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Abstract Option pricing problem is one of the central issue in the theory of modern finance. Un-

certain currency model has been put forward under the foundation of uncertainty theory as a tool to

portray the foreign exchange rate in uncertain finance market. This paper uses uncertain differential

equation involved by Liu process to dispose of the foreign exchange rate. Then an American barrier

option of currency model in uncertain environment is investigated. Most important of all, the authors

deduce the formulas to price four types of American barrier options for this currency model in uncertain

environment by rigorous derivation.

Keywords Barrier option, currency model, option pricing, uncertain process.

1 Introduction

An option is a contract which confers the right for holders to buy or sell their assets at
a set price at any time before or on the maturity time. Option trading is buying and selling
of this right. In the transaction of option, the rights and obligations of the buyer and the
seller are not symmetrical. Then the option is not free and the buyer must pay a certain
amount of option fee, which creates the option pricing problem. The problem of pricing option
acts as a significant part in quantitative finance[1]. In 1900, Bachelier[2], the father of option
pricing theory, first raised that the stock prices were subject to Brownian motion. This is
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the first attempt in the history of mathematics to apply advanced mathematics to financial
problems. Black and Scholes[3], and Merton[4] independently established and developed the
Black-Scholes formulas for pricing option in 1973, which laid the foundation for the reasonable
pricing of various derivative financial instruments in the emerging derivative finance market,
including stocks, bonds, currencies and commodities. Subsequently, many scholars extended
the Black-Scholes option pricing formula. For example, in 1979, Cox, et al.[5] proposed the
Binomial model, which established the groundwork for the numerical method of option pricing,
and priced the American option. In 1983, Garman and Kohlhagen[6] proposed a modified model
for foreign exchange option based on Black-Scholes option pricing formula, G-K model, which
is now widely used in the pricing of foreign exchange option.

Barrier option refers to the fact that the profit of the option depends on whether or not
the price of the underlying asset has reached a set level (threshold value) during a certain
period of time. Before the Chicago Board of Options Exchange (CBOE) appeared, barrier
options were sold sporadically in the United States. Merton[4] first presented a formula for
a down-and-out call option in 1973. From then on, the academic research on barrier option
pricing began to develop rapidly. In 1991, pricing formulas for several European barrier options
were derived by Rich[7], Rubinstein and Reiner[8]. Heynen and Kat[9], and Carr[10] introduced
rainbow barrier options and partial barrier options. Boyle and Lau[11], and Kat and Verdonk[12]

respectively discussed that how to apply the standard binomial model to solving the pricing
problem of barrier options. The pricing problem of capped options under European scenario
and American scenario were investigated by Broadie and Detemple[13]. The “adaptive mesh”
technique to barrier options was applied by Figlewski and Gao[14]. The case of producing static
hedges for barrier options was also considered by Carr, et al.[15]. Under the constant volatility
framework, a series of one-asset barrier option pricing formulas and multi-asset barrier option
pricing formulas were presented by Rich[7], and Wong and Kwok[16], respectively. Option pricing
problems with both American early exercise features and knock-out barrier can be found in [17].

As is known to us all, probability theory is used as a helpful tool to depict indeterminate
phenomena. However, the function of cumulative probability distribution should close enough
to the real frequency (which is determined by the law of large numbers) if you need to utilize
probability theory. Obtaining the cumulative probability distribution needs sufficient sample
data, which requires a lot of independent and repeatable experiments. However, due to economic
and technical reasons, these independent repetitive tests cannot be carried out. For example,
the bridge in use cannot obtain the data of its bearing weight. In other words, some data are not
obtainable in real life or are unavailable under special circumstances, such as the demand for
masks in pandemic (e.g., COVID-19 in 2020). Without enough data, the cumulative probability
distribution cannot be obtained, so it needs experts in related fields to estimate the belief degree
of events occurring according to their existing experience and knowledge. Since the conservatism
of human estimation, if we make use of probability theory to describe degree of belief, there
may trigger a counterintuitive result which was demonstrated by some credible examples in [18].
At this point, in order to deal with this problem that there are small samples or even no any
sample, we have to find new tools.
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Liu[19, 20] proposed uncertainty theory with introducing normality axiom, duality axiom,
subadditivity axiom and product axiom. Within the uncertainty theory context, uncertain
variable is raised to depict the uncertain quantity and uncertain measure is proposed for mod-
eling the belief degree, respectively. In addition, uncertainty distribution was served as a tool
to directly describe uncertain variables, and expected value operator was defined in [19] for
the sake of ranking uncertain variables. So far, uncertainty theory has been widely applied
in lots of fields such as uncertain risk and reliability analysis (Gao and Yao[21, 22]), uncertain
programming (Liu[23]), as well as uncertain finance (Liu[24]).

