂ Ω of 0, restricting from Ω to Δ × Ω′

and applying Lemmas 2 and 3 from Fatou’s Theorem, the radial limits D�
�,b(w) := D�

� (b, w) as bounded
holomorphic functions on Ω′ are defined and non-zero for almost every b ∈ ∂Δ. We now recall the
following two well-known facts for solving polynomial equations:

Lemma A. Let U ⊂ Cm be a domain and c1(z), . . . , cp(z) be holomorphic functions on U . Let X be an
indeterminate and consider the equation Xp + Xp−1c1(z) + Xp−2c2(z) + · · · + cp(z) = 0. Suppose that
the discriminant D(z) of this equation is non-vanishing on U . Then there exist p distinct holomorphic
functions Xα(z), 1 � α � p defined on V ⊂ U , V � Δm, such that Xp

α(z)+Xp−1
α (z)c1(z)+Xp−2

α (z)c2(z)+
· · · + cp(z) ≡ 0 on V.

Lemma B. Let Xp+Xp−1c1+Xp−2c2+· · ·+cp = 0 be a polynomial equation in X. Let (c1(t), . . . , cp(t)),
0 � t � 1, be a continuous curve in Cp. Suppose there exist p continuous functions X1(t), . . . , Xp(t)
defined on [0, 1) ⊂ R such that {X1(t), . . . , Xp(t)} are the p roots of the equation Xp + Xp−1c1(t) +
Xp−2c2(t) + · · · + cp(t) = 0 for every t ∈ [0, 1) and {x1, . . . , xp} are the p roots of Xp + Xp−1c1(1) +
Xp−2c2(1)+· · ·+cp(1) = 0. Then after a permutation of indices if necessary, (X1(t), . . . , Xp(t)) converges
to (x1, . . . , xp) in the Euclidean topology of Cp as t → 1.

At almost every b ∈ ∂Δ, we can find a small connected neighborhood V0 of 0 ∈ Ω′ such that the radial
limit of every elementary symmetric function σk

� (x, w) and the radial limit of every D�(x, w) exist for all
w ∈ V0 and D�

� (b, w) 
= 0. By Lemma A, by replacing V0 by a smaller polydisk containing the origin,
we have that S̃b ∩ (({b} × V0) × Cn) =

⋃s
i=1 Wi, s = pn, where Wi are disjoint and they are graphs of

holomorphic maps from {b} × V0 into Cn. Let 0 < ε < 1, define Iε = {rb : r ∈ (1 − ε, 1)}. By Lemma A
again, for a sufficiently small ε > 0, we have similarly that S̃ ∩ ((Iε × V0) × C

n) =
⋃s

i=1 Wε;i, where Wε;i

are disjoint and for every i ∈ {1, . . . , s} and every r ∈ (1 − ε, 1), Wε;i ∩ (({rb} × V0) × Cn) is the graph
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of some holomorphic map from {rb} × V0 into Cn. Furthermore, by Lemma B, Wi lies in the closure of
Wε;i for every i ∈ {1, . . . , s} after a permutation of indices. Among the branches Wε;i, 1 � i � s, we may
assume without loss of generality that Wε;i ⊂ S, for 1 � i � p � s. Now we define Sb ⊂ S̃b to be the
union of the irreducible components of S̃b which contains at least one of the Wi, where 1 � i � p. We
have the following description for Sb:

Proposition 1. Sb ⊂ ({b} × Ω′) × ∂Ω, i.e., Sb is a correspondence from {b} × Ω′ to ∂Ω.

Here and in what follows, given complex manifolds X and Y , by abuse of language, by a correspondence
from X and Y we will mean a subvariety Q ⊂ X×Y of dimension equal to dim(X) such that the canonical
projection from Q into X is proper and finite. (By the Proper Mapping Theorem the canonical projection
is also surjective.) If E ⊂ Y is a subset such that Q ⊂ X × E, we also speak of Q as a correspondence
from X to E even though E may not carry any natural complex structure. (For our extended use of the
term ‘correspondence’, the transpose QT ⊂ Y × X of a correspondence (i.e., (y, x) ∈ QT if and only if
(x, y) ∈ Q) is not necessarily a correspondence, and hence we generally speak of a correspondence from
X to Y rather than a correspondence between X and Y .)

