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Abstract In this paper, the authors consider the empirical likelihood method for a first-order gener-

alized random coefficient integer-valued autoregressive process. The authors establish the log empirical

likelihood ratio statistic and obtain its limiting distribution. Furthermore, the authors investigate the

point estimation, confidence regions and hypothesis testing for the parameters of interest. The perfor-

mance of empirical likelihood method is illustrated by a simulation study and a real data example.

Keywords Empirical likelihood, generalized random coefficient, integer-valued time series, thinning

operator.

1 Introduction

Integer-valued time series models have been well developed since the 1970s, because various
kinds of correlated count data are commonly encountered in practice. The areas that could often
produce these types of data, such as the numbers of patients, insurance claims, accidents, wet
days, and so on, include epidemiology, economics, communications and meteorology, etc. One of
the most popular approaches to analyze integer-valued time series is the class of autoregressive
moving average processes based on different thinning operators. See for example [1–4] for
detailed and recent surveys on these models.

Pioneering works on the thinning-operator-based model are due to [5] and [6], the authors
propose the first-order integer-valued autoregressive process (INAR(1)) that is written as

Xt = φ ◦ Xt−1 + εt, t ≥ 1, (1)
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where φ ∈ [0, 1), and the so-called binomial thinning operator “◦” is introduced by [7] with the
following definition

φ ◦ Xt−1 =
Xt−1∑

k=1

B
(t)
k , (2)

in which {B(t)
k , k ≥ 1} is a sequence of i.i.d. Bernoulli random variables with mean φ and

independent of Xt−1.
During the last decades, the binomial thinning operator and its generalizations have been

widely implemented to construct more flexible count data models for practical purposes. For
instance, negative binomial thinning operator[8], expectation thinning operator[9], Poisson thin-
ning operator[10], signed binomial thinning operator[11], signed generalized power series thinning
operator[12], Pegram’s thinning operator[13], GSC thinning operator[14], extended negative bi-
nomial thinning operator[15], and so on. In a similar way as the RCAR (Random Coefficient
Autoregressive) model, [16–18] consider random coefficient thinning to describe the situation
that the parameter φ may vary randomly over time because of various environmental factors.
[19] and [20] study models in which the thinning parameters are driven by observation and
explanatory variables, respectively.

In this paper, we focus on a generalized random coefficient thinning operator that is proposed
by [21], in analogy to and extend the concept of generalized thinning operator in [22] which
allows {B(t)

k , k ≥ 1} in (2) to be i.i.d. integer-valued random variables but not necessarily
Bernoulli-distributed, such that the binomial thinning operator, the negative binomial thinning
operator, the expectation thinning operator and Poisson thinning operator are included as its
special cases. Our main purpose is to develop the empirical likelihood (EL) method for a first-
order integer-valued autoregressive process presented by [21] based on their generalized random
coefficient thinning operator. As is known to all, the EL method has been widely used in many
different situations since it was introduced by [23] and [24], because this nonparametric inference
idea could produce confidence regions with shape and orientation determined entirely by the
data and Bartlett correction, as well as conduct the parameter-free asymptotic distribution of
an EL test statistic. Contributions to the application of EL method to integer-valued processes
include, among others, [25–29].

The layout of this paper is as follows. In Sections 2, we introduce the model and some
distributional properties. In Section 3, we investigate the EL method for the parameters of
interest. In Section 4, we report the simulation results. In Section 5, we give a real data
analysis based on the daily numbers of confirmed COVID-19 cases imported from abroad in
China. All proofs are postponed to the Appendix.

2 Modelling and Distributional Properties

The first-order generalized random coefficient integer-valued autoregressive (GRCINAR(1))
process proposed by [21], could be expressed by the following recursive equation:

Xt = φt ◦G Xt−1 + εt, t ≥ 1, (3)
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where

• i) {φt, t ≥ 1} is an i.i.d. sequence with finite mean φ = E(φt), variance σ2
1 = Var(φt) and

cumulative distribution function Pφ1 .

• ii) {εt, t ≥ 1} is an i.i.d. nonnegative integer-valued sequence with finite mean λ = E(εt),
variance σ2

2 = Var(εt) and probability mass function fε.

• iii) The generalized thinning operator is defined by

φt ◦G Xt−1|φt, Xt−1 ∼ G(φtXt−1, δtXt−1),

in which G(φtXt−1, δtXt−1) represents a given discrete type distribution with mean
φtXt−1 and variance δtXt−1, respectively.

• iv) X0, {φt, t ≥ 1} and {εt, t ≥ 1} are independent.

Remark 2.1 From the definition, we know that

Var(φt ◦G Xt−1|φt, Xt−1) = δtXt−1,

in which δt is possibly dependent on φt and Xt−1. However, following [21], we also assume that
δt only depends on φt for simplicity.

Remark 2.2 EL method for random coefficient INAR(1) process based on binomial thin-
ning operator has been considered by [25]. This kind of model is a special case of GRCINAR(1)
process with binomial distribution G and δt = φt(1 − φt). However, it is known that GRCI-
NAR(1) process also includes many other models, such as INAR(1) process based on negative
binomial thinning operator and Poisson thinning operator, which respectively correspond to
the situations that G is negative binomial distribution with δt = φt(1 + φt), and G is Poisson
distribution with δt = φt. In this paper, we extend the results of [25] to general GRCINAR(1)
process. Besides, we also discuss the forecasting problem for GRCINAR(1) process.

The following propositions present several important distributional properties of GRCI-
NAR(1) process established by [21].

Proposition 2.3 The GRCINAR(1) process {Xt, t≥1} is a Markov chain on {0, 1, · · · }
with the transition probabilities

Pij = P (Xt = j|Xt−1 = i)

= P (φt ◦G Xt−1 + εt = j|Xt−1 = i)

=
κ2(t)∑

k=κ1(t)

P (Vt = j − k)P (εt = k),

in which Vt|φt ∼ G(φti, δti), while κ1(t) and κ2(t) are determined by the distributions of Vt and
εt, respectively.
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Proposition 2.4 For any t ≥ 1, we have
1) E(Xt|Xt−1) = φXt−1 + λ;
2) Var(Xt|Xt−1) = σ2

1X2
t−1 + E(δt)Xt−1 + σ2

2;
3) Cov(Xt+h, Xt) = φhVar(Xt), h ≥ 0.