The concept of uncertain process was put forward in [25] to describe the uncertain variables
varying with time. For the uncertain process, its uncertainty distribution, independence and
operational law are studied respectively. Further, on this basis, independent incremental pro-
cess is proposed, in which the increment is independent[26]. Subsequently, Liu[20] proposed a
stationary and independent increment process where its increments are independent and identi-
cally distributed (i.i.d.) uncertain variables. Furthermore, if these iid uncertain variables obey
the normal uncertainty distribution, then Liu process is produced. Driven by Liu process, both
uncertain calculus and uncertain differential equation which have many properties developed
by Liu[20]. Chen and Liu[27] verified some properties of solutions for uncertain differential equa-
tions including existence, uniqueness and stability. Yao and Chen[28] firstly raised Yao-Chen
formula to turn uncertain differential equations into ordinary differential equations.

With its maturity and perfection, the application of uncertain differential equation can be
found in sophisticated finance market far and wide. Liu[20] proposed an uncertain stock model
motivated by the uncertain differential equation firstly. Under the guidance of the uncertain
stock model, Chen[29], Liu[20], and Sun and Chen[30] priced American option, European op-
tion and Asian option relative to finance markets determined by the uncertain stock model
in succession, as well as American barrier option were priced by Gao, et al.[31]. Furthermore,
Chen and Gao[32] constructed an uncertain interest rate model on the premise that the interest
rate follows an uncertain differential equation. Jiao and Yao[33] studied the zero-coupon bond
model, and Zhang, et al.[34] proposed the interest rate ceiling model as well as the interest rate
floor model.

Foreign exchange plays a significant part in the capital market, since it can promote inter-
national economic and trade development, adjust international capital surplus. Liu, et al.[35]

supposed that the exchange rate follows an uncertain differential equation, then put forward
the uncertain currency model. In addition, many researches are based on this assumption and
this model. Shen and Yao[36] proposed a mean-reverting uncertain currency model to describe
the foreign exchange rate in the long term. Wang and Ning[37] made some improvements re-
ferring to Liu-Chen-Ralescu model, and presented an uncertain currency model with floating
interest rates. Different from Wang-Ning’s currency model, Wang and Chen[38] considered the
long-term fluctuations of the exchange rate and the changing of the interest rates from time to
time, and put forward a mean-reverting uncertain currency model with floating interest rates
to simulate the foreign exchange market. In this paper, we will discuss four types of Amer-
ican barrier options and introduce the corresponding pricing formulas for uncertain currency
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model. The rest of the paper is arranged as follows: Some basic knowledge related to uncertain
variable, uncertain process and uncertain differential equation is given one by one in Section 2.
The contents of the Section 3 and Section 4 are about the formulas for pricing the American
barrier option in two scenarios: the knock-in scenario and the knock-out scenario. At last, in
Section 5 a brief conclusion is given.

2 Preliminaries

Several basic definitions and related properties about uncertain variable, uncertain process,
and uncertain differential equation will be introduced in this section.

2.1 Uncertain Variable

Definition 2.1 (see [19]) Suppose that (Γ , L) is a measurable space. If M is a set function
and satisfies three axioms as follows:

Axiom 1 (Normality Axiom) For the universal set Γ , M{Γ} = 1;
Axiom 2 (Duality Axiom) For arbitrary event Λ, M{Λ} + M{Λc} = 1;
Axiom 3 (Subadditivity Axiom) For each countable sequence of events Λ1,Λ2, · · · , we have

M

{ ∞⋃
i=1

Λi

}
≤

∞∑
i=1

M{Λi}.