Proof of Proposition 1. Take an irreducible component V of Sb. We know that V contains some Wi,
where 1 � i � p. By our definition, Wi lies in the closure of S. Take a point (x, y) ∈ Wi ⊂ ∂Ω× Cn and
let {(xn, yn) ∈ S ⊂ Ω × Ω, n ∈ N} be a sequence of points converging to (x, y). We have F (xn) = F (yn)
by the definition of S. Since F : Ω → Z is proper, xn → x ∈ ∂Ω implies that F (xn) = F (yn) escapes
to infinity (this means every compact subset of Z contains only a finite number of F (xn)) when n → ∞.
Therefore, being the limit point of yn, y must lie on ∂Ω, hence (x, y) ∈ ∂Ω × ∂Ω and Wi ⊂ ∂Ω × ∂Ω.
Note that ∂Ω is defined by ϕ = 0, where ϕ is a real-analytic function on Cn. As Wi ⊂ ∂Ω× ∂Ω, we have
ϕ(x) = ϕ(y) = 0 if (x, y) ∈ Wi. V contains Wi as an open subset and hence we also have ϕ(x) = ϕ(y) = 0
if (x, y) ∈ V because ϕ is real-analytic. We finally conclude that ϕ(x) = ϕ(y) = 0 if (x, y) ∈ Sb as V is
arbitrary and the proof of the proposition is complete. �

By Proposition 1, in the subdomain Δ×Ω′, for almost every b = eiθ ∈ ∂Δ, there exists an open subset
U ⊂ Ω′ and ε > 0 such that any branch of f = f (α) when restricted to {reiθ} × U , 1 − ε < r < 1,
converges radially to f (α)�(b, w). Dropping the index (α) for specifying the branch and writing also
f�

b (w) = f�(b, w), we have f�
b (U) = f�({b} × U) ⊂ ∂Ω. For almost every b ∈ ∂Δ, f�

b (U) is an open set
contained in some maximal face Γb of Ω. Thus, Sb ⊂ ({b} × Ω′) × Γb. Let dim(Ω′) = q which is also the
dimension of any maximal face of Ω.

We are going to prove

Proposition 2. For every x ∈ Δ, Sx is a correspondence between {x} × Ω′ and Lx, where Lx is a
maximal characteristic subdomain of Ω, i.e. Sx ⊂ ({x} × Ω′) × Lx.

To pinpoint the difficulty in proving Proposition 2, we consider an analogous situation in which
(a) Sx ⊂ ({x} × Ω′) × Ω is in fact the graph of f |{x}×Ω′ , where f : Δ × Ω′ → Ω is a (univalent)

holomorphic map,
(b) for almost every b ∈ ∂Δ the boundary maps f�

∣∣
{b}×Ω′ : ({b}×Ω′) → Cn obtained by taking radial

limits is defined, f�(b, w) := limt→1− f(rb, w), and f�({b} × Ω′) ⊂ ∂Ω.
(c) for almost every b ∈ ∂Δ, f�

b (w) := f�(b, w) is of maximal rank at w = 0.

The situation here is a special case of what has been dealt with in Mok-Tsai [11]. Let G be the Grass-
mannian of all q-dimensional affine-linear subspace of Cn. For the situation described (a)–(c) in the
above the conclusion is that f induces a meromorphic map f � : Δ → G (cf. Mok-Tsai [11, Section 2,
Proposition 2.3]). Equivalently, this means that for all but at most a discrete set of base points x ∈ Δ,
f
∣∣
{x}×Ω′ maps {x} × Ω′ into the affine-linear subspace f �(x) ∈ G, of dimension q = dim(Ω′), such that

