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Abstract This paper presents a rational expectation equilibrium model to explore how the financial

contagion occurs between the unlinked markets that do not share common fundamentals. In the

proposed model, the authors assume two of the three risky assets share no common fundamental

factors, but are connected by one intermediate asset via cross fundamentals. Through this channel,

investors transmit fundamental risk from one asset to another by dint of the cross fundamentals. This

mechanism causes liquidity comovement and subsequently becomes a source of market crisis: Through

the contagion mechanism, an initial liquidity shock in one asset can result in a drop tendency in liquidity

and price informativeness for another asset. Such comovement in liquidity offers a new explanation for

idiosyncratic assets in financial contagion.

Keywords Contagion, crisis, illiquidity, rational expectation equilibrium.

1 Introduction

The outbreak of COVID-19 has significantly shaken the global financial markets, triggering
a spate of crises. On Mar 12th, The S&P and Dow Index suffered their biggest one-day falls,
down by more than 9% since the financial crisis in 1987. Also, the European countries have
experienced tremendous drops, with Britain’s FTSE falling 9.81%, Germany’s DAX off 11.42%
and France’s CAC dropping 12.28%. Inescapably, high market uncertainty superposition re-
sulted in the market plummet in Latin American countries. Two days later, in Brazil, the
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Sao Paulo stock Exchange index plunged 14.78%, the biggest one-day drop in 21 years; Chile’s
Santiago stock market IPSA index dropped 6.33 percent on Monday, the biggest one-day drop
in nine years. Interestingly, the crisis usually accompanies with financial contagion where prices
experience downward movement. As shown in Yuan[1], large downward price movements are
contagious. Undoubtedly, financial contagion can not only occur in local markets, but also
spread to the global financial markets owning to its highly contagion effect. It seems that
prices contagion in one market is plausible for explaining the contagion among closely linked
markets since they share similar macroeconomic risks[2, 3], such as the markets in developed
countries. However, these contributions can not completely account for the cross-regional con-
tagion if markets are not closely linked[4], for example, the emerging countries like South East
Asia and Latin America.

Although it is challenging to figure out how many detailed factors that affect the price
movement, there are two widely acknowledged factors that influence the asset price undoubtedly,
i.e., the fundamental and the noise[5]. The fundamentals represent the macroeconomic factors,
such as international trade, foreign direct investment, or the value factors of one firm. While the
noise traders usually function as the liquidity provider. An interesting question to ask is then,
what was the driving force behind this transmission of negative shocks from one country to
another especially for the countries that are not linked? Was it liquidity shock driven? Perhaps
liquidity shock alone cannot completely account for the cross-sectional pattern of contagion.
When hit with a liquidity shock, market participant would like to liquidate their positions in
developed countries since highly liquid markets can attenuate the impact of sell orders on prices,
not emerging markets[6]. Hence, the contagion mechanism between the developed countries and
the emerging countries still needs to be further clarified.

In general, assets with related macroeconomic fundamentals may experience similar volatil-
ity tendency. Intuitively, it seems that assets from the unlinked countries cannot be directly
affected from the developed countries via the fundamental since their fundamentals are differ-
ent. However, the market crisis during COVID-19 turns out actually the contagion exists. In
this paper, we try to derive this result by introducing a third intermediate that bridges the
unlinked countries from the view of fundamental.