Then we say the M an uncertain measure and the triplet (Γ , L, M) an uncertain space.

Theorem 2.2 (see [19]) Suppose that M is an uncertain measure. Then it is a set function
which is monotonically increasing. Then, the following inequality

M {Λ1} ≤ M {Λ2}

holds for arbitrary events Λ1 and Λ2 with Λ1 ⊂ Λ2.

Definition 2.3 (see [39]) Assuming that there is an uncertain variable ξ whose uncer-
tainty distribution Φ(x) is regular. Then ξ possesses an inverse uncertainty distribution which
is the inverse function Φ−1(α).

Definition 2.4 (see [20]) The uncertain variables ξ1, ξ2, · · · , ξn are regarded as indepen-
dent if

M

{
n⋂

i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M {ξi ∈ Bi}

for arbitrary Borel sets B1, B2, · · · , Bn of real numbers.

Liu[19] presented the concept of expected value to ranking uncertain variables as follows:

Theorem 2.5 (see [39]) Suppose that ξ is an uncertain variable which possesses regular
uncertainty distribution Φ and suppose that there exists its expected value. Then

E[ξ] =
∫ 1

0

Φ−1(α)dα.
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2.2 Uncertain Process

Definition 2.6 (see [25]) Assuming that there is a totally ordered set T and an uncer-
tainty space (Γ , L, M). If the function Xt is measurable from T × (Γ , L, M) to the set of real
numbers, that is, for arbitrary given {t ∈ T }, the set

{Xt ∈ B} = {γ|Xt(γ) ∈ B}
is an event for arbitary Borel set B. Then Xt is called uncertain process.

Definition 2.7 (see [26]) The uncertain process Xt whose uncertainty distribution is
Φt(x) which is defined by

Φt(x) = M {Xt ≤ x}
for arbitrary number x and arbitrary time t.

Definition 2.8 (see [20]) The uncertain process Ct is regarded as a Liu process, suppose
that

(i) its initial value is zero, i.e., C0 = 0, and almost all of its sample paths are Lipschitz
continuous,

(ii) Ct possesses independent and stationary increments,
(iii) each increment Cs+t −Cs is an uncertain variable with normal uncertainty distribution

whose expected value is 0 and variance is t2, that is, the uncertainty distribution of Cs+t − Cs

is

Φ(x) =
(

1 + exp
(−πx√

3t

))−1

, x ∈ �.

2.3 Uncertain Differential Equation

Definition 2.9 (see [28]) Let

dXt = f(t, Xt)dt + g(t, Xt)dCt (1)

be an uncertain differential equation whose initial value is X0. If for arbitrary α (0 < α < 1),
Xα

t relative to t is the solution of the corresponding equation

dXα
t = f(t, Xα

t )dt + |g(t, Xα
t )|Φ−1(α)dt,

in which

Φ−1(α) =
√

3
π

ln
α

1 − α
, 0 < α < 1,

the deterministic function Xα
t is the α-path of Equation (1).

Theorem 2.10 (see [28]) Considering an uncertain differential equation

dXt = f(t, Xt)dt + g(t, Xt)dCt, t ∈ [0, s],

where its α-path is Xα
t . If the functions f(t, x) and g(t, x) are continuous, then we derive

M{Xt ≤ Xα
t , ∀t} = α, M{Xt > Xα

t , ∀t} = 1 − α.

Chen and Yao[28] firstly found that Xt possesses the inverse uncertainty distribution

Φ−1(α) = Xα
t , 0 < α < 1.
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3 Knock-in Options

In this section, we investigate one kind of barrier option, the knock-in option which is divided
into up-and-in scenario and down-and-in scenario. Knock-in option refers to the option begins
to function as a normal option only in which the market price of the underlying asset hits a
certain price level within a specified period. In addition, we derive and give their concerning
pricing formulas.