fx(w) := f(x, w) is of rank equal to q at some point. Let γ ∈ Aut(Ω). Then, exactly the same argument
can be applied to the holomorphic map γ ◦ f : Ω → Ω. We conclude that for each x ∈ Δ, f �(x) ∈ G is
a q-dimensional affine-linear space Vx enjoying the special property that γ(Vx) is affine-linear for every
γ ∈ Aut(Ω) ↪→ Aut(M). Let H0 ⊂ G denote the complex submanifold consisting of affine-linear sub-
spaces W such that W ∩Ω is a maximal characteristic subdomain. Let Θ ⊂ Ω be a maximal characteristic
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subdomain passing through 0 ∈ Ω and write Θ ⊂ Q for its Borel embedding, so that Q ⊂ M is a maximal
characteristic subspace. Denote by H the orbit of [Q] in Chow(M) under the action of Aut(M). Then H
is a projective manifold, and it is a connected component of Chow(M). By associating [Θ] ∈ H0 to the
point [Q] ∈ Chow(M) we may identify H0 as an open subset of H ⊂ Chow(M).

We have seen that (γ ◦ f)�(x) = γ(f �(x)) ∈ G for any γ ∈ Aut(Ω), so that f �(x) is an invariantly
affine-linear subdomain. Equivalently, we may identify f �(x) as a point in Chow(M) corresponding to
an invariantly geodesic complex submanifold of M . For almost every point b ∈ ∂Δ, by Lemma 3 the
radial limit f�

b : {b} ×Ω′ → ∂Ω is defined, of maximal rank (equal to q) at some point, and f�
b ({b}× Ω′)

is contained in a boundary component (f �)�(b) := Θb ∈ H. Thus, for almost every point b ∈ ∂Δ, the
points f �(rb) converges in the natural metric topology of G to (f �)�(b) as r increases to 1. Since H is
one of the (finitely many) connected components of Chow(M) consisting of invariantly geodesic complex
submanifolds, we conclude that f �(x) ∈ H for x = rb and r < 1 sufficiently close to 1. It follows therefore
that f �(x) ∈ H for every point x ∈ Δ.

As we have seen, in order to prove that f({x} × Ω′) ⊂ Lx for some characteristic subdomain Lx, it
is sufficient to show that f({x} × Ω′) is contained in some q-dimensional affine-linear subspace. This
reduction remains applicable when we deal with the general situation of Proposition 2 in which we have
a proper holomorphic correspondence S ⊂ Ω×Ω which gives a multivalent holomorphic map f , say with
branches f (1), . . . , f (p) in place of a (univalent) holomorphic map f as described in the above. At almost
every boundary point b ∈ ∂Δ and a general point w ∈ Ω′ we still have for each branch the convergence
f (α)(x, w) → f (α)�(b, w) as x converges radially to b. In order to prove Proposition 2, our task is reduced
to proving that, for x = rb with r < 1 sufficiently close to 1 and for an open neighborhood Vw of w on Ω′

such that the branch f (α) is defined on {x}×Vw, the image f (α)({x}×Vw) is contained in a q-dimensional
affine-linear subspace.

Finally, for the purpose of making the arguments adaptable to give a proof of Proposition 2, we recall
and slightly reformulate, in the case of a univalent holomorphic map f : Δ × Ω′ → Ω as in the above,
how one proves that f �(x) ∈ G except for possibly a discrete set of points xi. From the assumption (b),
for almost every b ∈ ∂Δ, we have f�

b (Ω′) ⊂ Γb where Γb is a maximal face on ∂Ω. Γb is of dimension
q := dim(Ω′), and for almost every b, by assumption (c) the set f�

b (Ω′) contains a non-empty open subset
of Γb. Given x ∈ Δ the statement that f �(x) ∈ G can be translated as follows.

(†) Let I = (i1, . . . , iq) be a non-zero q-tuple of nonnegative integers such that I 
= 0. Writing
|I| := i1 + · · · + iq, consider the partial derivative

∂|I|f

∂wi1
1 · · · ∂w

iq
q

(x; 0) := ηI(x) ∈ C
n.

