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Abstract This paper proposes various stages of the hepatitis B virus (HBV) besides its transmissibil-

ity and nonlinear incidence rate to develop an epidemic model. The authors plan the model, and then

prove some basic results for the well-posedness in term of boundedness and positivity. Moreover, the

authors find the threshold parameter R0, called the basic/effective reproductive number and carry out

local sensitive analysis. Furthermore, the authors examine stability and hence condition for stability

in terms of R0. By using sensitivity analysis, the authors formulate a control problem in order to

eradicate HBV from the population and proved that the control problem actually exists. The complete

characterization of the optimum system was achieved by using the 4th-order Runge-Kutta procedure.

Keywords Hepatitis B epidemic model, non-linear incidence, normalized sensitivity index, numerical

simulation, optimization theory, reproduction number, stability analysis.

1 Introduction

The study of modeling is one of the influence instrument to understand the time dynamics of
various infectious diseases. Numerous of biologists and mathematicians have analyzed mathe-
matical models for the spreading of communicable infections in community[1–12]. HBV infection
is one of the severe health problem which caused million of people suffered. Approximately 0.78
million individuals dies each year from the consequences of HBV[13].

It can be transferred by different ways, which include syringes sharing, transfusion of blood
and sexual interactions, etc[1, 6]. HBV infection also transfers maternally, i.e., from infected
mother to baby, which is known the vertical type of transmission. Utmost infected individual
in the acute stage, the immune system have the capability to clear the HBV, however for some
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one, especially children are particularly vulnerable and cultivate acute contaminations, which
further leads to the chronic carrier and may develop liver cancer. While there are a vaccine
and new methods to avoid the transmission. This disease has multiple stages, i.e., acute and
chronic. The first one is the primary 6 months period, if some one is exposed. Chronic stage
refers to the most serious stage of HBV infection in which serious problems may occur. This
infection usually has no history regarding acute stage, but produce scarring of liver and as a
result develop failure of liver[14].

Different mathematician and biologists formulated epidemic models to forecast the dynamics
of HBV[14–16]. The incidence rate has a vital and major role in studying the modeling of
infectious diseases. In sexually transmittable diseases, e.g., HBV, HIV, etc., non-linear incidence
is more realistic then other incidence rates. One of the type of incidence rate is bilinear incidence
βSI, which was also frequently used[17–19], where β, S and I characterize the interaction rate,
the susceptible class, the infectious class respectively. Non-linear incidence rate, which is defined
by βSI

N used by many authors, see for detail[20, 21]. In this rate, β demonstrates the disease
transfer rate, while S, I and N respectively show susceptible population, infected population
and total population.

We investigate a model to study the dynamics of HBV transmission and formulate an control
mechanism. The current study is actually divided into two main parts, the dynamic and con-
trol. In the dynamic part, we discuss and prove the stabilities of the proposed model, however
in control part, we plan a control strategy to minimize the infection. More preciously, first,
we prove the mathematical properties (boundedness, positivity) to show the well posed-ness
and biological feasibility. The threshold quantity will be obtained to discuss the sensitivity
analysis. We discuss stability at both equilibrium using the linearization, the Lyapunov theory
and geometrical approach. We also investigate a hepatitis B virus elimination mechanism using
three control variables (isolation, vaccination and treatment). The control strategy was formu-
lated by using sensitivity of R0 with respect to (w.r.t) parameters. Moreover, we obtain the
optimality condition and discuss the existence of solution. Numerical results will be presented
for supporting analytical findings. Finally, we conclude our work.

The organization of the paper is structured as follows: The proposed HBV model is given
in Section 2. We deliberate the properties of existence, positive solution, boundedness and
biologically feasibility in Section 3. The reproductive number and the equilibria are presented
in Section 4. The stability and numerics of the stability results are given in Sections 5 and 6,
respectively. In Section 7, we discussed the local sensitivity analysis. The formulation of the
optimal control mechanism and its existence of positive solution with optimality condition are
respectively presented in Subsections 8.1 and 8.2. Simulations are presented for the verification
of the optimization in Section 9. Section 10 is devoted to concluding remarks.

2 Model Formulation

We present the model for HBV spreading with non-linear incidence. According to charac-
teristic of the HBV imposing assumption given by:
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a1. The entire population is shown by by N(t) and is subdivided into 6 different subgroups
of S(t) (susceptible/vulnerable), L(t) (exposed/latent), A(t) (acute infected), C(t) (chronic
carrier infectious), R(t) (recovered) and V (t) (vaccinated), i.e., S + A + L + C + V + R = N ,
which oi changing w.r.t time t.

a2. The entry of new born, which are parentally infected will go to carrier class.
a3. The new born, which are not parentally infected will go to the susceptible class.
a4. Successful vaccinated individuals go to the vaccinated class.
a5. Removed population have immunity.
a6. The new born with effective vaccination will go to vaccination class.
Thus, the above assumptions a1 − a6 lead to the following model:

dS(t)
dt

= ξb(1 − ηC(t))N + φV (t) − βS(t)A(t)
N

− β

N
γS(t)C(t)

− (γ3 + d0)S(t), S(0) > 0,

dL(t)
dt

=
βA(t)S(t)

N
+
γβC(t)S(t)

N
− (σ + d0)L(t), L(0) ≥ 0,

dA(t)
dt

= −(d0 + γ1)A(t) + σL(t), A(0) ≥ 0,

dC(t)
dt

= ξbηC(t)N − (d1 + d0 + γ2)C(t) + pγ1A(t), C(0) ≥ 0,

dR(t)
dt

= γ1(1 − p)A(t) + γ2C(t) − d0R(t), R(0) ≥ 0,

dV (t)
dt

= (1 − ξ)bN − (φ+ d0)V (t) + γ3S(t), V (0) > 0.

(1)

Table 1 Parameters description of the proposed model (1)

Notation Parameter description

b birth rate

ξ fraction of new-born without effective immunization

η rate of vertically infected individual

φ induced immunity rate with wane vaccination

β disease spread rate

γ reduced transmission rate

d1, d0 disease induced and natural death rates

σ the rate at which people coming to acute class from

the latent population

γ1 rate of acute to chronic

γ2 the rate at which people coming to recovered class

from the carriers population

γ3 vaccination rate

p the rate at which recover people fails in acute class
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3 Fundamental Properties of the Model

Regarding the fundamental properties of the proposed model (1), we shall prove the following
results.