Proposition 2.5 If 0 < σ2
1 + φ2 < 1, then there is a unique non-negative integer-valued

weakly stationary process {Xt, t ≥ 1} that satisfies (3).

Remark 2.6 By the same methods used in [12] and [19], we can also prove that the
process stated in Proposition 2.5 is strictly stationary and ergodic. We omit the details here
for brevity.

3 EL Inference for the GRCINAR(1) Process

In the GRCINAR(1) process, let θ = (φ, λ)T be the unknown parameters we are inter-
ested in, and their true values are denoted by θ0 = (φ0, λ0)T. Based on the observations
X0, X1, · · · , Xn, we consider three aspects of EL method: Estimate, confidence regions and
test. To this end, we assume that the following two conditions holds throughout the rest of the
paper:

(C1) {Xt, t ≥ 0} is a strictly stationary and ergodic process;
(C2) E(Xt)4 < +∞, t ≥ 0.
For the process (3), define the conditional least squares (CLS) criterion function as

S(θ) =
n∑

t=1

[Xt − E(Xt|Xt−1)]2 =
n∑

t=1

(Xt − φXt−1 − λ)2, (4)

which leads to an estimating equation by taking derivative

−1
2
× ∂S(θ)

∂θ
=

n∑

t=1

mt(θ) = 0,

where
mt(θ) = (m1t(θ), m2t(θ))T

with
m1t(θ) = Xt−1(Xt − φXt−1 − λ), m2t(θ) = Xt − φXt−1 − λ.

It is obvious that the solution to (4) yields the CLS estimators of θ:

φ̂CLS =
n
∑n

t=1 XtXt−1 −
∑n

t=1 Xt

∑n
t=1 Xt−1

n
∑n

t=1 X2
t−1 − (

∑n
t=1 Xt−1)2

, λ̂CLS =
1
n

( n∑

t=1

Xt − φ̂

n∑

t=1

Xt−1

)
.

Following the Remark in Section 4 of [21], or according to [30], we can have
√

n(θ̂CLS − θ0)
L−→ N(0, V −1W (θ0)V −1), n −→ +∞,

in which

W (θ0) =

⎛

⎝ E[X2
0 (X1 − φ0X0 − λ0)2] E[X0(X1 − φ0X0 − λ0)2]

E[X0(X1 − φ0X0 − λ0)2] E[(X1 − φ0X0 − λ0)2]

⎞

⎠ , (5)
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V =

⎛

⎝ E(X2
0 ) E(X0)

E(X0) 1

⎞

⎠ . (6)

Therefore, a 100(1 − α)% normal approximation (NA) confidence region of θ based on CLS
method would be constructed as follows:

CCLS
α,n = {θ|n(θ̂CLS − θ)TV̂ TŴ−1(θ̂CLS)V̂ (θ̂CLS − θ) ≤ cα},

where 0 < α < 1, cα satisfies P (χ2(2) ≥ cα) = α, and

Ŵ (θ̂CLS) =
1
n

n∑

t=1

⎛

⎝ X2
t−1(Xt − φ̂Xt−1 − λ̂)2 Xt−1(Xt − φ̂Xt−1 − λ̂)2

Xt−1(Xt − φ̂Xt−1 − λ̂)2 (Xt − φ̂Xt−1 − λ̂)2

⎞

⎠ ,

V̂ =
1
n

n∑

t=1

⎛

⎝ X2
t−1 Xt−1

Xt−1 1

⎞

⎠ ,

which are the consistent estimators of W (θ) and V , respectively.
Now, we discuss the EL method. Based on the score function mt(θ), the profile empirical

likelihood ratio (ELR) function can be given by

R(θ) = max
{ n∏

t=1

npt : pt ≥ 0,

n∑

t=1

pt = 1,

n∑

t=1

ptmt(θ) = 0
}

.

By the standard Lagrange multiplier approach, we may verify that the optimal value of pt is
found to be

pt =
1
n

1
1 + bT(θ)mt(θ)

, t = 1, 2, · · · , n,

where the Lagrange multiplier b(θ) satisfies

g(b(θ)) =
1
n

n∑

t=1

mt(θ)
1 + bT(θ)mt(θ)

= 0. (7)

Therefore, we obtain the log ELR function as follows:

l(θ) = −2 logR(θ) = 2
n∑

t=1

log(1 + bT(θ)mt(θ)). (8)

The limiting distribution of the ELR statistic l(θ) can be obtained consequently.

Theorem 3.1 Under the assumptions (C1) and (C2), we have

l(θ0)
L−→ χ2(2), n −→ +∞.

The confidence region of the parameters can be constructed based on the above theorem.

Theorem 3.2 Under the assumptions (C1) and (C2), the 100(1 − α)% EL confidence
region of θ is

CEL
α,n = {θ|l(θ) ≤ cα},

in which 0 < α < 1, and cα satisfies P (χ2(2) ≥ cα) = α.
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On the other hand, by minimizing l(θ), we can obtain θ̂MEL, which is the maximum em-
pirical likelihood estimator of θ. The following theorem gives its asymptotic property.

Theorem 3.3 Under the assumptions (C1) and (C2), the MEL estimator θ̂MEL is con-
sistent, moreover we have

√
n(θ̂MEL − θ0)

L−→ N(0, V −1W (θ0)V −1), n −→ +∞,

where θ0 is the true value of θ, W (θ0) and V are defined by (5) and (6), respectively.

In practice, we could also consider the following hypothesis problem about θ:

H0 : θ = θ0 v.s. H1 : θ �= θ0.

Based on EL method, we can get the ELR statistic as

Q(θ) = l(θ) − l(θ̂MEL),

which has limit distribution given in the subsequent theorem.

Theorem 3.4 Under the assumptions (C1) and (C2), when the null hypothesis H0 is
true, we have

Q(θ0)
L−→ χ2(2), n −→ +∞.

Therefore, the rejection region for significance level α is given by

Wn,α = {Q(θ) ≥ cα},

where cα satisfies P (χ2(2) ≥ cα) = α.