Let Vx be the linear span of all ηI(x) as I varies over the set of non-zero q-tuples I of nonnegative integers.
Then, Vx is a q-dimensional vector space. Moreover ∂f

∂w1
(x; 0), . . . , ∂f

∂wq
(x; 0) are linearly independent and

they span Vx.
Verification of condition (†) can further be implemented as follows. For a positive integer s � n, let

I = (I1, . . . , Is) be an s-tuple of distinct non-zero multi-indexes Ik of nonnegative integers, 1 � k � s,
Ik = (i1(k), . . . , iq(k)). Suppose J = (j1, . . . , js) is an s-tuple of distinct integers j�, where 1 � � � s,
1 � j� � n. Write A = (I, J). We say that A is an index of order s. To each index A of order s we can
associate an s-tuple of column s-vectors, such that the k-th column vector is given by the transpose of
(ηj1

Ik
(x), . . . , ηjs

Ik
(x)). (Here we write a vector ξ in the target Euclidean space Cs as ξ = (ξ1, . . . , ξs).) The

s-by-s matrix thus obtained will be denoted by MA(x) and its determinant will be written as hA(x). By
Cauchy estimates on derivatives with respect to the variables w1, . . . , wq, we see that hA(x) is a bounded
holomorphic function in x. Here in the application of Cauchy estimates on derivatives, it suffices to note
the trivial fact that there exists some ρ > 0 such that for x ∈ Δ, fx(w) := f(x, w) is holomorphic on a
fixed polydisk of polyradii (ρ, . . . , ρ) centred at 0 ∈ Ω′ and each component f �

x of fx := (f1
x , . . . , fn

x ) is
uniformly bounded by a constant C independent of x ∈ Δ. For Ek = (0, . . . , 1, 0, . . . , 0) with 1 in the k-th
position, by assumption (c), for almost every b ∈ ∂Δ, for I = (E1, . . . , Eq) and for some J = (j1, . . . , jq)
where j1, . . . , jq are distinct positive integers, 1 � j1, . . . , js � n, we have h�

A(b) 
= 0 for A = (I, J),
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where h�
A(b) denotes the radial limit at b. Since hA(rb) converges to h�

A(b) as r → 1−, we must have
hA(rb) 
= 0 for r < 1 sufficiently close to 1. Thus, by using just one choice of J it is enough to show that
fx(w) = f(x, w) is of maximal rank at w = 0 for all x ∈ Δ except possibly for a discrete set of points xi.
To verify (†) it remains therefore to show that hA(x) = det(MA(x)) vanishes for any A = (I, J) of order
q +1. Let now A be of order q +1. By assumption h�

A(b) = 0 for almost every b ∈ ∂Δ. By Lemma 2, the
bounded holomorphic function hA(x) can be recovered from its boundary values h�

A(b) by the Cauchy
Integral formula, from which it follows that the (bounded) holomorphic function hA is identically zero on
Δ, and the verification of (†), and hence a proof of the analogue of Proposition 2 in the case of univalent
holomorphic maps is complete.

5 Proof of the Main Theorem

To adapt the arguments of Mok-Tsai [11] and Tsai [14] to the current situation, the difficulty arises
from the fact that in place of holomorphic maps f we have now multivalent ‘holomorphic maps’. At
a general point z ∈ Ω, the multivalent map f consists of p distinct branches f (α), 1 � α � p. Here
each f (α) is more precisely a germ of holomorphic map, and may be taken as being defined on the same
open neighborhood Uz of z. Because of the presence of the branching locus B of the correspondence
S, owing to monodromy around B it is in general not possible to fix the indexing of the branches. For
the purpose of proving Proposition 2 we need to show that, outside of the branching locus B of the
correspondence S ⊂ Ω × Ω, an open subset of a maximal characteristic subdomain Θ ⊂ Ω, of dimension
q, is mapped under each branch of the multivalent holomorphic map f into a q-dimensional affine-linear
subspace of C

n (and hence into a maximal characteristic subdomain). Recall that D = D1 · · ·Dn is
the product of the discriminants D�, of the multivalent holomorphic function f�. Here the branches are
f (α) = (f (α)