To construct the contagion model, it is necessary to seek one intermediate that connects
the two types of unlinked countries. To this end, this intermediate must function as the bridge
that interact with the two unlinked countries at the same time. Specifically, we specify one
asset (for example, the market index) that represents one country and analyze the comovement
of the three assets. In our model, asset A and asset C do not share any common fundamental
factor, instead, asset A and asset B share an exposure to one fundamental risk, and asset B
and asset C share another fundamental risk. We therefore refer to Grossman and Stiglitz[7]’s
model and extend it to a three-risky-asset setting where traders can learn information from
other asset prices. This mechanism prompts the information transmission from one asset to
another because prices tend to aggregate all the differential information in equilibrium. In other
words, cross-asset learning helps the investors know more about whole markets and reduces the
uncertainty about fundamentals, however, it can also propagate the fundamental risk by means
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of prices.
We discover that, in this mechanism, liquidity displays positive comovement effect among

the three assets. That is, an initial drop in liquidity for one asset will give rise to the same
plight for the intermediate asset, and eventually, it can cause liquidity shortage for the third
asset. Similarly, the comovement effect also happens for price informativeness. In other words,
as the noise trading volume increases in one asset, the price informativeness tends to be low for
that asset, which can, through cross-asset learning, induce augmented noise trading risk and
thus results in low price informativeness for another asset.

Furthermore, our model shows that there exists a negative interaction between illiquidity
and price informativeness associated with cross-asset learning. That is, an increase in illiquidity
lowers price informativeness and vice versa. In reality, assets values may be affected by a series
of common fundamentals. This implies an initial liquidity shock of one asset can propagate
to other assets and be amplified through mutual interaction. Hence, accompanying with the
financial contagion across the assets, the whole market may be in low price informativeness and
high liquidity risk, leaving the market in crisis.

Our paper is related to the burgeoning rational expectation equilibrium (REE) models about
multiple assets, in papers that feature such models[2, 3, 8], rational traders can use the price
information to update their expectations. Goldstein, et al.[2] extended Grossman and Stiglitz[7]’s
model to segmented markets and assume price information can flow across markets. Cespa and
Foucoult[3] supposed that price information is available to dealers across the markets. While
in our model, we retain the assumption that price information is accessible among investors,
and distinctively we focus on the process of price contagion from one asset to another and its
potent insights for market crisis.

Numerous theoretical and empirical literature has greatly contributed to the study about
the price comovement effect within markets. Papers about such research findings mainly focus
on the contagion through a correlated information or liquidity shock[1, 3, 9]. Our paper is also
related to the extensive works about contagion among financial markets[4, 10–12]. Allen and
Gale[10] provided contagion caused by linkages among financial intermediaries. Kodres and
Pritsker[4] also developed a multiple asset REE model to explain the financial contagion. We
follow Kodres and Pritsker[4]’s model and try to explain the financial contagion from the way
of illiquidity contagion. Recent research about financial contagion about multiple assets is
Zeng, et al.[12] who constructed the contagion model from the view of common sentiment that
bridges the connection between prices learned by rational traders. However, in our model, we
innovatively adopt the shared fundamental risk factors to describe how the contagion occurs
between unlinked assets and our model is the complement of Zeng, et al.[12]. And the shared
fundamental factors represent the systematic macroeconomic risk.

The rest of this paper is structured as follows. In Section 2, we propose the model, as well as
constructing the trading environment and solve for traders’ strategies. In Section 3, we define
the equilibrium and discusses its properties. Finally, we make the conclusion in Section 4.
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2 The Model

2.1 Environment

To illustrate the contagion among three countries, we consider three segmented markets in
which there are four assets traded including one riskless asset (with elastic supply) of unitary
return and three risky assets A, B and C in each market with the corresponding payoffs:

⎧
⎪⎪⎨

⎪⎪⎩

vA = θ1 + εA,

vB = θ1 + θ2 + εB,

vC = θ2 + εC ,

where εA, εB and εC are residual uncertainty terms conditional on the fundamental values θ1

and θ2, and θi ∼ N
(
0, τ−1

θi

)
, εk ∼ N

(
0, τ−1

εk

)
(τθi , τεk

> 0), i = 1, 2, k = A, B, C. The most
important feature here is that A and C share no common fundamental risk, while A and B, B
and C share common fundamental risk factors θ1, θ2, respectively. Here is an example, asset
A can be regarded as one company which produces plastic toy, and asset B can be regarded as
one company which produces plastic medical equipment, while asset C can be regarded as one
company which manufacture medicine. Intuitively, the fundamentals of asset A and asset B are
relevant because they are affected by the price of plastic. Similarly, the fundamentals of asset
B and asset C are relevant since they belong to same industry. However, the fundamentals of
asset A and asset C are irrelevant since they belong to different industries.