4 Simulation Studies

The purpose of this section is to compare the performances of CLS and MEL estimators.
To this end, we take an important special case of GRCINAR(1) process as an example:

Xt = φt ◦G Xt−1 + εt, t ≥ 1, (9)

in which

φt ◦G Xt−1 =
Xt−1∑

i=1

W
(t)
i ,

φt = φ + Ut, Ut ∼ U(−0.1, 0.1), εt ∼ P (λ),

and both {εt, t ≥ 1} and {Ut, t ≥ 1}, independent of each other, are sequences of i.i.d. random
variables. Furthermore, we focus on the following two models:

1) RCNBINAR(1) process: Random coefficient INAR(1) process based on negative binomial
thinning operator, in which {W (t)

i , i ≥ 1} is assumed to be a sequence of conditional i.i.d.
geometric random variables with probability mass function

P (W (t)
i = x|φt) =

φx
t

(1 + φt)x+1
, x = 0, 1, · · · .
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2) RCPINAR(1) process: Random coefficient INAR(1) process based on Poisson thinning
operator, in which {W (t)

i , i ≥ 1} is assumed to be a sequence of conditional i.i.d. Poisson
random variables with probability mass function

P (W (t)
i = x|φt) =

φx
t

x!
e−φt , x = 0, 1, · · · .

In each simulation, we generate the data with X0 = 1, and perform all the calculations
based on 1000 replications under the following 4 scenarios:

(i) (φ, λ) = (0.3, 1); (ii) (φ, λ) = (0.3, 2); (iii) (φ, λ) = (0.7, 1); (iv) (φ, λ) = (0.7, 2).

4.1 Estimate

For the generated samples with size n chosen to be 50, 100, 300 and 1000, we calculate
the average estimates across m repetitions, and evaluate the effectiveness of CLS and MEL
estimators by applying the empirical bias (BIAS) and the mean squared errors (MSE), which
are defined for parameter θ as

BIAS =
1
m

m∑

k=1

θ̂k − θ0, MSE =
1
m

m∑

k=1

(θ̂k − θ0)2,

where m = 1000 is the replication times, θ̂k is the estimator of θ at the kth replication, and θ0

is the true value of θ.
In addition, we also use the conditional maximum likelihood (CML) method as a benchmark

to estimate the parameters. The CML estimators of θ can be obtained by maximizing the
conditional log-likelihood function

log L(θ) =
n∑

t=1

log P (Xt = xt|Xt−1 = xt−1),

where for RCNBINAR(1) process, we have

P (Xt = xt|Xt−1 = xt−1) =
xt∑

k=0

λxt−k

(xt − k)!
e−λ

(
xt + k − 1

k

)∫ +0.1

−0.1

5(φ + u)k

(1 + φ + u)xt−1+k−1
du,

and for RCPINAR(1) process, we have

P (Xt = xt|Xt−1 = xt−1) =
xt∑

k=0

λxt−k

(xt − k)!
e−λ

∫ +0.1

−0.1

5(φ + u)kxk
t−1

k!
e−(φ+u)xt−1du.

We give the summary of the simulation results in Tables 1–8. It can be seen that the
CML method has the best performance in terms of BIAS and MSE under the correct model.
However, as nonparametric methods, CLS and MEL are also efficient methods because they
produce good estimators which can be overall comparable to the CML results. Besides, MEL
estimators have less BIAS and smaller MSE than CLS estimators in most cases, showing that
MEL is a competitive choice compared with CLS method. On the other, both BIAS and MSE
of the three methods gradually decrease as expected, when the sample size increases, implying
that the estimators are consistent for all the parameters.
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Table 1 Simulation results for (φ, λ) = (0.3, 1) in RCNBINAR(1) process

n Parameter
CLS MEL CLM

Estimate BIAS MES Estimate BIAS MSE Estimate BIAS MSE

50 φ = 0.3 0.2447 −0.0553 0.0259 0.2576 −0.0424 0.0210 0.2628 −0.0372 0.0171

λ = 1 1.0649 0.0649 0.0685 1.0528 0.0528 1.0459 0.0459 −0.0424 0.0501

100 φ = 0.3 0.2687 −0.0313 0.0128 0.2752 −0.0248 0.0126 0.2768 −0.0232 0.0103

λ = 1 1.0407 0.0407 0.0334 1.0319 0.0319 0.0341 1.0306 0.0306 0.0262

300 φ = 0.3 0.2862 −0.0138 0.0043 0.2884 −0.0116 0.0041 0.2888 −0.0112 0.0036

λ = 1 1.0181 0.0181 0.0095 1.0125 0.0125 0.0104 1.0123 0.0123 0.0092

1000 φ = 0.3 0.2967 −0.0033 0.0012 0.2969 −0.0031 0.0012 0.2972 −0.0028 0.0010

λ = 1 1.0059 0.0059 0.0030 1.0042 0.0042 0.0029 1.0038 0.0038 0.0025

Table 2 Simulation results for (φ, λ) = (0.3, 2) in RCNBINAR(1) process

n Parameter
CLS MEL CLM

Estimate BIAS MES Estimate BIAS MSE Estimate BIAS MSE

50 φ = 0.3 0.2514 −0.0486 0.0257 0.2592 −0.0408 0.0201 0.2624 −0.0376 0.0159

λ = 2 2.1327 0.1327 0.2488 2.1063 0.1063 0.1760 2.1003 0.1003 0.1478

100 φ = 0.3 0.2750 −0.0250 0.0127 0.2783 −0.0217 0.0114 0.2791 −0.0209 0.0093

λ = 2 2.0686 0.0686 0.1191 2.0505 0.0505 0.0968 2.0502 0.0502 0.0796

300 φ = 0.3 0.2904 −0.0096 0.0035 0.2929 −0.0071 0.0036 0.2935 −0.0065 0.0032

λ = 2 2.0257 0.0257 0.0311 2.0192 0.0192 0.0319 2.0289 0.0289 0.0269

1000 φ = 0.3 0.2982 −0.0018 0.0011 0.2975 −0.0025 0.0010 0.2976 −0.0024 0.0009

λ = 2 2.0083 0.0083 0.0106 2.0031 0.0031 0.0091 2.0030 0.0030 0.0079

Table 3 Simulation results for (φ, λ) = (0.7, 1) in RCNBINAR(1) process

n Parameter
CLS MEL CLM

Estimate BIAS MES Estimate BIAS MSE Estimate BIAS MSE

50 φ = 0.7 0.6000 −0.1000 0.0302 0.5987 −0.1013 0.0291 0.6298 −0.0702 0.0217

λ = 1 1.2704 0.2704 0.3074 1.2754 0.2754 0.2606 1.1633 0.1633 0.1576

100 φ = 0.7 0.6401 −0.0599 0.0137 0.6428 −0.0572 0.0126 0.6656 −0.0344 0.0085

λ = 1 1.1595 0.1595 0.1163 1.1482 0.1482 0.1211 1.0777 0.0777 0.0546

300 φ = 0.7 0.6774 −0.0226 0.0042 0.6774 −0.0226 0.0039 0.6876 −0.0124 0.0022

λ = 1 1.0690 0.0690 0.0352 1.0578 0.0578 0.0317 1.0249 0.0249 0.0144

1000 φ = 0.7 0.6937 −0.0063 0.0012 0.6949 −0.0051 0.0012 0.6974 −0.0026 0.0007

λ = 1 1.0172 0.0172 0.0108 1.0131 0.0131 0.0101 1.0056 0.0056 0.0041
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Table 4 Simulation results for (φ, λ) = (0.7, 2) in RCNBINAR(1) process