1 , . . . , f
(α)
n ), and Euclidean coordinates have been chosen for the target bounded symmetric

domain Ω to guarantee that each discriminant D� is not identically 0 on Ω. The discriminant functions
D� are defined on Ω but we will only be considering their restriction to a generic product domain Π ⊂ Ω,
which is isomorphic to Δ × Ω′ ⊂ Ω under an automorphism of Ω. Also, we will identify x ∈ Δ with
(x; 0) ∈ Δ × Ω′. Hence, we will write D�(x) = D�(x; 0) and D(x) = D(x; 0). We have

Lemma 4. Let U ⊂ Δ be a non-empty open set such that D is non-zero on U × {0}. Let 1 �
s � n and I = (I1, . . . , Is) be an s-tuple of distinct multi-indexes of nonnegative integers given by
Ik = (i1(k), . . . , iq(k)) 
= 0 for 1 � k � s. Suppose J = (j1, . . . , js) is an s-tuple of distinct integers j�,
where 1 � � � s, 1 � j� � n. Write A = (I, J). Then, there exists a positive integer NA and a constant
CA > 0 independent of x, α such that the holomorphic function h

(α)
A (x) on U ⊂ Δ satisfies

|h(α)
A (x)| � CA

|D(x)|NA
.

Proof. Let δ(x) > 0 be the largest real number such that the branch f (α) as a holomorphic map can
be defined on the q-dimensional polydisk {x} × P q(0; δ(x)), where P q(0; r) := Δ(0, r) × . . . × Δ(0, r) is
the q-dimensional polydisk of polyradii (r, . . . , r) centred at 0. Since each component f

(α)
� is uniformly

bounded in absolute values by a positive real number, say C, by Cauchy estimates of derivatives in the
variables (w1, . . . , wq), it follows that there exists a constant C′

A > 0 such that

|h(α)
A (x)| � C ′

A

δ(x)|I1|+···+|Is| .

To prove Lemma 4 it remains to verify that there exists some constant c > 0 such that δ(x) � c |D(x)|.
Now f (α) can be well-defined on {x}×P q(0; δ(x)) whenever each f

(α)
� is well-defined there for 1 � � � n.

For the latter to hold true it suffices to verify that the discriminant D�(x, w) 
= 0 whenever |w| < δ(x).
Now

D�(x, w) = D�(x, 0) +
∫

Λx(0,w)

dD� .
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where Λx(0, w) denotes the directed Euclidean line segment joining (x, 0) to (x, w). Estimating dD� by
Cauchy estimates for first derivatives, noting that D� is bounded, it follows readily that there exists some
c1 > 0 such that D�(x, w) 
= 0 whenever Λx(0, w) is of length dominated by c1|D�(x, 0)|. Thus we have

δ(x) � c1√
q

· min
1���n

∣∣D�(x, 0)| � c|D(x)|

for some c > 0. The proof of Lemma 4 is complete. �

By means of the estimates in Lemma 4 we have the following lemma with which the proof of Proposition
2 in Section 4 can be completed.

Lemma 5. Let A is an index (I, J) of order q + 1, and x0 ∈ Δ be a point where D(x0) 
= 0. Let
f (α), 1 � α � p, be the p branches of the multivalent holomorphic map f defined on a product neighborhood
U = U0 × U ′ ⊂ Δ × Ω′ of (x0, 0). For 1 � α � p, define h

(α)
A (x) = det

(
M

(α)
A (x)

)
, where M

(α)
A (x) is the

(q + 1)-by-(q + 1) matrix at x associated to the index A of order q + 1 as in the above and defined using
the the branch f (α) of the multivalent holomorphic map f . Then, h

(α)
A (x) = 0 for every x ∈ U0.