There are three classes of rational traders in the economy corresponding to the three assets
A, B, C: A-informed traders† (of mass α) endowed with the private information θ1. B-informed
traders (of mass β) with the private information θ2. C-informed traders (of mass λ) with
the private information θ2 and C-uninformed traders (of mass 1 − λ). As argued by Paul[13],
one of the most important functions of the price system is the decentralized aggregation of
information since no single person or institution can process all information relevant to pricing,
here we leave out B-informed traders with θ1 informed. The riskless asset is traded at price 1,
and the risky assets are traded at prices pA, pB and pC , respectively. Furthermore, similar with
Cespa and Foucault[3], we assume there is no cross-asset trading so that effects can only arise
from cross-asset learning rather than from hedging effects.

The irrational traders named as noise traders provide market liquidity and their trading is
exogenously given as uA, uB and uC , respectively, where uA ∼ N

(
0, τ−1

uA

)
, uB ∼ N

(
0, τ−1

uB

)
,

uC ∼ N
(
0, τ−1

uC

)
, and τuA > 0, τuB > 0, τuC > 0.

When trading occurs, pA will be incorporated into the strategies of B-traders and therefore
influence the formation of pB which can further affect pC via C-traders’ free riding. Due to
the fact that asset A and asset C share no common fundamentals, the price contagion cannot
happen directly between these two assets. In our model, the contagion mechanism bridges the
connections between assets A and C through the intermediate B, which ultimately results in
the price information about asset A to be revealed in asset C. A parsimony version of such a

†For convenience, we omit A-uninformed traders and B-uninformed traders since they have no impact on

price informativeness and our results do not depend on them.
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view could be depicted in Figure 1. Since asset A and asset C are symmetric, so the contagion
path can also be from asset C to asset B, and then from asset B to asset A.

Asset A Asset B Asset CPA PBAsset A Asset B Asset CPA PB

Figure 1 The contagion mechanism

To sum up, (θ1, θ2, εA, εB, εC , uA, uB, uC) are underlying random variables which describe
the economy. They are all independent with each other. In the economy just characterized,
each investor has CARA preference with risk-averse coefficient 1 and only trade one asset.

2.2 Traders’ Strategies

Trading of A-informed traders is affected by their information set {θ1, pA, pB, pC} , and the
expectation operator conditional on the information set can be given as E [· |θ1, pA, pB, pC ] .
They choose the riskless asset DA and risky asset XA to maximize their expected utility:

E
[−e−WA |θ1, pA, pB, pC

]
,

where WA = (vA − pA)XA + DA.
The CARA-normal setup implies the optimal demand of one A-informed trader is:

XA (θ1, pA, pB, pC) =
E [θ1 |θ1, pA, pB, pC ] − pA

Var [θ1 |θ1, pA, pB, pC ] + τ−1
εA

. (1)

Further calculation, we have xA = τεA
(θ1 − pA).

Similarly, B-informed traders have the information set {θ2, pA, pB, pC}, and they maximize:

E
[−e−WB |θ2, pA, pB, pC

]
,

subject to WB = (vB − pB)XB + DB with the riskless asset DB . So their optimal holdings of
asset B are:

XB (θ2, pA, pB, pC) =
θ2 + E [θ1 |θ2, pA, pB, pC ] − pB

Var [θ1 |θ2, pA, pB, pC ] + τ−1
εB

. (2)

C-informed traders own information set {θ2, pA, pB, pC}. Maximizing their expected utility
in the same way delivers:

XC (θ2, pA, pB, pC) = τεC (θ2 − pC) . (3)