Proposition 3.1 The orthant R6
+ is positively invariant for the proposed model presented

in (1).

Proof Assume that X = (S,L,A,C,R, V )T, then the model (1) can be written as

dX(t)
dt

= GX +H, (2)

where

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−βA(t)
N − γβC(t)

N −d0−γ3 0 −bξηN 0 0 φ
βA(t)

N + γβC(t)
N −(d0+γ1) 0 0 0 0

0 σ −(d0+γ1) 0 0 0

0 0 γ1(1−p) γ2 −d0 0

−Y11 0 0 0 0 0

γ3 0 0 0 0 −(d0+φ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bξN

0

0

0

0

(1 − ξ)bN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

Clearly matrix H ≥ 0. Also the off-diagonals of G are nonnegative, which shows that G is
Metzler matrix. Thus, the system (1) is positively invariant in R6

+.

Proposition 3.2 If t > 0 along with non-negative initial condition, the solutions of the
model (1) are positive, if exist.

Proof Let I ⊂ [0,+∞). If the solution of the system (1) exists in I, then the solution of
the 1st equation in the system (1) look like

S(t) = e−(γ3+d0)t−
∫ t
0

1
N [βA(x)+βγC(x)]dx

[
S(0) +

∫ t

0

e(γ3+d0)τ+
∫ τ
0

1
N [βA(w)+βγC(w)]dw

×
(
bξN(1 − ηC(τ)) + V (τ)φ

)
dτ

]
. (5)

From Equation (5) it is noted that S(t) > 0 only if A(t) and C(t) are positive. From the third
equation of the model, we can write

A(t) = e−(γ1+d0)tA(0) + e−(γ1+d0)t

∫ t

0

σL(τ)e(γ1+d0)τdτ, (6)
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which shows that A(t) ≥ 0 whenever L(t) ≥ 0. Similarly, positivity of C(t) depends on the
positivity of A. In the same way, it can be investigated that the other classes R(t) and V (t)
are nonnegative, which proves the conclusion.

Remark 3.3 The proposed model (1) is a dynamical system in the following region given
by

Ω =
{

(S,L,A,C,R, V ) ∈ R6
+ : N(t) ≤ bN

d0

}
. (7)

4 Threshold Parameter (Basic Reproductive Number) and Equilibria

This section of the manuscript is devoted to finding of the threshold parameter (basic re-
productive number) and equilibria of the model.

4.1 Computation of Equilibria and Basic Reproduction Number

The model under consideration (1) has a DFE point denoted by F0 = (S0, 0, 0, 0, 0, V0),
where

S0 =
Nb(φ+ ξd0)

d0(d0 + φ+ γ3)
, V0 =

Nb(d0 − d0ξ + γ3)
d0(d0 + φ+ γ3)

. (8)

In epidemic models, the threshold parameter R0 has a vital role and is a significant approach.
It characterizes the average amount of newly infections. We follow the techniques of Driessche-
Watmough[22, 23]. Let χ =

(
L,A,C

)T, then by the use of

F =

⎛
⎜⎜⎝

β
N S(t)A(t) + βγC(t)S(t)

N

0

0

⎞
⎟⎟⎠ , W =

⎛
⎜⎜⎝

(d0 + σ)L(t)

(γ1 + d0)A(t) − σL(t)

(d1 + d0 + γ2 − bξηN)C(t) − pγ1A(t)

⎞
⎟⎟⎠ , (9)

the model (1), yields
dχ

dt
= F −W, (10)

where W and F are the matrices containing the linear and nonlinear terms, respectively. Let
q2 = d0 + σ, q3 = γ1 + d0, q4 = −bξηN + γ2 + d1 + d0 and taking the Jacobian of Equation (9)
at DFE point F0 = (S0, 0, 0, 0, 0, V0), which becomes the following

F =

⎛
⎜⎜⎝

0 β
N S0

βγ
N S0

0 0 0

0 0 0

⎞
⎟⎟⎠ , W =

⎛
⎜⎜⎝

q2 0 0

−σ q3 0

0 −pγ1 q4

⎞
⎟⎟⎠ . (11)

The dominant eigenvalue ρ, of K = FW−1 is the threshold quantity, R0. We find R0, for the
model (1), which has the form, R0 = γ01 + γ02 with

γ01 =
σβS0

Nq2q3
, γ02 =

σβS0γγ1p

Nq2q3q4
, where S0 =

bN(d0 + φ)
d0(d0 + φ+ γ3)

. (12)
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Similarly endemic-state of the system (1) is represented by F� = (S∗, L∗, A∗, C∗, R∗, V∗)
exist, if R0 > 1, where

S∗ =
q2q3q4

q4 + pγγ1
, L∗ =

d0q2q
2
3q4(γ3 + q5)(q4 − bξηN)

(
R0 − 1

)
q5σ(pγγ1 + q4)((q4 + pγγ1)βS∗ + bξηpγ1)

,

A∗ =
d0q2q3q

2
4(q5 + γ3)(R0 − 1)

q5(γ1pγ + q4)((γ1pγ + q4)S∗β + ξbNηγ1p)
,

C∗ =
γpβd0q3γ1(q5 + γ3)

(
R0 − 1

)
S2∗

q5((γ1pγ + q4)βS∗ + ξbNηγ1p)
, R∗ =

1
d0

(1 − p)γ1A∗ + γ2C∗,

V∗ =
1
q5

((1 − ξ)bN + γ3S∗),

(13)

q1 = d0 + γ3 and q5 = d0 + φ. Clearly, there does not exist a positive endemic-state, if R0 < 1,
but the case of R0 > 1, implies the existence of a unique positive equilibrium.

5 Stability Analysis

Usually, epidemic models are used to exhibiting the long-term behavior of an infectious
disease. For this purpose, researchers are using the tools of stability analysis as described
in [24–27]. To discuss the stability analysis of the proposed model, we prove the following
subsequent results.

Remark 5.1 If we assume that R0 < 1, then the DFE of the model is stable locally
asymptotically, while unstable, whenever R0 > 1.