Proof. For a set of p indeterminates X1, . . .Xp, for 1 � e � p denote by σe(X1, . . . , Xp) the e-
th elementary symmetric polynomial in p variables. As before we will identify Δ with Δ × {0}. At
a point x ∈ Δ where D(x) 
= 0, for 1 � e � p we define ge

A(x) = σe

(
h

(1)
A (x), . . . , h(p)

A (x)
)
. Write

Z :=
{
z = (x, w) ∈ Δ×Ω′ : D(z) = 0

}
, and Z0 := Z ∩ (Δ×{0}). Each ge

A is a holomorphic function on
Δ −Z0. By Lemma 4 we have

|ge
A(x)| � CA

|D(x)|eNA
.

As a consequence, for x ∈ Δ −Z0 we have

|ge
ADeNA(x)| � CA.

For x ∈ Δ−Z0 write μe
A(x) := ge

ADeNA . From the estimates in the above μe
A : Δ−Z0 → C is a bounded

holomorphic function, and hence it extends by Riemann extension to a bounded holomorphic function on
Δ, to be denoted by the same symbol. By Fatou’s Theorem, the bounded holomorphic function μe

A admits
a radial limit μe�

A (b) for almost every b ∈ ∂Δ. By Lemma 2, for almost every b ∈ ∂Δ, each radial limit
μe�
A (b), 1 � e � p, exists and the radial limit D�(b) of the bounded holomorphic function D(x) on Δ also

exists and furthermore D�(b) 
= 0 for almost every b. For such b we have limr→1− D(rb) = D�(b) 
= 0. By
our construction of the boundary correspondence (cf. the paragraph before Proposition 1), there exists
then a fixed open neighborhood V0 � Ω′ of 0 ∈ Ω′, and ε > 0 such that for Iε = (1 − ε, 1), we have
well-defined branches f (1), . . . , f (p) of f such that each f (α), 1 � α � p, is continuous on Iε × V0 and
restricts to {rb} × V0, 1 − ε < r < 1 to give a holomorphic map f

(α)
rb : V0 → Cn, and such that moreover

f
(α)
rb converges uniformly to f

(α)�
b : V0 → ∂Ω (c.f. the paragraph before Proposition 1). Thus, for an

index A = (I, J) we have limr→1− h
(α)
A (rb) = h

(α)�
A (b). Now if the index A is of order q + 1 from the fact

that f (α)(V0) ⊂ Γb for some maximal face Γb on ∂Ω, of dimension q, it follows readily that h
(α)�
A (b) = 0.

As a consequence, for 1 � e � p,
lim

r→1−
ge
ADeNA(rb) = 0 .

Thus, the boundary values of the bounded holomorphic functions μe�
A (b), 1 � e � p are all equal to 0 for

almost all b. By the Cauchy Integral Formula in Lemma 2 we conclude that μe
A ≡ 0 on Δ, hence ge

A ≡ 0
for 1 � e � p, implying that the branches h

(α)
A ≡ 0 wherever defined on Δ. �

From Lemma 4 we deduce Proposition 2 in Section 4.

Proof of Proposition 2. By Lemma 4, the proposition follows from the scheme of proof given in Section
4 in the case where f is univalent, in which case the proof was reduced to verifying of the condition (†)
as given there. �

We are now ready to prove the Main Theorem.

Proof of the Main Theorem. We first recall the setting and notations. Without loss of generality,
we may assume that F is a surjective proper holomorphic map from an irreducible bounded symmetric
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domain Ω onto a complex space Z. Associated to F , the correspondence S ⊂ Ω × Ω is defined by
(x, y) ∈ S ⇐⇒ F (x) = F (y). S can be regarded as the graph of a multivalent map f from Ω into Ω.
We can assume that f is unbranched in a neighborhood U0 of 0 ∈ Ω. From Section 3 for a maximal
characteristic subdomain Θ ⊂ Ω, there is a totally geodesic complex submanifold Π ⊂ Ω isomorphic to
Δ × Ω′ ↪→ Ω such that Π contains Θ as a fiber with respect to the projection map Π ∼= Δ × Ω′ → Δ. Ω
is a union of maximal characteristic subdomains. We fix a subdomain of such type which contains the
origin, and define the restrictions Sx = S ∩ (({x} × Ω′) × Ω) of the correspondence S.