n Parameter
CLS MEL CLM

Estimate BIAS MES Estimate BIAS MSE Estimate BIAS MSE

50 φ = 0.7 0.6141 −0.0859 0.0254 0.6205 −0.0795 0.0214 0.6382 −0.0618 0.0167

λ = 2 2.5056 0.5056 1.1108 2.4653 0.4653 0.8145 2.3388 0.3388 0.5843

100 φ = 0.7 0.6581 −0.0419 0.0100 0.6561 −0.0439 0.0094 0.6663 −0.0337 0.0069

λ = 2 2.2430 0.2430 0.3779 2.2518 0.2518 0.3566 2.1822 0.1822 0.2388

300 φ = 0.7 0.6824 −0.0176 0.0030 0.6854 −0.0146 0.0031 0.6897 −0.0103 0.0021

λ = 2 2.1056 0.1056 0.1122 2.0837 0.0837 0.1080 2.0546 0.0546 0.0665

1000 φ = 0.7 0.6962 −0.0038 0.0009 0.6962 −0.0038 0.0009 0.6978 −0.0022 0.0005

λ = 2 2.0197 0.0197 0.0317 2.0197 0.0197 0.0334 2.0106 0.0106 0.0165

Table 5 Simulation results for (φ,λ) = (0.3, 1) in RCPINAR(1) process

n Parameter
CLS MEL CLM

Estimate BIAS MES Estimate BIAS MSE Estimate BIAS MSE

50 φ = 0.3 0.2462 −0.0538 0.0250 0.2606 −0.0394 0.0216 0.2749 −0.0251 0.0169

λ = 1 1.0626 0.0626 0.0653 1.0512 0.0512 0.0641 1.0332 0.0332 0.0564

100 φ = 0.3 0.2711 −0.0289 0.0116 0.2770 −0.0230 0.0122 0.2816 −0.0184 0.0104

λ = 1 1.0344 0.0344 0.0310 1.0268 0.0268 0.0301 1.0209 0.0209 0.0270

300 φ = 0.3 0.2908 −0.0092 0.0039 0.2942 −0.0058 0.0040 0.2948 −0.0052 0.0036

λ = 1 1.0092 0.0092 0.0099 1.0050 0.0050 0.0102 1.0042 0.0042 0.0094

1000 φ = 0.3 0.2976 −0.0024 0.0012 0.2954 −0.0046 0.0012 0.2958 −0.0042 0.0011

λ = 1 1.0019 0.0019 0.0031 1.0042 0.0042 0.0030 1.0036 0.0036 0.0028

Table 6 Simulation results for (φ,λ) = (0.3, 2) in RCPINAR(1) process

n Parameter
CLS MEL CLM

Estimate BIAS MES Estimate BIAS MSE Estimate BIAS MSE

50 φ = 0.3 0.2456 −0.0544 0.0248 0.2610 −0.0390 0.0205 0.2715 −0.0285 0.0158

λ = 2 2.1458 0.1458 0.2499 2.1068 0.1068 0.1911 2.0799 0.0799 0.1609

100 φ = 0.3 0.2813 −0.0187 0.0109 0.2771 −0.0229 0.0106 0.2818 −0.0182 0.0097

λ = 2 2.0530 0.0530 0.1024 2.0512 0.0512 0.0976 2.0455 0.0455 0.0921

300 φ = 0.3 0.2927 −0.0073 0.0035 0.2965 −0.0035 0.0045 0.2973 −0.0027 0.0033

λ = 2 2.0211 0.0211 0.0349 2.0257 0.0257 0.0302 2.0229 0.0229 0.0292

1000 φ = 0.3 0.3002 0.0002 0.0010 0.2966 −0.0034 0.0010 0.2981 −0.0019 0.0010

λ = 2 1.9992 −0.0008 0.0096 2.0070 0.0070 0.0090 2.0082 0.0082 0.0087
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Table 7 Simulation results for (φ,λ) = (0.7, 1) in RCPINAR(1) process