Theorem 5.2 The DFE point F0 is stable globally asymptotically, if R0 < 1, while un-
stable, if R0 > 1.

Proof Assume that ψ(t) = (S − S0) + L(t) +A(t) + C(t) + R(t) + (V − V0) and suppose
the function defined by

Γ (t) =
1
2
[
ψ(t)

]2 + k1(S − S0) + k2L(t) + k5(V − V0) + k3A(t) + k4C(t), (14)

where the positive constants ki for i = 1, 2, · · · , 5 will be determined later. Differentiating
Equation (14) and using the system (1), we get

dΓ (t)
dt

=
(
ψ(t)

)
(bN − d0N(t) − d1C(t))

+k1

(
φV (t) + ξNb(1 − ηC(t)) − βA(t)S(t)

N
− βγC(t)S(t)

N
− (γ3 + d0)S(t)

)

+k2

(
βS(t)A(t)

N
+
γβS(t)C(t)

N
− (σ + d0)L(t)

)
+ k3

(
− (γ1 + d0)A(t) + σL(t)

)

+k4

(
ξbηNC(t) + γ1pA(t) − (d1 + γ2 + d0)C(t)

)

+k5

(
(1−p)γ1A(t)+γ2C(t)−d0R(t)

)
+k6

(
(1−ξ)Nb−(d0+φ)V (t)+γ3S(t)

)
. (15)
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By assigning the values of q2q4 to Ki where i = 1, 2, 3, 5 and k4 = σβγS0, then Equation (15)
becomes

dΓ (t)
dt

= −(ψ(t)
)2 − (ψ(t)

)
d1C(t)

−ξbNη(d0σ)(d1 + γ2 + d0 − ξbNη)C(t)

−d0(d0 + σ)(d0 + γ2 + d1 − ξbηN)L(t)

−(d0 + σ)(d0 + γ1)(d0 + γ2 + d1 − ξbNη)(1 − γ02)

−βσγ(d0 + γ2 + d1 − ξbNη)S0C(t)

−(d0 + σ)(d0 + γ2 + d1 − ξbNη)((S − S0)d0 + (V − V0)). (16)

Equation (16) gives that, if R0 < 1, then dΓ(t)
dt < 0. Also dΓ(t)

dt = 0, at the DFE point, therefore,
LaSalle’s principle assure that F0 is globally stable.

To perform stability of EE, we shall state and prove the following result.

Theorem 5.3 The disease EE, F∗ = (S∗, L∗, A∗, C∗, R∗, V∗) is stable locally asymptoti-
cally whenever R0 > 1, while unstable, if R0 < 1.

Proof Clearly the recovered compartment only appears in one of the equation of the
proposed model. So it is enough to discuss the reduced system without recovered class. Taking
the linearize matrix of the system (1) without recovered compartment around F∗ and then
making use of the elementary row operation we get

J(F∗) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−q1 − βS∗
N − γβS∗

N 0 −βS∗
N −(bξηN + γβS∗

N ) φ

0 −q2 H1 γH1 − bξηH2 φH2

0 0 H1
q2
σ − q3

σ
q2

(H1γ − ξbηH2) σφH2
q2

0 0 0 H3 − bξηNH4 φH4

0 0 0 0 H5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (17)

where

H1 =
q1βS∗

A∗β + d0N + βγC∗ +Nγ3
, H2 =

A∗β + β2γC∗
βA∗ + d0N + βγC∗ +Nγ3

,

H3 = − βγpγ1q1S∗
βq1σS∗ − q3q2(Nd0 +A∗β + βγC∗ +Nγ3)

− q4,

H4 =
βσγ1p(A∗ + C∗γ)

q3q2(Nd0 +A∗β + βγC∗ +Nγ3) − βσq1S∗
,

H5 =
φγ3H4

(
γ1p(ξbN2η + βγS∗) + βS∗q4

)
γ1p(Nd0 +A∗β + βγC∗ +Nγ3)(H3 − ηbξH4N)

− q5(Nd1 +A∗β + βγC∗) +Nγ3d0

Nd0 +A∗β + βγC∗ +Nγ3
.

(18)
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The matrix (17) has the eigenvalues

λ1 = −q2,

λ2 = −q1N + βγC∗ + βA∗
N

,

λ3 = −q3q2(Nd0 +A∗β + βγC∗ +Nγ3) − q1βσS∗
q2(Nd0 +A∗β + βγC∗ +Nγ3)

,

λ4 = H3 − ξbNH4η, λ5 = H5.

(19)

Clearly, among the above eigenvalues, two eigenvalues λ1 and λ2 are negative, while λi, for
i = 3, 4, 5 are negative, if

γβγ1pS∗
q4q2(Nd0 +A∗β + γβC∗ +Nγ3) − βγq4S∗

< 1,

σq1βS∗
q2q3(d0N + βA∗ + βγC∗ + γ3N)

< 1,
(20)

which also satisfied. Thus, the eigenvalues of the matrix (17) are negative which proves the
conclusion.

Theorem 5.4 The EE F∗ is globally stable, if R0 > 1, while unstable for R0 < 1.

Proof Taking the Jacobian matrix J and the second additive compound matrix J |2| for
only the first three equations of the system (1), we get

J =

⎛
⎜⎜⎝

−a11 0 −a13

a21 a22 a23

0 σ −a33

⎞
⎟⎟⎠ and J |2| =

⎛
⎜⎜⎝

−(a11+a22) a23 −a13

a32 −a11−a33) a12

−a31 a21 −(a22+a33)

⎞
⎟⎟⎠ . (21)

Let P (χ) = diag
{

S
L ,

S
L ,

S
L

}
= P (S,L,A), implies P−1(χ) = diag

{
L
S ,

L
S ,

L
S

}
, then taking the

derivative w.r.t, that is, Pf (χ), we get

Pf (χ) = diag

{
Ṡ

S
− SL̇

L2
,
Ṡ

S
− SL̇

L2
,
Ṡ

S
− SL̇

L2

}
. (22)

Now diag
{

Ṡ
S − L̇

L ,
Ṡ
S − L̇

L ,
Ṡ
S − L̇

L

}
= PfP

−1 and J |2|
2 = PJ

|2|
2 P−1. We considerB = PJ

|2|
2 P−1+

PfP
−1. Alternatively, we can write B as

B =

⎛
⎝ B11 B12

B21 B22

⎞
⎠ , (23)

where

B11 =
Ṡ

S
− L̇

L
− Aβ

N
− Bβγ

N
− γ3 − 2d0 − σ,

B12 =
[

β
N S

β
N S

]
, B21 =

⎡
⎣ σ

0

⎤
⎦ ,
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B22 =

⎡
⎣

Ṡ
S − L̇

L −A β
N −Bγ β

N − γ1 − 2d0 − σ 0

A β
N +Bγ β

N
Ṡ
S − 2d0 − L̇

L − σ − γ1

⎤
⎦ .