Solving the optimal demands for C-uninformed traders with the information set {pA, pB, pC}
likewise gives:

YC (pA, pB, pC) =
E [vC |pA, pB, pC ] − pC

Var [vC |pA, pB, pC ]
. (4)

Hence, according to normal-distributed setup, the price of A-asset is a linear function
of {θ1, pB, pC , uA}, and similarly, the prices of B-asset and C-asset are linear functions of
{θ2, pA, pC , uB} and {θ2, pA, pB, uC}, respectively. We then define the rational expectation
equilibrium and solve for the prices.
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3 The Equilibrium

Definition Given the fractions (α, β, λ) of the corresponding three types of informed
traders, an REE is composed of the price functions pA, pB and pC , and traders’ optimal
demand functions contingent on their information such that market clearing condition satisfies:

αXA + uA = 0, (5)

βXB + uB = 0, (6)

λXC + (1 − λ)YC + uC = 0. (7)

The equations (5)–(7) mean that all the buy orders equal sell orders. In other words, the
total trading positions equal zero. According to the definition of the equilibrium and traders’
strategies, prices of the three assets can roughly be assumed to the following formation:

pA = A1θ1 + A2uA + A3pB + A4pC , (8)

pB = B1θ2 + B2uB + B3pA+B4pC , (9)

pC = C1θ2 + C2uC + C3pB + C4pA. (10)

We then derive the sufficient statistic {zA, zB, zC} of the corresponding prices {pA, pB, pC}.
Specifically, let

zA =
pA − A3pB − A4pC

A1
= θ1 +

A2

A1
uA, (11)

zB =
pB − B3pA − B4pC

B1
= θ2 +

B2

B1
uB, (12)

zC =
pC − C3pB − C4pA

C1
= θ2 +

C2

C1
uC . (13)

It is obvious that {zA, zB, zC} is informationally equivalent to {pA, pB, pC}. Hence the ex-
pression E [θ1 |θ2, pA, pB, pC ] in (2) can be rewritten as E [θ1 |θ2, zA, zB, zC ] which is equal to
solve E [θ1 |zA ]. And the conditional expectation E [vC |pA, pB, pC ] in (4) is equal to solving
E [vC |zA, zB, zC ] = E [θ2 |zB, zC ].

By computation, plugging traders’ strategies into market clearing condition, we immediately
derive the following proposition.

Proposition 1 There exists a unique linear REE in which prices are given as follows:

pA = A1θ1 + A2uA,

pB = B1θ2 + B2uB + B3zA,

pC = C1θ2 + C2uC + C3zB,

where the coefficients are endogenously determined and given as follows:

A1 = 1, A2 =
1

ατεA

, A3 = 0, A4 = 0, B1 = 1, B2 =
1

βM
, B3 =

(ατεA)2τuA

M
,

B4 = 0, M = τθ1 + (ατεA )2τuA , C1 =
λτεC (τεC + τ )+ (1 − λ) τεC (λτεC )2τuC

N (τεC + τ )
,
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C2 =
(τεC + τ )+ (1 − λ)λτ2

εC
τuC

N (τεC + τ )
, C3 =

(1 − λ) τεC (βM)2τuB

N (τεC + τ )
, C4 = 0,

N = λτεC + (1 − λ)
τεC τ

τεC + τ
, N = λτεC + (1 − λ)

τεC τ

τεC + τ
,

τ = τθ2 + (βM)2τuB + (λτεC )2τuC .

Thus, we have:

E [vB |θ2, pA, pB, pC ] = θ2 +
(ατεA)2τuAzA

τθ1 + (ατεA)2τuA

,

Var [vB |θ2, pA, pB, pC ] =
(
τθ1 + (ατεA )2τuA

)−1

+ (τεB )−1,

E [vC |pA, pB, pC ] =

[
β
(
τθ1 + (ατεA)2τuA

)]2
τuBzB + (λτεC )2τuC zC

τ
,

Var [vC |pA, pB, pC ] = τ−1 + τ−1
εC

. (14)

Proof Note that the information set {θ1, pA, pB, pC} and {θ1} are equal when solving for
the conditional expectation E [θ1 |• ], according to the lemma in the Appendix, it is not difficult
to compute the strategies of A-informed traders, that is, XA = τεA (θ1 − pA) .