In the following derivation, we need to use an indictor function which was defined by

IL =

⎧⎨
⎩1, if L ≤ x,

0, otherwise,

where L is a given number which acts for the trigger point.
The uncertain currency model raised by Liu, et al.[35] as follows:⎧⎪⎪⎨

⎪⎪⎩
dXt = aXtdt,

dYt = βYtdt,

dZt = μZtdt + υZtdCt,

(2)

where Xt denotes the domestic currency whose domestic interest rate is a, Yt denotes the
foreign currency whose foreign interest rate is β, and Zt denotes the exchange rate means that
the domestic currency price of one unit of foreign currency at time t, Ct represents a Liu process,
μ and υ represent the drift and diffusion, respectively.

For one thing, we study the up-and-in scenario that goes into effect in which the exchange
rate is beneath the trigger point L and goes up within its maturity time. In the uncertain
finance market, the currency model for the American up-and-in call option whose exercise price
is K, maturity time is T and trigger point is L was defined by Model (2).

Assume that the contract price is fui in domestic currency. At time 0, the buyer pays fui

to purchase the contract. And the buyer possesses a present value of the revenue in domestic
currency at time t which is

sup
0≤t≤T

IL

(
sup

0≤s≤t
Zs

)
(Zt − K)+.

So at time 0, the net revenue of the buyer is

−fui + sup
0≤t≤T

exp(−at)IL

(
sup

0≤s≤t
Zs

)
(Zt − K)+.

In contrast, at time 0, the seller obtains fui. And the seller obtains (1 − K/Zt)+ in foreign
currency at time t, then the seller need to pay

sup
0≤t≤T

IL

(
sup

0≤s≤t
Zs

)
Z0(1 − K/Zt)+.

So at time 0, the net revenue of the seller is

fui − sup
0≤t≤T

exp(−βt)IL

(
sup

0≤s≤t
Zs

)
Z0(1 − K/Zt)+.



AMERICAN BARRIER OPTION PRICING FOR UNCERTAIN CURRENCY 289

The derived contract price should make the expected revenues of the buyer and the seller
equal, which means that,

− fui + E

[
sup

0≤t≤T
exp(−at)IL

(
sup

0≤s≤t
Zs

)
(Zt − K)+

]

=fui − E

[
sup

0≤t≤T
exp(−βt)IL

(
sup

0≤s≤t
Zs

)
Z0(1 − K/Zt)+

]
.

Through the above analysis, we give the pricing formula as follows.

Definition 3.1 Assuming that there exists an American up-and-in call option whose
trigger point is L, exercise price is K and maturity time is T . Then the price of this American
up-and-in call option for Model (2) is

fui =
1
2
E

[
sup

0≤t≤T
exp(−at)IL

(
sup

0≤s≤t
Zs

)
(Zt − K)+

]

+
1
2
E

[
sup

0≤t≤T
exp(−βt)IL

(
sup

0≤s≤t
Zs

)
Z0(1 − K/Zt)+

]
.

Theorem 3.2 Assuming that there exists an American up-and-in call option whose trigger
point is L, exercise price is K and maturity time is T . Then the price of this American up-
and-in call option is controlled by the following equality

fui =
1
2

∫ 1

b

sup
0≤t≤T

exp(−at)

(
Z0 exp

(
μt +

√
3υt

π
ln

α

1 − α

)
− K

)+

dα

+
1
2

∫ 1

b

sup
0≤t≤T

exp(−βt)

(
Z0 − K/ exp

(
μt +

√
3υt

π
ln

α

1 − α

))+

dα,

in which

b =
(

1 + exp
(

π(μt + ln Z0 − ln L)√
3υt

))−1

.