Assume a vector in R3 denoted by (b1, b2, b3) and ‖·‖ is its corresponding norm which is defined
by

2‖b1, b2, b3‖ = max{‖b1‖, ‖b2‖ + ‖b3‖}. (24)

Followed [28], we take (B) representing the Lozinski measure with respect to the norm (24),
we get

(B) ≤ sup{gi, i = 1, 2} = sup{‖B12‖ + (B11), ‖B21‖ + (B22)},
gi = ‖Bij‖ + (Bii), for i 	= j and i = 1, 2.

(25)

The use of Equation (25) implies

g1 = ‖B12‖ + (B11) and g2 = ‖B21‖ + (B22), (26)

where

(B11) =
Ṡ

S
− L̇

L
−A

β

N
−B

β

N
γ − γ3 − 2d0 − σ,

(B22) = max

{
Ṡ

S
− L̇

L
− γ3 − γ1 − 2d0,

Ṡ

S
− 2d0 − L̇

L
− σ − γ1

}

=
Ṡ

S
− 2d0 − L̇

L
− min{γ3, σ} − γ1,

‖B12‖ =
β

N
S, ‖B21‖ = max{σ, 0} = σ.

(27)

Thus, g1 and g2 becomes, g1 ≤ Ṡ
S −σ− γ3 − 2d0 and g2 ≤ Ṡ

S − γ1 − 2d0 +σ−min{γ3, σ}, which

implies that (B) ≤
{

Ṡ
S + σ − min{γ3, σ} − 2d0

}
. Hence, −2μ0 + (B) ≤ Ṡ

S . Integrating (B)
in [0, t] and then by taking limt→∞, yields

lim
t→∞ sup sup

1
t

∫ t

0

(B)dt < −2μ0. (28)

Finally, we obtain

q = lim
t→∞ sup sup

1
t

∫ t

0

(B)dt < 0.

Hence, the system which contains only first three equations of the system (1) is stable globally
asymptotically around (S∗, L∗, A∗). Also for the remaining taking the limiting system whose
solution yields C(t) and V (t) which approaches to C∗ and V∗, respectively as t→ ∞.

6 Numerical Simulation

We present the numerical solutions for the verification of theoretical findings of the proposed
model (1). We use Runge-Kutta of fourth order method and different values of the parameter
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for this purpose of the model (1). The parameters used in the numerical simulation are taken
with biologically feasible way given in Table 2.

Taking 0− 200 units is the interval of time, while the size of population for S(t), L(t), A(t),
C(t), R(t) and V (t) are given in Table 2.

Table 2 Parameter values, weight constants and initial size of

compartmental population used in numerical simulation

Parameter parameter description value Source

b new born rate 0.0121 [21]

ξ new born with unsuccessful vaccina-

tion

0.0500 [21]

η ratio of maternally infected 0.0110 [21]

φ induced rate of waning vaccine 0.1000 [21]

σ rate of latency to acute 0.0012 [21]

β hepatitis B transmission rate 0.0950 [21]

γ1 rate of acute to chronic 0.3300 [21]

γ2 rate of chronic to immune 0.0090 [21]

γ3 vaccination rate 0.0200 [21]

d0 natural mortality rate 0.0121 [21]

d1 disease-related mortality rate 0.0026 [21]

p probability of fails individual, who

recovers in acute stage

0.8000 Assumed with the

help of [21]

A1 weight constant for S(t) 1000.0 [32]

A2 weight constant for L(t) 0.6000 Fitted

A3 weight constant for A(t) 10.000 Fitted

A4 weight constant for C(t) 0.9000 Assumed with the

help of [32]

B1 weight constant for u1(t) 0.4400 Assumed

B2 weight constant for u2(t) 0.2000 Fitted

B3 weight constant for u3(t) 1000.0 Assumed

S(0) susceptible 1000.0 [21]

L(0) latent 400.00 [21]

A(0) acute 300.00 [21]

C(0) chronic 200.00 [21]

R(0) recovered 100.00 [21]

V (0) vaccinated 100.00 [21]
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Figure 1 Stability curves of (1) with different initial size of population
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The simulation part of the study shows that the susceptible population will usually exist.
Similarly there is also always vaccinated individuals, but latent, acutely infected, chronic carrier
and recovered vanishes, see Figure 1. The trajectories of S(t), L(t), A(t), carriers B(t), R(t) and
V (t) go to the equilibrium points as shown in Figures (1(a))–(1(f)). This proves the stability
of the model (1).

7 Local Sensitivity

We perform the local sensitivity of the threshold quantity R0 to define the relative change
of the parameters to the infection transmission. It decides the sturdiness of model prediction
to the values of the parameter. Commonly during data collection, the uncertainties as well as
the estimation of the parameters value considerably affect the threshold quantity.

Definition 7.1 The normalized sensitivity index of R0 with respect to Φ is defined by

SΦ =
Φ
R0

∂R0

∂Φ
. (29)

We accomplish the sensitivity indices of R0 to the model parameters, which allow to quantify
the comparative variation in R0 with the variation in a value of the parameter. By the use
of these indices, we are able to point out the most risky parameters that extremely affect the
threshold quantity R0.

Table 3 represents that σ, β, η, ξ and φ have a direct relation with R0. Which mean
that increase or decrease in these values by 10% will increase or decrease R0 respectively by
10%, 9.0%, 5.46%, 5.46% and 8.13%, see for detail Figure 2. However, on the other side param-
eters γ1 and γ3 have an inverse relation with R0, which illustrates, that increase in its values
by 10% will reduce R0 by 7.38% and 8.24%, respectively as presented in Figure 2.