By Proposition 2 in Section 4, we see that each Sx is in fact a correspondence for {x} × Ω′ to Lx,
where Lx is also a maximal characteristic symmetric subdomain of Ω. As all the maximal characteristic
symmetric subdomains are isomorphic, we can do induction on the rank (down to rank one) by considering
the induced correspondence between {x}×Ω′ and Lx. Namely, for any z ∈ U0 and any minimal disk Δz

passing through z, if we define the restriction SΔz := S ∩ (Δz × Ω), we actually have SΔz ⊂ Δz × Dz,
where Dz is also a minimal disk in Ω. Hence each branch of f on U0 preserves characteristic vectors for
every point z ∈ U0. By Theorem 2 in Section 3 of Ochiai [12], the branches of f extend to automorphisms
of M , the compact dual of Ω. By Lemma 1 in Section 3 such automorphisms of M preserve Ω and they
restrict to automorphisms of Ω.

Coming back to our original surjective proper holomorphic map F : Ω → Z, we define H ⊂ Aut(Ω) to
be the subset consisting of all automorphisms γ of Ω satisfying F ◦ γ ≡ F on Ω. Clearly H ⊂ Aut(Ω) is a
finite subgroup. Let a ∈ Z at which F is unbranched and F−1(a) = {y1, . . . , yp}. By the above, we have
proven that for each intertwining map ϕi,j : Ui → Uj between open neighborhoods Ui of yi and Uj of yj,
ϕi,j extends to an automorphism of Ω. It follows that H acts transitively on F−1(a). In fact, H consists
of precisely p elements, say H = {γ1,1 = idΩ, γ1,2, . . . , γ1,p}. Denote now by X = Ω/H the quotient space,
and by π : Ω → X the canonical projection map. By a result of Cartan [1], X has a unique structure as
a normal complex space. For any z, z′ ∈ Ω, if π(z) = π(z′), then there exists γ ∈ H such that γ(z) = z′.
By our construction of H , γ is the extension of an intertwining map induced from F : Ω → Z and since
intertwining maps are fibre-preserving (with respect to F ), we have F (z) = F (z′). Therefore we can
define the map ν : X → Z by ν(x) = F (π−1(x)). From the definition of the complex structure of the
quotient space X , ν is holomorphic because ν ◦ π = F is holomorphic. Since any compact subvariety of
Ω consists of finitely many points, ν : X → Z must be finite. Let Z̃ be the normalization of Z. We can
then lift ν to ν̃ : X → Z̃, which remains finite, proper, surjective and generically one to one, and we have
an inverse map ν : Z̃ → X which is weakly holomorphic. Since Z̃ is normal, every weakly holomorphic
function extends holomorphically and therefore we see that ν̃ is actually biholomorphic. Thus, X is the
normalization of Z.

6 Proper holomorphic maps onto manifolds

We are ready to prove Theorem 1 in Section 2 regarding proper holomorphic maps F : Ω → Z onto a
complex manifold Z for an irreducible bounded symmetric domain Ω of rank � 2.

Proof of Theorem 1. Recall that Ω ⊂ M is the Borel embedding of Ω into its compact dual M . If F is
not a biholomorphism, then the ramification locus R ⊂ Ω is the fixed point set of the group H ⊂Aut(Ω),
and as such R must be a smooth totally geodesic hypersurface. Thus, R is itself a Hermitian symmetric
manifold of the semisimple and noncompact type. Let R ⊂ Q be the Borel embedding of R into its
compact dual Q. Then, Q can be identified naturally as a complex submanifold of M . Furthermore, the
finite group H ⊂ Aut(Ω) extends as a finite group of automorphisms fixing the hypersurface Q. The
irreducible Hermitian symmetric manifold M belongs to the class of rational homogeneous manifolds
of Picard number 1. For the latter class of manifolds we have the following general result in Hwang-
Mok [2, Prop.15] concerning finite groups of automorphisms proven in relation to a solution of Lazarsfeld’s
Problem.