n Parameter
CLS MEL CLM

Estimate BIAS MES Estimate BIAS MSE Estimate BIAS MSE

50 φ = 0.7 0.6196 −0.0804 0.0246 0.6203 −0.0797 0.0239 0.6372 −0.0628 0.0197

λ = 1 1.2272 0.2272 0.2661 1.2132 0.2132 0.2363 1.1639 0.1639 0.1822

100 φ = 0.7 0.6580 −0.0420 0.0100 0.6573 −0.0427 0.0099 0.6717 −0.0283 0.0076

λ = 1 1.1243 0.1243 0.1056 1.1232 0.1232 0.0994 1.0761 0.0761 0.0743

300 φ = 0.7 0.6842 −0.0158 0.0030 0.6850 −0.0150 0.0030 0.6893 −0.0107 0.0022

λ = 1 1.0445 0.0445 0.0285 1.0433 0.0433 0.0272 1.0305 0.0305 0.0193

1000 φ = 0.7 0.6948 −0.0052 0.0008 0.6945 −0.0055 0.0009 0.6964 −0.0036 0.0006

λ = 1 1.0164 0.0164 0.0077 1.0150 0.0150 0.0080 1.0085 0.0085 0.0051

Table 8 Simulation results for (φ,λ) = (0.7, 2) in RCPINAR(1) process

n Parameter
CLS MEL CLM

Estimate BIAS MES Estimate BIAS MSE Estimate BIAS MSE

50 φ = 0.7 0.6248 −0.0752 0.0248 0.6312 −0.0689 0.0179 0.6408 −0.0592 0.0156

λ = 2 2.4707 0.4707 1.1547 2.4124 0.4124 0.7133 2.3504 0.3504 0.6157

100 φ = 0.7 0.6577 −0.0423 0.0103 0.6634 −0.0366 0.0078 0.6701 −0.0299 0.0066

λ = 2 2.2634 0.2634 0.4431 2.2405 0.2405 0.3309 2.1959 0.1959 0.2745

300 φ = 0.7 0.6871 −0.0129 0.0026 0.6842 −0.0158 0.0024 0.6872 −0.0128 0.0020

λ = 2 2.0756 0.0756 0.1069 2.0963 0.0963 0.0990 2.0660 0.0660 0.0772

1000 φ = 0.7 0.6952 −0.0048 0.0007 0.6961 −0.0039 0.0007 0.6974 −0.0026 0.0006

λ = 2 2.0281 0.0281 0.0275 2.0242 0.0242 0.0272 2.0173 0.0173 0.0217

4.2 Confidence Region

In what follows, we conduct a simulation to compare the CLS and EL methods by overage
probabilities of the confidence regions based on CCLS

α,n and CEL
α,n, respectively. For both of the

above two models under Scenarios 1–4, the sample size n is chosen to be 50, 100, 300 and 1000,
and the coverage probabilities are calculated based on 1000 replications at confidence levels
0.90 and 0.95, respectively.

From Tables 9 and 10, we can see that coverage probabilities of the two methods increase
and coverage to the confidence levels as the sample size n increases. By comparison, the EL
confidence regions have larger and more accurate coverage probabilities than those of the CLS
ones, especially for small sample sizes. As a result, we conclude that the EL method performs
better in terms of coverage accuracy.
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Table 9 The coverage probabilities of confidence regions for RCNBINAR(1) process

Nominal Parameter n = 50 n = 100 n = 300 n = 1000

Levels (φ, λ) El CLS EL CLS EL CLS EL CLS

0.90 (0.3, 1) 0.854 0.818 0.875 0.862 0.892 0.884 0.900 0.900

(0.3, 2) 0.836 0.810 0.876 0.847 0.904 0.904 0.889 0.889

(0.7, 1) 0.801 0.770 0.847 0.822 0.861 0.855 0.896 0.897

(0.7, 2) 0.820 0.782 0.856 0.845 0.891 0.881 0.889 0.887

0.95 (0.3, 1) 0.902 0.874 0.933 0.919 0.929 0.929 0.943 0.942

(0.3, 2) 0.898 0.873 0.935 0.917 0.946 0.943 0.947 0.945

(0.7, 1) 0.861 0.846 0.898 0.889 0.924 0.918 0.946 0.945

(0.7, 2) 0.897 0.873 0.927 0.913 0.939 0.939 0.953 0.947

Table 10 The coverage probabilities of confidence regions for RCPINAR(1) process

Nominal Parameter n = 50 n = 100 n = 300 n = 1000

Levels (φ, λ) El CLS EL CLS EL CLS EL CLS

0.90 (0.3, 1) 0.857 0.837 0.879 0.854 0.903 0.893 0.890 0.888

(0.3, 2) 0.849 0.813 0.874 0.866 0.901 0.897 0.897 0.895

(0.7, 1) 0.824 0.792 0.861 0.847 0.885 0.881 0.911 0.910

(0.7, 2) 0.828 0.786 0.868 0.835 0.878 0.875 0.917 0.910

0.95 (0.3, 1) 0.922 0.891 0.940 0.923 0.950 0.942 0.938 0.935

(0.3, 2) 0.904 0.883 0.930 0.920 0.945 0.940 0.953 0.953

(0.7, 1) 0.888 0.859 0.923 0.908 0.935 0.927 0.957 0.957

(0.7, 2) 0.890 0.859 0.911 0.891 0.938 0.932 0.956 0.954

4.3 Performances of the EL Test

In this subsection, we investigate to illustrate the empirical size and power of the EL test.
To this end, we consider the following hypothesis testing problem that could occur in practical
applications:

H0 : φ = 0.5 v.s. H1 : φ �= 0.5.

We select the sample size n as 50, 100, 200 and 300, and calculate the results based on 1000
replications at significance levels 0.90 and 0.95, respectively. Specifically, we compare the
empirical likelihood ratio statistic with the critical value, to get the observed percentage of
rejecting the null hypothesis. In particular, as to study the power, we generate data from
RCNBINAR(1) process and RCPINAR(1) process under Scenarios 1–4, but estimate them by
restricting φ = 0.5, i.e, under the null hypothesis.

From the results summed up in Tables 9–12, we find that the sizes of the EL test decrease
to the corresponding significance level and the powers of the EL test increase to 1 as the sample
size n increase, indicating that the EL method is reasonable and effective.
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Table 11 Empirical size and power of the EL test for RCNBINAR(1) process