Proof In the first place, we verify that the following uncertain variable

sup
0≤t≤T

exp(−at)IL

(
sup

0≤s≤t
Zs

)
(Zt − K)+

possesses the inverse uncertain distribution

φ−1(α) = sup
0≤t≤T

exp(−at)IL

(
sup

0≤s≤t
Zα

s

)
(Zα

t − K)+,

in which

Zα
t = Z0 exp

(
μt +

√
3υt

π
ln

α

1 − α

)
.
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Since{
sup

0≤t≤T
exp(−at)IL

(
sup

0≤s≤t
Zs

)
(Zt − K)+ ≤ sup

0≤t≤T
exp(−at)IL

(
sup

0≤s≤t
Zα

s

)
(Zα

t − K)+
}

⊇
{

sup
0≤s≤t

Zs ≤ sup
0≤s≤t

Zα
s , Zt ≤ Zα

t , t ∈ [0, T ]
}

⊇{Zt ≤ Zα
t , t ∈ [0, T ]}

and{
sup

0≤t≤T
exp(−at)IL

(
sup

0≤s≤t
Zs

)
(Zt − K)+ > sup

0≤t≤T
exp(−at)IL

(
sup

0≤s≤t
Zα

s

)
(Zα

t − K)+
}

⊇
{

sup
0≤s≤t

Zs > sup
0≤s≤t

Zα
s , Zt > Zα

t , t ∈ [0, T ]
}

⊇{Zt > Zα
t , t ∈ [0, T ]} ,

we obtain

M

{
sup

0≤t≤T
exp(−at)IL

(
sup

0≤s≤t
Zs

)
(Zt − K)+ ≤ sup

0≤t≤T
exp(−at)IL

(
sup

0≤s≤t
Zα

s

)
(Zα

t − K)+
}

≥M {Zt ≤ Zα
t , t ∈ [0, T ]}

=α (3)

and

M

{
sup

0≤t≤T
exp(−at)IL

(
sup

0≤s≤t
Zs

)
(Zt − K)+ > sup

0≤t≤T
exp(−at)IL

(
sup

0≤s≤t
Zα

s

)
(Zα

t − K)+
}

≥M {Zt > Zα
t , t ∈ [0, T ]}

=1 − α (4)

by Theorem 2.2 and Theorem 2.10.
According to duality axiom, we have

M

{
sup

0≤t≤T
exp(−at)IL

(
sup

0≤s≤t
Zs

)
(Zt − K)+ ≤ sup

0≤t≤T
exp(−at)IL

(
sup

0≤s≤t
Zα

s

)
(Zα

t − K)+
}

+ M

{
sup

0≤t≤T
exp(−at)IL

(
sup

0≤s≤t
Zs

)
(Zt−K)+ > sup

0≤t≤T
exp(−at)IL

(
sup
0≤s≤t

Zα
s

)
(Zα

t −K)+
}

=1. (5)

It follows Equations (3)–(5) that

M

{
sup

0≤t≤T
exp(−at)IL

(
sup

0≤s≤t
Zs

)
(Zt − K)+≤ sup

0≤t≤T
exp(−at)IL

(
sup

0≤s≤t
Zα

s

)
(Zα

t − K)+
}

=α.

Then the uncertain variable

sup
0≤t≤T

exp(−at)IL

(
sup

0≤s≤t
Zs

)
(Zt − K)+
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possesses the inverse uncertain distribution which is

φ−1(α) = sup
0≤t≤T

exp(−at)IL

(
sup

0≤s≤t
Zα

s

)
(Zα

t − K)+.

So the following equality

fui =
∫ 1

0

sup
0≤t≤T

exp(−at)IL

(
sup

0≤s≤t
Zα

s

)
(Zα

t − K)+dα

holds due to Theorem 2.5.
In the second place, we verify that the following uncertain variable

sup
0≤t≤T

exp(−βt)IL

(
sup

0≤s≤t
Zs

)
(1 − K/Zt)+

possesses the inverse uncertain distribution

φ−1(α) = sup
0≤t≤T

exp(−βt)IL

(
sup

0≤s≤t
Zα

s

)
(1 − K/Zα

t )+,

in which

Zα
t = Z0 exp

(
μt +

√
3υt

π
ln

α

1 − α

)
.