Table 3 The sensitive indices of R0

Parameter Sensitivity index value

Hepatitis B transmission rate (β) Sβ +1.0000

Moving rate from L to A (σ) Sσ +0.9097

Recovery rate in A (γ1) Sγ1 −0.8247

Recovery rate in C (γ2) Sγ2 −0.7385

Vaccination (γ3) Sγ3 −0.1514

Proportion of vertically infected

population (η)

Sη +0.5460

Birth without successful vaccination

(ξ)

Sξ +0.5460

waning vaccine induced immunity

rate (φ)

Sφ +0.8135
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Figure 2 The plots represent the sensitivity of R0 w.r.t parameters

In order to eliminate the HBV infection, we need more attention to reduce the transmission
rate β. Because this parameter has got the maximum index 1, which demonstrates that the
reduction of this parameter by ten percent reduce the value of the R0 by ten percent. Among
these parameters, γ1 got the second highest index, which is −0.8247, which means that if we
increase the value of γ1 by 10 percent, the value of R0 will be decrease by 8.24 percent. The
sensitivity index of the parameters η, σ, φ and ξ is 2.8152 collectively. So 10 percent decrease
in these parameters causes 28.152 percent decreases in the value of R0. Similarly 1.5623 is the
sensitivity index of γ2 and γ1, therefore if we increase the value of these parameters by 10%
will decrease R0 by 15.632%. Hence, by using this analysis, it is handy to formulate control
strategy for the eradication of the HBV infection.

8 Formulation of the Optimal Control Problem

Optimal control theory and calculus of variations are the two techniques which can be used
for minimization/maximization problems and many researchers used control theory to make a
control strategy for eliminating hepatitis B see, for example, [6, 9, 11, 29–32] and the references
cited therein. Control theory applied to HBV infection and related work have been regorously
investigated in [33–38]. Based on these studies, we shall focus on optimizing the spreading of
infection rate β, whose sensitivity index is 1. The decreases in this rate by 10% will reduce
the value of R0 by 10 percent. The second recovery rate γ1 of acutely hepatitis B infected
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individuals has maximum sensitivity index −0.8247, which has a inverse relation with R0. So
an increase in the recovery rate γ1 say by 10% reduce R0 value by 8.247 percent. The index
of recovery rate γ2 of chronic carriers is −0.7385. The increase of the recovery rate γ2 by say
by 10% will also decrease the value of R0 by 7.385 percent. Similarly the collectively index
of η, σ, φ and ξ is 2.8152. If we decrease these parameters say by 10%, will decrease R0 by
28.152%. The parameter γ3 got the sensitivity index −0.1514, i.e., increase of γ3 by 10% will
effect reduction in the value of R0 by 1.514 percent.

We coupled all the effect of these parameters parameters β, ξ, η, σ, γ1, γ2, γ3 and φ. Growth
or decay in the above mentioned parameters can produce the change in the rest parameters.
Therefore, on the basis of the above sensitivity indexes, we formulate optimal strategies by
introducing the following time dependent control variables.

i) The control measure u1(t) represents the isolation of non-infected and infected popula-
tions. The role of this control is to reduce the hepatitis B transmission rate β.

ii) The control variable u2(t) represents the control variable treatment of hepatitis B infected
individuals. Through this control variable, we want to reduce the number of infected individuals.

iii) u3(t) represents the control measure vaccination of hepatitis B, i.e., through this control
variable, we want to maximize vaccinated population.

Thus, the use of these three variables our control problem become the modified version of
the system (1) given by

dS(t)
dt

=ξb(1 − ηC(t))N + φV (t) − βS(t)A(t)
N

(1 − u1(t)) − γβS(t)C(t)
N

(1 − u1(t))

− (γ3 + d0 + u3(t))S(t), S(0) > 0,

dL(t)
dt

=
β

N
A(t)S(t)(1 − u1(t)) +

β

N
γC(t)S(t)(1 − u1(t)) − (d0 + σ)L(t)

− (u2(t) + u3(t))L(t), L(0) ≥ 0,

dA(t)
dt

=σL(t) − (d0 + γ1 + u2(t) + u3(t))A(t), A(0) ≥ 0,

dC(t)
dt

=ξbηC(t)N + γ1pA(t) − (d1 + γ2 + u2(t) + d0 + u3(t))C(t), C(0) ≥ 0,

dR(t)
dt

=γ2C(t) + (1 − p)γ1A(t) − d0R(t) + (L(t) +A(t) + C(t))u2(t), R(0) ≥ 0,

dV (t)
dt

=(1 − ξ)Nb+ γ3S(t) − (d0 + φ)V (t) + (S(t) + L(t))u3(t)

+ (A(t) + C(t))u3(t), V (0) ≥ 0.

(30)

The goal of the control strategies is to reduce the acute, chronic and latent population; and the
associated cost of u1(t), u2(t) and u3(t). We will assume that the control variables are Lebesgue
measurable and bounded. Thus, the objective functional becomes

J(u1, u2, u3) =
∫ tf

0

[
A1S(t) +A2L(t) +A3A(t) +A4C(t)

+
1
2

(
B1u

2
1(t) +B2u

2
2(t) +B3u

2
3(t)
)]
dt,

(31)
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subject to the proposed model (30). In the objective functional (31), A1, A2, A3 and A4

represent the weight constants of the susceptible individuals, latent individuals, acute and
carrier population, respectively. The constants B1, B2 and B3 represent the weight constants
associated to the controls. More preciously these constants represent the weight constants for
isolation, treatment and vaccination, respectively. The terms 1

2B1u
2
1(t),

1
2B2u

2
2(t) and 1

2B3u
3
1(t)

represents cost of disease intervention. The cost related with strategy u1(t) produces due to
the cost of isolation of infected and non-infected individuals. The cost associated to the control
strategy u2(t) produces due to medication of infected individuals. The regarding strategy u3(t)
is the cost of vaccination of hepatitis B.