Significance Levels Parameter
Size Power

n = 50 n = 100 n = 200 n = 300 n = 50 n = 100 n = 200 n = 300

0.10 (0.3, 1) 0.156 0.131 0.119 0.106 0.537 0.787 0.956 0.994

(0.3, 2) 0.138 0.127 0.129 0.100 0.741 0.945 0.999 1.000

(0.7, 1) 0.217 0.154 0.121 0.103 0.601 0.815 0.970 0.993

(0.7, 2) 0.156 0.134 0.125 0.100 0.819 0.961 0.999 1.000

0.05 (0.3, 1) 0.102 0.084 0.066 0.060 0.434 0.682 0.914 0.991

(0.3, 2) 0.078 0.079 0.066 0.045 0.623 0.892 0.997 1.000

(0.7, 1) 0.124 0.090 0.060 0.060 0.522 0.744 0.956 0.990

(0.7, 2) 0.102 0.094 0.055 0.050 0.741 0.934 0.999 1.000

Table 12 Empirical size and power of the EL test for RCPINAR(1) process

Significance Levels Parameter
Size Power

n = 50 n = 100 n = 200 n = 300 n = 50 n = 100 n = 200 n = 300

0.10 (0.3, 1) 0.145 0.142 0.120 0.108 0.583 0.811 0.981 0.998

(0.3, 2) 0.128 0.122 0.108 0.103 0.779 0.965 1.000 1.000

(0.7, 1) 0.181 0.155 0.101 0.107 0.728 0.919 0.990 0.999

(0.7, 2) 0.146 0.122 0.116 0.106 0.897 0.993 1.000 1.000

0.05 (0.3, 1) 0.099 0.073 0.066 0.065 0.451 0.701 0.956 0.996

(0.3, 2) 0.076 0.064 0.062 0.053 0.676 0.935 1.000 1.000

(0.7, 1) 0.115 0.079 0.067 0.061 0.658 0.975 0.986 0.999

(0.7, 2) 0.079 0.073 0.057 0.058 0.885 0.984 1.000 1.000

5 Real Data Analysis

In this section, we apply GRCINAR(1) process and EL method to fit the real life situa-
tions. For this purpose, we consider a data set that shows the daily numbers of new confirmed
COVID-19 cases imported from abroad in China. The data set is reported by National Health
Commission, and consists of a total of 546 observations starting from Mar. 4th 2020 to Aug.
31st, 2021. The sample path, ACF and PACF of the series are given in Figure 1, from which
we can reasonably assume that these data come from INAR(1) process.

Except for RCNBINAR(1) process and RCPINAR(1) process, we also use the following
models to fit the data:

3) RCBINAR(1) process: Random coefficient INAR(1) process based on binomial thinning
operator, in which {W (t)

i , i ≥ 1} in (9) is assumed to be a sequence of conditional i.i.d. Bernoulli
random variables with probability mass function

P (W (t)
i = 1|φt) = 1 − P (W (t)

i = 0|φt) = φt.
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Figure 1 The sample path, ACF and PACF of the imported cases of COVID-19 in China

4) NBINAR(1) process: Reduced RCNBINAR(1) process with φt = φ.
5) PINAR(1) process: Reduced RCPINAR(1) process with φt = φ.
6) BINAR(1) process: Reduced RCBINAR(1) process with φt = φ.
In addition, it should be noted that we need not specify the distribution of the error term

εt, when CLS method and EL method are used during the discussion. Moreover, we consider
mean absolute deviation error (MADE) for in-sample prediction (see [31]) to compare different
estimation methods. This kind of criteria is defined as

MADE =
1
m

m∑

i=1

|X̂n−m+i − Xn−m+i|,

in which

X̂n−m+i = E(Xn−m+i|Xn−m) = φ̂iXn−m +
1 − φ̂i

1 − φ̂
λ̂. (10)

Table 13 reports the point estimates of the model parameters and the MADE for prediction
of last m observations of the daily numbers of new confirmed COVID-19 cases imported from
abroad in China. It is observed that EL method has better performance, since it leads to
smaller MADE than CLS method.
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Table 13 The results of estimates and MADE

Method
Estimate MADE

φ λ m = 5 m = 10 m = 30

CLS 0.7472 3.8824 6.9203 8.3937 12.2080

EL 0.7503 3.8359 6.7760 8.2801 12.1056

In what follows, we perform an out-of-sample experiment to further compare the afore-
mentioned 6 models. Specifically, we use all the 546 observations of the COVID-19 data set to
estimate the parameters, and then obtain the coherent predictions for the observations from
Sep. 1st to Sep. 5th, 2021. It is widely known that conditional expectation (CE) given by (10)
is one of the most common approach to construct forecasts. However, CE will produce the same
predictors for all the 6 models, so that we can not distinguish them from each other. Besides,
CE falls short of preserving the integer-valued nature in generating forecasts for count data
time series. Therefore, we apply the model-based INAR bootstrap (MBB) technique proposed
by [32] to achieve our goal. The algorithm steps of this method (taking (9) as an example) are
the following:

Step 1 Estimate the model parameters φ by EL method.
Step 2 Compute the residuals

ε̂t = Xt − φt ◦G Xt−1, t = 2, 3, · · · , n,

where φt = φ̂ + Ut and {Ut} is a sequence of i.i.d. random variables drawn from U(−0.1, 0.1).
Step 3 Construct the empirical distribution F̂ε of the modified residuals ε̃t defined by

ε̃t =

⎧
⎨

⎩
ε̂t, if ε̂t ≥ 0,

0, if ε̂t < 0, t = 2, 3, · · · , n.

Step 4 For b = 1, 2, · · · , B, define the bootstrapped series Xb
t by

Xb
t = φb

t ◦G Xt−1 + εb
t , t = 2, 3, · · · , n,

in which φb
t = φ̂ + U b

t , while {U b
t } and {εb

t} are i.i.d. random samples from U(−0.1, 0.1) and
F̂ε, respectively.

Step 5 Based on {Xb
1, X

b
2, · · · , Xb

n}, compute the estimators φ̂b of φ as in Step 1.
Step 6 Denote H the largest prediction horizon, and compute the forecasts as

Xb
n+h = φb

n+h ◦G Xb
n+h−1 + εb

n+h, h = 1, 2, · · · , H,

in which Xb
n = Xn, φb

n+h = φ̂ + U b
n+h, while {U b

n+h, h = 1, 2, · · · , H} and {εb
n+h, h =

1, 2, · · · , H} are i.i.d. random samples from U(−0.1, 0.1) and F̂ε, respectively.
Step 7 From the replicates {X1

n+h, X2
n+h, · · · , XB

n+h}, obtain the point forecast X̂n+h of
Xn+h (h = 1, 2, · · · , H) by considering the median of F̂Xn+h

.
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For our analysis, we set B = 1001 to select the final model. Furthermore, the forecast mean
absolute error (FMAE) statistic of h-step-ahead forecasts, that is used to assess the forecasting
performance, is defined by

FMAE =
1
H

H∑

h=1

|X̂n+h − Xn+h|,

where n = 546 and H = 5. Figure 2 illustrates the forecasts of the 6 models based on MBB
method, showing the prediction differences among them. Furthermore, from the results reported
in Table 14, it is evident that MBB works better than CE, and we could state the superiority
of RCNBINAR(1) process to the other 5 models in view of its lowest FMAE.
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Figure 2 Forecasts of the 6 models based on MBB method