We further plug the above conditional expectation and variance into Equations (2) and (4),
and obtain the following results:

XB =
τεB

(
Mθ2 + τεB (ατεA)2τuAzA

)
− τεB MpB

τεB + M
,

YC =

(
(βM)2τuB zB + (λτεC )2τuC zC

)
τεC − τεC τpC

τεC + τ
.

Plugging traders’ strategies into the market clearing conditions (5), (6) and (7), we immediately
derive the equilibrium prices.

Proposition 1 shows that the equilibrium price will reveal the fundamental value aggregated
by the informed traders as well as the noise trading. It is obvious that in our model the statistic
of pA (zA) will be integrated into the price of asset B (zB) which will be reflected in the price
of asset C by observing the other assets’ prices. The price integration process is in line with
the contagion mechanism in Figure 1.

As is defined (see Cespa and Foucault[3]), we measure the illiquidity of asset k (k = A, B, C)
by the sensitivity of price pk to liquidity demand uk. Thus, we have

LA =
∂pA

∂uA
=

1
ατεA

, (15)

LB =
∂pB

∂uB
=

1

β
(
τθ1 + (ατεA )2τuA

) =
1

β
(
τθ1 + (1/LA)2τuA

) , (16)
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LC =
∂pC

∂uC
=

(τεC + τ) + (1 − λ)λτ2
εC

τuC

N (τεC + τ )

=
1

τεC

+
(1 − λ) (1 + λτεC τuC )

λτεC + τθ2 + (1/LB)2τuB + (λτεC )2τuC

. (17)

Above equations describe the expression of illiquidity with respect to the three assets, re-
spectively. In the following part, we will make some comparative statics of the illiquidity as for
the agent masses.

Proposition 2 The masses of the informed traders have a negative effect on illiquidity,
that is, ∂LA

∂α < 0, ∂LB

∂α < 0, ∂LB

∂β < 0, ∂LC

∂α < 0, ∂LC

∂β < 0.
The effect of the masses of informed traders on the illiquidity through two ways. The first

is the direct effect, as shown in the literature (Grossman and Stiglitz[7]; Vives[14]), illiquidity
(the reciprocal of market depth) is negatively related to the masses of the informed traders
or the information precision of informed traders. Hence, increasing the masses of A-informed
traders (B-informed traders) will decrease the illiquidity of asset A (asset B). The second is
the indirect effect, increasing the masses of A-informed (B-informed) traders has a negative
effect on the illiquidity of asset B (asset C). This can occur because increasing the masses of
A-informed traders has a positive effect on price informativeness of asset A, which will give rise
to high information precision of B-informed traders when learning from pA and further lead to
low illiquidity of asset B. Same explanation for the variation of the illiquidity of asset C.

0 1 2 3 4
0

0.05

0.15

0.25

0.35

LA

LB

0 1 2 3 4
0.5

0.6

0.7

0.75

LB

LC

Figure 2 The comovement of illiquidity when β = 0.5, τθ1 =

τθ2 = 6, τuA = τuB = τuC = 5, λ = 0.5, τεC = 2

Proposition 3 (Comovement effect) ∂LB

∂LA
> 0, ∂LC

∂LB
> 0.

This proof is obvious in above equations. Among the three assets, an increase in the illiq-
uidity of asset A will make asset B more illiquid, which can eventually trigger an increase in
illiquidity for asset C. Proposition 3 shows that illiquidity exhibits positive interaction among
the three risky assets no matter whether asset fundamentals are relevant or not if cross-asset
learning prices is available. The following examples in Figure 2 describe this comovement effect
as for the illiquidity.