Our goal here is to decrease the size of susceptible, latent, acute and chronic population,
and to increase the number of recovered individuals and vaccinated population by using the
three time dependent control variables ui(t), i = 1, 2, 3. We find the control function, such that

J(u∗1, u
∗
2, u

∗
3) = min{J(u1, u2, u3), u1, u2, u3 ∈ U} (32)

subject to the proposed model (30), where the control set is defined as,

U =
{

(u1, u2, u3)|ui(t) are Lebesgue measurable on [0, 1], 1 ≥ ui(t) ≥ 0, i = 1, 2, 3
}
. (33)

Before moving further, we need to show that such control measures exist.

8.1 Existence of Solution

In this subsection, we will show that a solution of the control problem (30) exist. For
nonnegative subsidiary conditions and bounded Lebesgue measurable controls functions, there
exist positive bounded solution to the state system[39]. To show the existence of solution of the
proposed control problem (30), we investigate the following result.

Theorem 8.1 There exist a set of control measures u∗ = (u∗1, u
∗
2, u

∗
3) ∈ U , such that

J(u∗1, u
∗
2, u

∗
3) = minJ(u1, u2, u3),

subject to the control system (30).

Proof Clearly the following holds
i) The control measures ui(t) for i = 1, 2, 3 and the state variables (S,L,A,C,R, V ) are

nonnegative.
ii) The control set U is convex and closed.
iii) Boundedness of the optimal system assures the compactness.
iv) The integrand A1S(t) + A2L(t) + A3A(t) + A4C(t) + 1

2 (B1u
2
1 + B22u2

2 + B3u
2
3) in (31)

is convex on U , which completes the proof.
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8.2 Optimality Condition

To characterize the optimal solution for (30), let us define the Lagrangian and the Hamil-
tonian associated with our optimal problem. Thus, the Lagrangian is given by

L(S,L,A,C, u1, u2, u3) = A1S(t) +A2L(t) +A3A(t) +A4C(t)

+
1
2
(B1u

2
1(t) +B2u

2
2(t) +B3u

3
2(t)). (34)

For the purpose of minimal value of the Lagrangian, we define H (Hamiltonian) for (30) as

H(x, u, λ) = L(x, u) + λ · F (x, u), (35)

where

x = (S,L,A,C), u = (u1, u2, u3), λ = (λ1, λ2, · · · , λ6),

F1(x, u) = φV (t) + bξN(1 − ηC(t)) −
(
β

N
S(t)A(t) +

β

N
γS(t)C(t)

)
(1 − u1(t))

− (γ3 + d0 + u3(t))S(t),

F2(x, u) =
(
β

N
A(t)S(t) +

βγS(t)C(t)
N

)
(1 − u1(t)) − (d0 + σ)L(t)

− (u2(t) + u3(t))L(t),

F3(x, u) = σL(t) − (γ1 + d0 + u2(t) + u3(t))A(t),

F4(x, u) = ξbηC(t)N + γ1pA(t) − (d1 + γ2 + d0 + u2(t) + u3(t))C(t),

F5(x, u) = γ2C(t) + (1 − p)γ1A(t) − d0R(t) + (L(t) +A(t) + C(t))u2(t),

F6(x, u) = bN(1 − ξ) + γ3S(t) − (d0 + φ)V (t) + (S(t) + L(t))u3(t)

+ (A(t) + C(t))u3(t),

(36)

and F (x, u) = (F1, F2, · · · , F6)(x, u). For the optimal solution to the developed control problem,
we will prefer to use Pontryagin’n Maximum Principle[28]: If (x∗, u∗) is an optimal solution to
(30) with u∗ being essentially bounded, then there exists a non-trivial vector function λ, such
that the Hamiltonian system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx∗(t)
dt

=
∂H

∂λ
(x∗(t), u∗(t), λ(t)),

dλ(t)
dt

= −∂H
∂x

(x∗(t), u∗(t), λ(t)),

0 =
∂H

∂u
(x∗(t), u∗(t), λ(t)),

(37)

the maximality condition

H(x∗(t), u∗(t), λ(t)) = max
u1,u2,u3∈[0,1]

H(x∗(t), u1, u2, u3, λ(t)); (38)

and the transversality condition
λ(tf ) = 0 (39)

hold.
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Theorem 8.2 Let S∗, L∗, A∗, C∗, R∗ and V ∗ be optimal states solutions associated to
essentially bounded optimal controls (u∗1, u

∗
2, u

∗
3) for the optimal control problem (30). Then

there exist adjoint variables λi(t), i = 1, 2, · · · , 6, satisfying

dλ1(t)
dt

= (λ1(t) − λ2(t))
(
βA∗ + γβC∗

N
(1 − u1(t))

)
+ λ1(t)(d0 + γ3 + u3(t)) −A1

− λ6(t)(γ3 + u3(t)),

dλ2(t)
dt

= λ2(t)(σ + d0 + u2(t) + u3(t)) − σλ3(t) − λ5(t)u2(t) − λ6(t)u3(t) −A2,

dλ3(t)
dt

= (λ1(t) − λ2(t))
(
βS∗

N
(1 − u1(t))

)
+ λ3(t)(d0 + γ1 + u2(t) + u3(t))

− λ4(t)pγ1 − λ5(t)((1 − p)γ1 + u2(t)) − λ6(t)u3(t) −A3,

dλ4(t)
dt

= −A4 + (λ1(t) − λ2(t))
(
γβS∗

N
(1 − u1(t))

)
+ λ1(t)bξηN

− λ4(t)(bξηN − (d0 + d1 + γ2 + u2(t) + u3(t))) − λ5u2(t) − λ6(t)u3(t),

dλ5(t)
dt

= d0λ5(t),

dλ6(t)
dt

= λ1(t)φ + (d0 + φ)λ6(t),

(40)

with transversality conditions

λi(tf ) = 0 for i = 1, 2, · · · , 6. (41)

Furthermore, the optimal controls variable u∗1(t), u
∗
2(t) and u∗3(t) are given by

u∗1 = max
{

min
{

(βS∗A∗ + γβS∗C∗)(λ2(t) − λ1(t))
NB1

, 1
}
, 0
}
,

u∗2 = max
{

min
{

(λ2(t) − λ5(t))L∗ + (λ3(t) − λ5(t))A∗ + (λ4(t) − λ5(t))C∗

B2
, 1
}
, 0
}
,

u∗3 = max
{

min
{

(λ1(t)S∗+λ2(t)L∗+λ3(t)A∗+λ4(t)C∗−λ6(t))(S∗+L∗+A∗+C∗)
B3

, 1
}
, 0
}
.