Since{
sup

0≤t≤T
exp(−βt)IL

(
sup

0≤s≤t
Zs

)
(1 − K/Zt)+ ≤ sup

0≤t≤T
exp(−βt)IL

(
sup

0≤s≤t
Zα

s

)
(1 − K/Zα

t )+
}

⊇
{

sup
0≤s≤t

Zs ≤ sup
0≤s≤t

Zα
s , Zt ≤ Zα

t , t ∈ [0, T ]
}

⊇{Zt ≤ Zα
t , t ∈ [0, T ]}

and{
sup

0≤t≤T
exp(−βt)IL

(
sup

0≤s≤t
Zs

)
(1 − K/Zt)+ > sup

0≤t≤T
exp(−βt)IL

(
sup

0≤s≤t
Zα

s

)
(1 − K/Zα

t )+
}

⊇
{

sup
0≤s≤t

Zs > sup
0≤s≤t

Zα
s , Zt > Zα

t , t ∈ [0, T ]
}

⊇{Zt > Zα
t , t ∈ [0, T ]} ,

we obtain

M

{
sup

0≤t≤T
exp(−βt)IL

(
sup

0≤s≤t
Zs

)
(1−K/Zt)+ ≤ sup

0≤t≤T
exp(−βt)IL

(
sup

0≤s≤t
Zα

s

)
(1−K/Zα

t )+
}

≥M {Zt ≤ Zα
t , st ∈ [0, T ]}

=α (6)
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and

M

{
sup

0≤t≤T
exp(−βt)IL

(
sup

0≤s≤t
Zs

)
(1−K/Zt)+ > sup

0≤t≤T
exp(−βt)IL

(
sup

0≤s≤t
Zα

s

)
(1−K/Zα

t )+
}

≥M {Zt > Zα
t , t ∈ [0, T ]}

=1 − α (7)

by Theorem 2.2 and Theorem 2.10.
According to duality axiom, we have

M

{
sup

0≤t≤T
exp(−βt)IL

(
sup

0≤s≤t
Zs

)
(1 − K/Zt)+ ≤ sup

0≤t≤T
exp(−βt)IL

(
sup

0≤s≤t
Zα

s

)
(1 − K/Zα

t )+
}

+M

{
sup

0≤t≤T
exp(−βt)IL

(
sup

0≤s≤t
Zs

)
Z0(1 − K/Zt)+ > sup

0≤t≤T
exp(−βt)IL

(
sup

0≤s≤t
Zα

s

)
(1 − K/Zα

t )+
}

=1. (8)

It follows from Equations (6)–(8) that

M

{
sup

0≤t≤T
exp(−βt)IL

(
sup

0≤s≤t
Zs

)
(1 − K/Zt)+≤ sup

0≤t≤T
exp(−βt)IL

(
sup

0≤s≤t
Zα

s

)
(1 − K/Zα

t )+
}

=α.

Then the uncertain variable

sup
0≤t≤T

exp(−βt)IL

(
sup

0≤s≤t
Zs

)
Z0(1 − K/Zt)+

possesses the inverse uncertain distribution which is

φ−1(α) = sup
0≤t≤T

exp(−βt)IL

(
sup

0≤s≤t
Zα

s

)
(1 − K/Zα

t )+.

So the following equality

fui =
∫ 1

0

sup
0≤t≤T

exp(−βt)IL

(
sup

0≤s≤t
Zα

s

)
(1 − K/Zα

t )+dα

holds due to Theorem 2.5.
Moreover, the equation

IL

(
sup

0≤s≤t
Zα

s

)
= 1

holds if and only if

sup
0≤t≤T

Zα
t = sup

0≤t≤T
Z0

(
μt +

√
3υt

π
ln

α

1 − α

)
≥ L (9)

holds for arbitrary given t ∈ [0, T ].
Because of Z0 < L, (9) can be reduced to

Z0

(
μT +

√
3υT

π
ln

α

1 − α

)
≥ L,
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which shows that

α ≥
(

1 + exp
(

π(μT + ln Z0 − ln L)√
3υT

))−1

� b.