Proposition 4 ∂LB

∂τuA
< 0, ∂LC

∂τuA
< 0.

Proposition 4 shows that the initial high volatility of noise trading (τuA low) shock can
engender a final liquidity decline (LB, LC increase) via the intermediate asset B. Through



ILLIQUIDITY COMOVEMENT AND MARKET CRISIS 1871

cross-asset learning, noise trading in asset A will be infused into the price of asset B which
can be further learned by C-traders. This negative impact is an explanation for the financial
contagion of the COVID-19 shock, when market is impacted by the bad news, traders need
to liquidate their assets to obtain cash and avoid loss from the downward price, leading to
the pessimistic sentiment and high volatility of noise trading (τuA decreases). Through our
contagion mechanism, the initial noise trading shock will result in a negative effect on liquidity.

Remark 1 Increasing the number of A-informed traders augments the trading intensity of
B-informed traders.

According to (2), the trading intensity in term of B-informed traders towards their private
information θ2 can be given as:

1
Var [θ1 |θ2, pA, pB, pC ] + τ−1

εB

=
[(

τθ1 + (ατεA )2τuA

)−1

+ τ−1
εB

]−1

.

When α increases, B-informed traders face less fundamental risk about θ1, thus taking more
aggressively strategies towards their information.

Remark 2 Increasing the mass of A-informed traders weakens the uncertainty of θ2 in pB,
that is ∂(Var[θ2|pB ])

∂α < 0. As shown in Remark 1, α increases, B-informed traders will trade
more aggressively to θ2, as a result, more information about θ2 will be revealed in pB.

As standard in the literature (e.g., Vives[5]; Mondria, et al.[15]), we can use the precision
1

Var(v|prices) of stock payoff conditional on its prices to measure “price informativeness” (or
“market efficiency”, “information efficiency”,“price efficiency”). We define price informativeness
of assets A and C as IA = [Var (vA |pA, pB, pC )]−1 and IC = [Var (vC |pA, pB, pC )]−1. As shown
in (12), we have the following results.

Proposition 5 (a) ∂IC

∂α > 0, ∂IC

∂β > 0 ; (b) ∂IC

∂τuA
> 0, ∂IC

∂τuB
> 0.

Proof According to (12), we obtain

IC =

((

τθ2 +
[
β
(
τθ1 + (ατεA)2τuA

)]2
τuB + (λτεC )2τuC

)−1

+ τ−1
εC

)−1

> 0.

By derivation, the results hold.
The above results are intuitive. According to Remark 1, a high proportion of A-informed

traders will give rise to high trading intensity of θ2, and thus more information about θ2 will
be injected into pB , which therefore leads to high price informativeness of asset C. It is then
not difficult to find increasing the mass of B-informed traders can also result in high price
informativeness of asset C since asset B and C share common fundamental factor. Hence,
through our contagion mechanism, raising the informed trading of asset A will generate high
price informativeness of asset B, and eventually induce high price informativeness of asset C.

When the noise trading of asset A is in high volatility, through this contagion mechanism,
price informativeness about asset B tends to be low, ultimately resulting in low price informa-
tiveness about asset C.

Proposition 6 ∂IC

∂LA
< 0, ∂IC

∂LB
< 0, ∂IC

∂LC
< 0.
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Proof Combing (12) with (14) and (15), we have

IC =

((

τθ2 +
(
β
(
τθ1 + (1/LA)2τuA

))2

τuB + (λτεC )2τuC

)−1

+ τ−1
εC

)−1

=
((

τθ2 + (LB)−2τuB + (λτεC )2τuC

)−1

+ τ−1
εC

)−1

=

((
(1 − λ) (1 + λτεC τuC )

LC − τ−1
εC

− λτεC

)−1

+ τ−1
εC

)−1

.