Table 14 Forecasting performance results

Date Sep. 1st Sep. 2nd Sep. 3rd Sep. 4th Sep. 5th FMAE

Observation 27 28 27 28 18 -

Forecast-CE 18.1093 17.4406 16.9386 16.5618 16.2789 8.5342

Forecast-MBB for RCNBINAR(1) 18 19 20 20 20 7.0000

Forecast-MBB for RCPINAR(1) 18 18 18 19 19 7.6000

Forecast-MBB for RCBINAR(1) 17 18 17 18 18 8.0000

Forecast-MBB for NBINAR(1) 18 18 19 20 19 7.2000

Forecast-MBB for PINAR(1) 18 17 17 17 18 8.2000

Forecast-MBB for BINAR(1) 17 17 18 17 18 8.2000
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6 Concluding Remarks

In this paper, we studied the nonparametric statistical inference for a GRCINAR(1) process
by the EL method. Based on the ELR statistic and its limiting distribution, we give the EL
confidence regions and the MEL estimators of the model parameters, as well as their asymptotic
properties. The simulation results and a real data example illustrate the good performance of
the EL method for the model, and support the recommendation to use GRCINAR(1)) process
effectively in some practical applications. As for the future work, we could consider the esti-
mation of σ2

1 , the variance of φt, and discuss the test for randomness of the coefficient by EL
method. Other potential issues include investigating the observation-driven or covariate-driven
GRCINAR(1) process and threshold GRCINAR(1) process, as well as higher-order GRCINAR
process to improve the accuracy of prediction for real data.
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Appendix

Before proving Theorem 3.1, we first show some crucial lemmas.

Lemma 1 Under the assumptions (C1) and (C2), we have

1
n

n∑

t=1

mt(θ0)mT
t (θ0)

a.s.−→ W (θ0), n −→ +∞,

in which W (θ0) is defined by (5).

Proof By the strict stationarity and ergodicity, it is easy to know that

1
n

n∑

t=1

m2
1t(θ0)

a.s.−→ E[X2
0 (X1 − φ0X0 − λ0)2], n −→ +∞,

1
n

n∑

t=1

m1t(θ0)m2t(θ0)
a.s.−→ E[X0(X1 − φ0X0 − λ0)2], n −→ +∞,

1
n

n∑

t=1

m2
2t(θ0)

a.s.−→ E[(X1 − φ0X0 − λ0)2], n −→ +∞.

This completes the proof.

Lemma 2 Under the assumptions (C1) and (C2), we have

1√
n

n∑

t=1

mt(θ0)
L−→ N(0, W (θ0)), n −→ +∞.

Proof For any fixed c = (c1, c2)T ∈ R
2, by Theorems 1.1 and 1.2 in [33], we conclude that

1√
n

n∑

t=1

cTmt(θ0)
L−→ N(0, cTW (θ0)c), n −→ +∞.

Thus, the lemma holds in view of Cramér-Wold device.

Lemma 3 Under the assumptions (C1) and (C2), we have

max
1≤t≤n

‖mt(θ)‖ = op(n1/2).

Proof By (C2), it holds that

E(‖mt(θ0)‖2) = E(mT
t (θ0)mt(θ0)) < +∞, t ≥ 1,



EMPIRICAL LIKELIHOOD FOR A GRCINAR(1) PROCESS 861

therefore, for any η > 0, we have

lim
n−→∞nP (‖mt(θ0)‖2 > nη2) = 0, t ≥ 1,

which leads to
lim

n−→∞nP (‖mt(θ0)‖ > n1/2η) = 0, t ≥ 1.

Furthermore, (C2) implies that

P
(

max
1≤t≤n

‖mt(θ0)‖ > n1/2η
)
≤

n∑

t=1

P (‖mt(θ0)‖ > n1/2η)

= nP (‖m1(θ0)‖ > n1/2η) −→ 0, n −→ +∞,

which means
max

1≤t≤n
‖mt(θ0)‖ = op(n1/2).

This completes the proof.

Lemma 4 Under the assumptions (C1) and (C2), we have

1
n

n∑

t=1

‖mt(θ0)‖3 = op(n1/2).

Proof By Lemmas 1 and 3, we obtain

1
n

n∑

t=1

‖mt(θ0)‖3 ≤ max
1≤t≤n

‖mt(θ0)‖ · 1
n

n∑

t=1

‖mt(θ0)‖2

= max
1≤t≤n

‖mt(θ0)‖ · 1
n

n∑

t=1

mT
t (θ0)mt(θ0)

= op(n1/2)Op(1) = op(n1/2).

The conclusion then follows.

Lemma 5 Under the assumptions (C1) and (C2), we have

‖b(θ0)‖ = Op(n−1/2),

in which bt(θ0) is defined in (7).

Proof As that in [34], let b(θ0) = ‖b(θ0)‖ν(θ0) in which

ν(θ0) =
b(θ0)

‖b(θ0)‖
and denote

Yt(θ0) = bT(θ0)mt(θ0), Z∗
n(θ0) = max

1≤t≤n
‖mt(θ0)‖.

Noting that 1/(1 + Yt(θ0)) = 1 − Yt(θ0)/(1 + Yt(θ0)) and νT(θ0)g(b(θ0)) = 0, we get

0 = νT(θ0)g(b(θ0))
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= νT(θ0)
1
n

n∑

t=1

mt(θ0)
(

1 − Yt(θ0)
1 + Yt(θ0)

)

= νT(θ0)
1
n

n∑

t=1

mt(θ0) − νT(θ0)
1
n

n∑

t=1

mt(θ0)mT
t (θ0)ν(θ0)‖b(θ0)‖
1 + Yt(θ0)

= νT(θ0)
1
n

n∑

t=1

mt(θ0) − ‖b(θ0)‖νT(θ0)
1
n

n∑

t=1

mt(θ0)mT
t (θ0)

1 + Yt(θ0)
ν(θ0),

then it follows that

‖b(θ0)‖νT(θ0)
1
n

n∑

t=1

mt(θ0)mT
t (θ0)

1 + Yt(θ0)
ν(θ0) = νT(θ0)

1
n

n∑

t=1

mt(θ0).