Consequently, the pricing formula of American up-and-in call option is

fui =
1
2

∫ 1

0

sup
0≤t≤T

exp(−at)IL

(
sup

0≤s≤t
Zα

s

)
(Zα

t − K)+dα

+
1
2

∫ 1

0

sup
0≤t≤T

exp(−βt)IL

(
sup

0≤s≤t
Zα

s

)
Z0(1 − K/Zα

t )+dα

=
1
2

∫ 1

b

sup
0≤t≤T

exp(−at)(Zα
t − K)+dα +

1
2
Z0

∫ 1

b

sup
0≤t≤T

exp(−βt)(1 − K/Zα
t )+dα

=
1
2

∫ 1

b

sup
0≤t≤T

exp(−at)

(
Z0 exp

(
μT +

√
3υT

π
ln

α

1 − α

)
− K

)+

dα

+
1
2

∫ 1

b

sup
0≤t≤T

exp(−βt)

(
Z0 − K/ exp

(
μT +

√
3υT

π
ln

α

1 − α

))+

dα.

Thus the proof is finished.

Corollary 3.3 Let fui be the price of American up-and-in call option under uncertain
currency Model (2). Then,

1) fui is a decreasing function of a. 2) fui is a decreasing function of β.
3) fui is an increasing function of μ. 4) fui is an increasing function of υ.
5) fui is an increasing function of Z0. 6) fui is a decreasing function of K.

Example 3.4 Considering Model (2) where we set a = 0.03, β = 0.025, μ = 0.04, υ =
0.05. And assuming that Z0 = 3, K = 5, T = 10, L = 8. Then fui = 0.786 according to
Theorem 3.2.

In Figure 1, we directly obtain that fui is monotonously decreasing with respect to L

providing the other parameters are unchanged.

Figure 1 The price fui in regard to barrier level L in Example 3.4
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For another thing, we study the down-and-in scenario that goes into effect in which the
exchange rate is above the trigger point L and goes down within its maturity time. In the
uncertain finance market, the currency model for the American down-and-in put option whose
exercise price is K, maturity time is T and trigger point is L was defined by Model (2).

Assume that the contract price is fdi in domestic currency. At time 0, the buyer pays fdi

to purchase the contract. And the buyer possesses a present value of the revenue in domestic
currency at time t which is

sup
0≤t≤T

(
1 − IL

(
inf

0≤s≤t
Zs

))
(K − Zt)+.

So at time 0, the net revenue of the buyer is

−fdi + sup
0≤t≤T

exp(−at)
(

1 − IL

(
inf

0≤s≤t
Zs

))
(K − Zt)+.

In contrast, at time 0, the seller obtains fdi. And the seller obtains (K/Zt − 1)+ in foreign
currency at time t, then the seller need to pay

sup
0≤t≤T

(
1 − IL

(
inf

0≤s≤t
Zs

))
Z0(K/Zt − 1)+.

So at time 0, the net revenue of the seller is

fdi − sup
0≤t≤T

exp(−βt)
(

1 − IL

(
inf

0≤s≤t
Zs

))
Z0(K/Zt − 1)+.

The derived contract price should make the expected revenues of the buyer and the seller
equal, which means that,

− fdi + E

[
sup

0≤t≤T
exp(−at)

(
1 − IL

(
inf

0≤s≤t
Zs

))
(K − Zt)+

]

=fdi − E

[
sup

0≤t≤T
exp(−βt)

(
1 − IL

(
inf

0≤s≤t
Zs

))
Z0(K/Zt − 1)+

]
.

Through the above analysis, we give the pricing formula as follows.

Definition 3.5 Assuming that there exists an American down-and-in put option whose
trigger point is L, exercise price is K and maturity time is T . Then the price of this American
down-and-in put option for Model (2) is

fdi =
1
2
E

[
sup

0≤t≤T
exp(−at)

(
1 − IL

(
inf

0≤s≤t
Zs

))
(K − Zt)+

]

+
1
2
E

[
sup

0≤t≤T
exp(−βt)

(
1 − IL

(
inf

0≤s≤t
Zs

))
Z0(K/Zt − 1)+

]
.