Proof System (40) is direct comes from applying adjoint equation of the Pontryagin Max-
imum Principle to our problem, that is, from the 2nd equation in (37) with the Hamiltonian
H defined by (34)–(36), while conditions (41) is a direct consequence of the transversality con-
dition (39). To obtain u∗1, u∗2 and u∗3, we differentiate the Hamiltonian with respect to control
measures, then we solve the system ∂H

∂u1
= 0, ∂H

∂u2
= 0 and ∂H

∂u3
= 0 (necessary optimality

conditions for the finite dimension optimization problem on the right-hand side of (38), when
one restrict himself to the interior (0, 1) × (0, 1) of the optimization region). Lastly, by using
the maximality condition (38), we obtain the optimal control measures u∗1, u

∗
2 and u∗3, which

completes the proof.
We found the optimal state and control variables by solving numerically the optimality sys-

tem, which contains the state system (30) and the adjoint system (40), boundary conditions (41)
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and (41), together with the characterization of the optimal values of the controls (u∗1, u
∗
2, u

∗
3).

In addition, the Hessian matrix of the Hamiltonian with respect to u1, u2 and u3 should be
positive semidefinite, describing the fact that we are considering a minimization problem.

9 Numerical Analysis of the Optimal Problem

To simulate the control problem, we intend to use Runge-Kutta procedure of order four.
More precisely, we wish to solve the state system (30) by using the Runge-Kutta scheme of
order four with initial conditions (41) forward in time [0, 100], and subsequently solving the
adjoint system (40) by the backward Runge-Kutta of order four in the same interval of time
with the help of the transversality conditions (41) and the solution of the state system. For
simulation purposes, the following parameter values were chosen are given in Table 2. The
results presented in Figures 3–5 were obtained. Figure 3 represents the graphs of susceptible
population, latent population, acute hepatitis B infected population and chronically infected
hepatitis B population with and without (optimal) control. The simulations illustrate clearly
our objective in applying the controls: To reduce the number of susceptible, latent, acute and
chronically infected with hepatitis B population, and to increase the number of recovered indi-
viduals and vaccinated population. Figure 3(a) represents the graph of susceptible individuals
with and without (optimal) control. Similarly, Figures 3(b)–(d) represents the graph of latent,
acute, chronically infected individuals with and without (optimal) control, while Figure 3 rep-
resents the graphs of recovered and vaccinated individuals with and without (optimal) control.
Furthermore, Figure 3 represents the dynamic of the optimal control variables. Clearly, the
difference between the two cases is visible.
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Figure 3 The time dynamics of the compartmental population model (1) with and

without control
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Figure 4 The time dynamics of the recovered and vaccinated population with and

without control
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(a) Optimal control variable isolation u1(t)
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(b) Optimal control variable treatment u2(t)
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(c) Optimal control variable vaccination u3(t)

Figure 5 The time dynamics of the optimal control variables

10 Discussion and Conclusion

In this section, the discussion and concluding remarks are presented. First, the discussion
of the numerical simulation is presented. The control variables u1(t), u2(t) and u3(t) reduces
the transmission rate β, the moving rate σ of latent individuals to acute class, the proportion
of parentally infected individuals η, the birth rate without successful vaccination ξ and the
waning vaccine induced immunity rate φ. Which causes decrease in the transmission and
consequently decrease the susceptible individual S(t), the latent individual L(t), the acute
hepatitis B individuals A(t) and the chronic carrier individuals C(t) as shown in Figures 3
(a)–(d). While causes increase in the non-infected individuals, which consequently increase the
recovered individuals R(t) and V (t) as shown in Figures 4 (a)–(b). The graph of susceptible
population approaches to a small number due to optimal control u1(t) and u2(t) as shown
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in Figure 3 (a). Similarly the graph of latent population, acute infected and chronic carrier
population approaches to a small number due to optimal control shown in Figures 3 (b)–(d).
While Figures 4 (a)–(b) shows that the recovered and vaccinated individuals are approaches to
a large number in case of with optimal control.

In this work, we studied hepatitis B epidemic model with nonlinear incidence. We studied
different mathematical properties of boundedness and positivity to show the biological feasi-
bility. We found reproduction number and discussed the sensitivity analysis. We also used
the optimization theory and developed a control strategy on the basis of normalized sensitive
index to eliminate hepatitis B from the population. By using the normalized sensitivity index,
we investigated the most sensitive parameters and then developed the control strategy. For
this purpose, we used three time-dependent control measures, the isolation of non-infected and
infected individuals, u1(t), the treatment, u2(t) and the vaccination, u3(t). Once, we formu-
lated the optimal control problem, then proved the existence and characterize the optimality
condition using the Pontryaginn Maximum Principle. Finally, the numerical simulation of the
optimal problem are presented to support the analytical work.

References

[1] Zou L, Ruan S, and Zhang W, On the sexual transmission dynamics of hepatitis B virus in China,

Journal of Theoretical Biology, 2015, 369: 1–12.

[2] Haq F, Shah K, Khan A, et al., Numerical solution of fractional order epidemic model of a vector

born disease by Laplace Adomian decomposition method, Punjab University Journal of Mathe-

matics, 2017, 49(2): 13–22.

[3] Haq F, Shah A, Rahman G U, et al., Numerical solution of fractional order smoking model via

Laplace Adomian decomposition method, Alexandria Engineering Journal, 2018, 57(2): 1061–

1069.

[4] Pang L, Ruan S, Liu S, et al., Transmission dynamics and optimal control of measles epidemics,

Applied Mathematics and Computation, 2015, 256: 131–147.

[5] Khan A and Zaman G, Asymptotic behavior of an age structure SIRS endemic model, Applied

and Computational Mathematics, 2018, 17(2): 185–204.

[6] Zaman G, Kang Y H, and Jung I H, Stability analysis and optimal vaccination of an SIR epidemic

model, BioSystems, 2008, 93: 240–249.

[7] Zeb A, Zaman G, and Momani S, Square-root dynamics of a giving up smoking model, Applied

Mathematical Modelling, 2013, 37: 5326–5334.