By derivation, we obtain the above results.
Intuitively, high illiquidity will make the trading harder and therefore prevent new informa-

tion from being incorporated into price, causing low price informativeness. Figure 3 offers an
intuitive description of such relationship.

0 1 2 3 4
0.1

0.15

0.2

0.25

0.3

0.35

LB

IC

0 1 2 3 4

0.29

0.3

0.31

0.32

0.33

LA

IC

Figure 3 The effect of illiquidity on price informativeness when β =

0.5, τθ1 = τθ2 = 6, τuA = τuB = τuC = 5,λ = 0.5, τεC = 2

Conversely, price informativeness also has a negative impact on illiquidity, i.e., ∂LB/∂IA <

0, ∂LC/∂IA < 0. The negative interaction between illiquidity and price informativeness is a
key driver of market crisis. In fact, assets value may be determined by various fundamental
factors[16] which may generate a series of cross interactions as the above description. Hence,
once the initial asset crises are triggered, the downward price may feed the panicky mind-set,
which can further create a shock for illiquidity and price informativeness. Under our contagion
mechanism, this inter-feedback from illiquidity and price informativeness is therefore the source
of liquidity crisis, prompting the occurrence of financial crisis across the whole market (see
Figure 4).

High volatility of 
noise trading in A 

asset

Price of A asset 
becomes less 
informative

Price of C asset 
becomes less 
informative

Illiquidity of B 
asset increases

Illiquidity of C 
asset increases

Figure 4 Explanation for market crisis
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4 Some Extensions

If vA and vB are correlated with a correlation coefficient ρ, the format of the asset funda-
mentals will change to:

⎧
⎪⎪⎨

⎪⎪⎩

vA = ρθ1 + εA,

vB = θ1 + θ2 + εB,

vC = θ2 + εC .

Follow the calculation process above, the main difference is that the strategies of A-informed
traders change to xA = τεA

(ρθ1 − pA), and the price statistic zA changes to zA = θ1 + 1
αρτεA

uA.
So we only need to add the coefficient ρ in front of τεA

. In this case, the propositions in our
paper still hold. What’s deserved to be considered is the role of the coefficient ρ in our contagion
model, the following Proposition 7 will describe the effect.

Proposition 7 For exogenous ρ, we have ∂IC

∂ρ > 0, ∂LC

∂ρ < 0.
Proof According to (15), (16), (17), it is easy to obtain ∂IC

∂ρ > 0. The coefficient ρ increase
implies that more informed information θ1 will be incorporated into pA. Therefore, the price
informativeness of asset A will increase, and this will further enhance the price informativeness
of asset C based on Proposition 5. As for the illiquidity, since LA is negatively related to ρ, it
is obvious that ∂LC

∂ρ < 0 according to the illiquidity comovement effect (Proposition 3).

5 Conclusion

Advanced information technology and close inter-market linkage enable traders to learn
information contained in the prices of assets. Our model shows that rational traders can update
their expectations using the available private information and price information which bridges
multiple assets via cross fundamentals. By this means, prices provide a way that transmits
fundamental risk and noise trading risk. This makes the liquidity of various securities more
mutually connected: 1) An initial shock in the illiquidity can have a positive effect on the
illiquidity of the assets; 2) The drop in liquidity occurs jointly with the decrease in price
informativeness.

As described above, our results suggest a potential explanations for market crisis. As a
matter of fact, when extreme volatility happens in stock prices, market participants who pro-
vide liquidity may widen their quotes or stop providing liquidity. If this happens, prices of
other assets would not be reliable as the information, but be a pessimistic noisy signal, finally
triggering a chain reaction and leading to large liquidity crash across the whole market.
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Appendix

Lemma Suppose that x and y are normally distributed, then according to projection theo-
rem, we have

E(x|y) = E(x) +
Cov(x, y)
Var(y)

(y − E(y)), (18)

Var(x|y) = Var(x) − Cov2(x, y)
Var(y)

. (19)