Since
pt(θ0) =

1
n

1
1 + Yt(θ0)

> 0,

we obtain
1 + Yt(θ0) > 0

and hence

‖b(θ0)‖νT(θ0)
1
n

n∑

t=1

mt(θ0)mT
t (θ0)ν(θ0)

≤‖b(θ0)‖νT(θ0)
1
n

n∑

t=1

mt(θ0)mT
t (θ0)

1 + Yt(θ0)
ν(θ0)

(
1 + max

1≤t≤n
Yt(θ0)

)

≤‖b(θ0)‖νT(θ0)
1
n

n∑

t=1

mt(θ0)mT
t (θ0)

1 + Yt(θ0)
ν(θ0) (1 + ‖b(θ0)‖Z∗

n(θ0))

=νT(θ0)
1
n

n∑

t=1

mt(θ0) (1 + ‖b(θ0)‖Z∗
n(θ0)) ,

therefore,

‖b(θ0)‖
(

νT(θ0)
1
n

n∑

t=1

mt(θ0)mT
t (θ0)ν(θ0) − Z∗

n(θ0)νT(θ0)
1
n

n∑

t=1

mt(θ0)
)

≤νT(θ0)
1
n

n∑

t=1

mt(θ0). (11)

From Lemma 2, it is obvious that

1√
n

n∑

t=1

mt(θ0) = Op(1),

together with Lemma 3, we get

Z∗
n(θ0)νT(θ0)

1
n

n∑

t=1

mt(θ0) =
1√
n

Z∗
n(θ0)νT(θ0)

1√
n

n∑

t=1

mt(θ0) = op(1)Op(1) = op(1) (12)
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and
√

n

(
νT(θ0)

1
n

n∑

t=1

mt(θ0)

)
= νT(θ0)

1√
n

n∑

t=1

mt(θ0) = Op(1),

which leads to

νT(θ0)
1
n

n∑

t=1

mt(θ0) = Op(n−1/2). (13)

On the other hand, we know that from Lemma 1

σmin(θ0) + op(1) ≤ νT(θ0)
1
n

n∑

t=1

mt(θ0)mT
t (θ0)ν(θ0) ≤ σmax(θ0) + op(1),

where σmin(θ0) and σmax(θ0) represent the largest and smallest eigenvalues of W (θ0). Then
by (11)–(13), it holds that

‖b(θ0)‖
(

νT(θ0)
1
n

n∑

t=1

mt(θ0)mT
t (θ0)ν(θ0) + op(1)

)
= Op(n−1/2),

from which we conclude
‖b(θ0)‖ = Op(n−1/2).

The proof thus is completed.
Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1

Note that
Yt(θ0) = bT(θ0)mt(θ0),

it follows from Lemmas 3 and 5 that

max
1≤t≤n

|Yt(θ0)| ≤ ‖Yt(θ0)‖ max
1≤t≤n

‖mt(θ0)‖ = Op(n−1/2)op(n−1/2) = op(1).

By Taylor’s expansion, we get

l(θ0) = 2
n∑

t=1

log(1 + bT(θ0)mt(θ0))

= 2
n∑

t=1

log(1 + Yt(θ0))

= 2
n∑

t=1

Yt(θ0) −
n∑

t=1

Y 2
t (θ0) + 2

n∑

t=1

ηt,

in which as n −→ +∞,
P (|ηt| ≤ A|Yt(θ0)|3, 1 ≤ t ≤ n) −→ 1

for some A > 0.
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The fact 1
1+Yt(θ0)

= 1 − Yt(θ0) + Y 2
t (θ0)

1+Yt(θ0)
results in

0 =
1
n

n∑

t=1

mt(θ0)
1 + bT(θ0)mt(θ0)

=
1
n

n∑

t=1

mt(θ0)
1 + Yt(θ0)

=
1
n

n∑

t=1

mt(θ0)
(

1 − Yt(θ0) +
Y 2

t (θ0)
1 + Yt(θ0)

)

=
1
n

n∑

t=1

mt(θ0) − 1
n

n∑

t=1

mt(θ0)mT
t (θ0)b(θ0) +

1
n

n∑

t=1

mt(θ0)
Y 2

t (θ0)
1 + Yt(θ0)

,

thus, we can obtain
b(θ0) = C−1

n Bn + C−1
n Dn,

where

Bn =
1
n

n∑

t=1

mt(θ0), Cn =
1
n

n∑

t=1

mt(θ0)mT
t (θ0), Dn =

1
n

n∑

t=1

mt(θ0)
Y 2

t (θ0)
1 + Yt(θ0)

.

Therefore, we have

l(θ0) = 2
n∑

t=1

Yt(θ0) −
n∑

t=1

Y 2
t (θ0) + 2

n∑

t=1

ηt

= 2
n∑

t=1

bT(θ0)mt(θ0) −
n∑

t=1

bT(θ0)mt(θ0)mT(θ0)bt(θ0) + 2
n∑

t=1

ηt

= 2nbT(θ0)Bn − nbT(θ0)Cnbt(θ0) + 2
n∑

t=1

ηt

= nBT
n C−1

n Bn − nDT
n C−1

n Dn + 2
n∑

t=1

ηt. (14)

First, by Lemmas 1 and 2, it is easy to know

Cn
a.s.−→ W (θ0),

√
nNn

L−→ N(0, W (θ0)), n −→ +∞,

from which it holds that

nBT
n C−1

n Bn = (
√

nBT
n )C−1

n (
√

nBn) L−→ χ2(2), n −→ +∞. (15)

Second, by Lemmas 4 and 5, we have

‖Dn‖ =
∥∥∥∥

1
n

n∑

t=1

mt(θ0)
Y 2

t (θ0)
1 + Yt(θ0)

∥∥∥∥

≤ ‖b(θ0)‖2 · 1
n

n∑

t=1

‖mt(θ0)‖3 · 1
|1 − max1≤t≤n |Yt(θ0)||
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= (Op(n−1/2))2op(n1/2)Op(1)

= op(n−1/2),

therefore, it follows that

|nDT
n C−1

n Dn| ≤ n‖Dn‖ · ‖C−1
n ‖F · ‖Dn‖ = nop(n−1/2)Op(1)op(n−1/2) = op(1), (16)

in which ‖ · ‖F denotes the Frobenius norm.
Last of all, we can verify that

∣∣∣∣∣2
n∑

t=1

ηt

∣∣∣∣∣ ≤ 2A‖b(θ0)‖3
n∑

t=1

‖mt(θ0)‖3 = n(Op(n−1/2))3op(n1/2) = op(1). (17)

We can conclude from (14)–(17) that

l(θ0)
L−→ χ2(2).

This completes the proof.

Proof of Theorem 3.3

The conclusion can be verified using similar argument in Section 6 in [25].

Proof of Theorem 3.4

This theorem can be proved with standard argument in Theorem 2 in [35].