[8] Rahman G U, Shah K, Haq F, et al., Host vector dynamics of pine wilt disease model with convex

incidence rate, Chaos, Solitons & Fractals, 2018, 113: 31–39.

[9] Zaman G, Kang Y H, and Jung I H, Optimal treatment of an SIR epidemic model with time delay,

BioSystems, 2009, 98: 43–50.

[10] Khan T and Zaman G, Classification of different Hepatitis B infected individuals with saturated

incidence rate, SpringerPlus, 2016, 5: 1082.



1322 DIN ANWARUD · LI YONGJIN · SHAH MURAD ALI

[11] Khan A and Zaman G, Optimal control strategy of SEIR endemic model with continuous age-

structure in the exposed and infectious classes, Optimal Control Applications and Methods, 2018,

39: 1716–1727.

[12] Abdo M S, Shah K, Wahash H A, et al., On a comprehensive model of the novel coronavirus

(COVID-19) under Mittag-Leffler derivative, Chaos, Solitons & Fractals, 2020, 135: 1–14.

[13] World Health Organization, Hepatitis b fact sheet, no 204 [updated July 2015], World Health

Organization, Geneva, Switzerland, 2013.

[14] Anwarud D, Li Y J, and Liu Q, Viral dynamics and control of hepatitis B virus (HBV) using an

epidemic model, Alexandria Engineering Journal, 2020, 59(2): 667–679.

[15] Thornley S, Bullen C, and Roberts M, Hepatitis B in a high prevalence New Zealand population:

A mathematical model applied to infection control policy, Journal of Theoretical Biology, 2008,

254: 599–603.

[16] Khan T, Zaman G, and Saleh Alshomrani A, Spreading dynamic of acute and carrier hepatitis B

with nonlinear incidence, PLoS ONE, 2018, 13: e0191914.

[17] Shah K, Jarad F, and Abdeljawad T, On a nonlinear fractional order model of dengue fever disease

under Caputo-Fabrizio derivative, Alexandria Engineering Journal, 2020, 59: 2305–2313.

[18] Fan M, Li M Y, and Wang K, Global stability of an SEIS epidemic model with recruitment and

a varying total population size, Mathematical Biosciences, 2001, 170: 199–208.

[19] Li J and Ma Z, Qualitative analyses of SIS epidemic model with vaccination and varying total

population size, Mathematical and Computer Modelling, 2002, 35: 1235–1243.

[20] Lashari A A, Hattaf K, Zaman G, et al., Backward bifurcation and optimal control of a vector

borne disease, Applied Mathematics and Information Sciences, 2013, 7: 301–309.

[21] Zou L, Zhang W, and Ruan S, Modeling the transmission dynamics and control of hepatitis B

virus in China, Journal of Theoretical Biology, 2010, 262: 330–338.

[22] Van den Driessche P and Watmough J, Reproduction numbers and sub-threshold endemic equi-

libria for compartmental models of disease transmission, Mathematical Biosciences, 2002, 180:

29–48.

[23] Van Den Driessche P and Watmough J, Mathematical Epidemiology, Springer Verlag, New York,

2008.

[24] Koonprasert S, Moore E J, and Banyatlersthaworn S, Sensitivity and stability analysis of hepatitis

B virus model with non-cytolytic cure process and logistic hepatocyte growth, Global Journal of

Pure and Applied Mathematics, 2016, 12(3): 2297–2312.

[25] Momoh A A, Ibrahim M O, Madu B A, et al., Global equilibrium stability of hepatitis B model

and vaccination impact, Research Journal of Mathematics and Statistics, 2012, 4(3): 57–62.

[26] Cheng Y, Qiuhui P, and He M, Stability analysis of hepatitis B virus model with incomplete

immunization of HepB vaccine, Abstract and Applied Analysis, 2014, 1–11.

[27] Cao J, Wang Y, Alofi A, et al., Global stability of an epidemic model with carrier state in hetero-

geneous networks, IMA Journal of Applied Mathematics, 2015, 80(4): 1025–1048.

[28] Kamien M I and Schwartz N L, Dynamic Optimization: The Calculus of Variations and Optimal

Control in Economics and Management, North Holland, Inc, 1998.

[29] Culshaw R V, Ruan S, and Spiteri R J, Optimal HIV treatment by maximising immune response,

Journal of Mathematical Biology, 2004, 48: 545–562.

[30] Kirschner D, Lenhart S, and Serbin S, Optimal control of the chemotherapy of HIV, Journal of

Mathematical Biology, 1997, 35: 775–792.



DYNAMICS AND CONTROL ANALYSIS 1323

[31] Suzanne L and Workman J T, Optimal Control Applied to Biological Models, Chapman and

Hall/CRC, 2007.

[32] Khan T, Zaman G, and Chohan M I, The transmission dynamic and optimal control of acute and

chronic hepatitis B, Journal of Biological Dynamics, 2017, 11: 172–189.

[33] Zhang J and Zhang S, Application and optimal control for an HBV model with vaccination and

treatment, Discrete Dynamics in Nature and Society, 2018, Article ID 2076983, 13 pages.

[34] Kamyad A, Akbari R, Heydari A, et al., Mathematical modeling of transmission dynamics and op-

timal control of vaccination and treatment for hepatitis B virus, Computational and Mathematical

Methods in Medicine, 2014, Article ID 475451, 15 pages.

[35] Goyal A, Murray J M, Roadmap to control HBV and HDV epidemics in China, Journal of Theo-

retical Biology, 2017, 423: 41–52.

[36] Pontryagin L, The Mathematical Theory of Optimal Processed, Taylor and Francis, London, UK,

1987.

[37] Nana-Kyere S, Ackora-Prah J, Okyere E, et al., Hepatitis B optimal control model with vertical

transmission, Appl. Math., 2017, 7(1): 5–13.

[38] Ijalana C O and Yusuf T T, Optimal control strategy for hepatitis B virus epidemic in areas of

high endemicity, International Journal of Scientific and Innovative Mathematical Research, 2017,

5(12): 28–39.

[39] Birkhoff G and Rota G, Ordinary Differential Equations, 4th Edition, John Wiley and Sons, New

York, NY, USA, 1989.