Proposition 3. Let Y be a rational homogeneous manifold of Picard number 1 of dimension n � 3
different from the projective space Pn. Suppose there exists a nontrivial finite cyclic group H ⊂ Aut(Y )
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which fixes a (smooth) hypersurface E ⊂ Y pointwise. Then, Y is the hyperquadric Qn, E is equal to an
O(1)−hypersurface, which is itself a hyperquadric, H is a group of order 2, and the quotient of Y by H,
endowed with the standard structure as a normal complex space, is the projective space Pn.

Proof of Theorem 1 continued. If Ω is not biholomorphic to DIV
n for some n � 3, then by Proposition

3 (and the discussion on duality preceding it) any proper holomorphic map F : Ω → Z onto a complex
manifold Z must be a biholomorphism. This gives the alternative (a) in Theorem 1. For alternative (b),
i.e., the case where Ω = DIV

n , it remains to identify the cases of F : DIV
n → DIV

n /H ∼= Z where H is a
non-trivial finite group of automorphisms. We will describe the non-trivial automorphism σ ∈ H of order
2 explicitly to check that it gives rise to an automorphism of Ω = DIV

n by restriction. (For the description
of the Harish-Chandra and Borel embeddings DIV

n � C
n ⊂ Qn we refer the reader to Mok [5, Chapter 4,

(3.1), pp. 82–83]). Represent the hyperquadric Qn ⊂ Pn+1 by (†) z2
1 + · · · + z2

n − 2zn+1zn+2 = 0 in the
homogeneous coordinates [z1, . . . , zn+2]. Then, the Euclidean space Cn is embedded in Qn as an open
subset by the mapping (z1, . . . , zn) 
→ (z1, . . . , zn, 1, 1

2 (z2
1+· · ·+z2

n)). The classical domain DIV
n of Type-

IV is identified via the Harish-Chandra realization as DIV
n = {(z1, . . . , zn) ∈ Cn : ‖z‖2 < 2 and ‖z‖2 <

1+| 1
2 (z2

1 +· · ·+z2
n)|2}. For [z1, . . . , zn+2] ∈ Qn define now F ([z1, . . . , zn+2]) = [z1, . . . , zn−1, zn+1, zn+2].

By the defining equation (†) of the hyperquadric we see that z1 = · · · = zn−1 = zn+1 = zn+2 = 0 implies
zn = 0, so that F : Qn → Pn is a holomorphic map. Clearly F is a double cover ramified precisely
along the smooth hyperplane section E ⊂ Qn defined by zn = 0, and we have F (x) = F (σ(x)) for
σ ∈ Aut(Qn) given by σ([z1, z2, . . . , zn+2]) = [z1, . . . , zn−1,−zn, zn+1, zn+2]. The involution σ generates
a finite group H of order 2, and the holomorphic mapping F : Qn → Pn agrees with the canonical
quotient map Qn → Qn/H ∼= Pn. Now, z = (z1, . . . , zn) ∈ DIV

n if and only if ‖z‖2 < 2 and ‖z‖2 <

1 + | 1
2 (z2

1 + · · · + z2
n)|2. Obviously, for z ∈ DIV

n , the two conditions are satisfied when z is replaced
by σ(z), so that σ|DIV

n
∈ Aut(DIV

n ). It follows that F |DIV
n

: DIV
n → Cn ⊂ Pn is a proper holomorphic

map onto some open subset G := F (DIV
n ) � Cn. F is ramified precisely along the totally geodesic

hypersurface J = E ∩ DIV
n , and the proof of Theorem 1 is complete. �

Remarks. Alternatively, one can show that F : Ω → Z is an isomorphism unless Ω is biholomorphic
to DIV

n , n � 3 by a case-by-case checking on dimensions of totally geodesic complex submanifolds. The
proof of Proposition 3 given in [2] is however more conceptual.
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