Theorem 3.6 Assuming that there exists an American down-and-in put option whose
trigger point is L, exercise price is K and maturity time is T . Then the price of this American
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down-and-in put option is controlled by the following equality

fdi =
1
2

∫ b

0

sup
0≤t≤T

exp(−at)

(
K − Z0 exp

(
μt +

√
3υt

π
ln

α

1 − α

))+

dα

+
1
2

∫ b

0

sup
0≤t≤T

exp(−βt)

(
K

/
exp

(
μt +

√
3υt

π
ln

α

1 − α

)
− Z0

)+

dα,

in which

b =
(

1 + exp
(

π(μt + ln Z0 − ln L)√
3υt

))−1

.

Proof In the first place, we verify that the following uncertain variable

sup
0≤t≤T

exp(−at)
(

1 − IL

(
inf

0≤s≤t
Zs

))
(K − Zt)+

possesses the inverse uncertain distribution

φ−1(α) = sup
0≤t≤T

exp(−at)
(

1 − IL

(
inf

0≤s≤t
Z1−α

s

))
(K − Z1−α

t )+,

in which

Z1−α
t = Z0 exp

(
μt +

√
3υt

π
ln

α

1 − α

)
.

Since{
sup

0≤t≤T
exp(−at)

(
1−IL

(
inf

0≤s≤t
Zs

))
(K−Zt)+≤ sup

0≤t≤T
exp(−at)

(
1−IL

(
inf

0≤s≤t
Z1−α

s

))
(K−Z1−α

t )+
}

⊇
{

inf
0≤s≤t

Zs ≥ inf
0≤s≤t

Z1−α
s , Zt ≥ Z1−α

t , t ∈ [0, T ]
}

⊇{Zt ≥ Z1−α
t , t ∈ [0, T ]

}
and{

sup
0≤t≤T

exp(−at)
(
1−IL

(
inf

0≤s≤t
Zs

))
(K−Zt)+ > sup

0≤t≤T
exp(−at)

(
1−IL

(
inf

0≤s≤t
Z1−α

s

))
(K−Z1−α

t )+
}

⊇
{

inf
0≤s≤t

Zs < inf
0≤s≤t

Z1−α
s , Zt < Z1−α

t , t ∈ [0, T ]
}

⊇{Zt < Z1−α
t , t ∈ [0, T ]

}
,

we obtain

M

{
sup

0≤t≤T
exp(−at)

(
1−IL

(
inf

0≤s≤t
Zs

))
(K−Zt)+≤ sup

0≤t≤T
exp(−at)

(
1−IL

(
inf

0≤s≤t
Z1−α

s

))
(K−Z1−α

t )+
}

≥M
{
Zt ≥ Z1−α

t , t ∈ [0, T ]
}

=α (10)
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and

M

{
sup

0≤t≤T
exp(−at)

(
1−IL

(
inf

0≤s≤t
Zs

))
(K−Zt)+ > sup

0≤t≤T
exp(−at)

(
1−IL

(
inf

0≤s≤t
Z1−α

s

))
(K−Z1−α

t )+
}

≥M
{
Zt < Z1−α

t , t ∈ [0, T ]
}

=1 − α (11)

by Theorem 2.2 and Theorem 2.10.
According to duality axiom, we have

M

{
sup

0≤t≤T
exp(−at)

(
1−IL

(
inf

0≤s≤t
Zs

))
(K−Zt)+≤ sup

0≤t≤T
exp(−at)

(
1−IL

(
inf

0≤s≤t
Z1−α

s

))
(K−Z1−α

t )+
}

+M

{
sup

0≤t≤T
exp(−at)

(
1−IL

(
inf

0≤s≤t
Zs

))
(K−Zt)+ > sup

0≤t≤T
exp(−at)

(
1−IL

(
inf

0≤s≤t
Z1−α

s

))
(K−Z1−α

t )+
}

=1. (12)

It follows from Equations (10)–(12) that

M

{
sup

0≤t≤T
exp(−at)

(
1−IL

(
inf

0≤s≤t
Zs

))
(K−Zt)+≤ sup

0≤t≤T
exp(−at)

(
1−IL

(
inf

0≤s≤t
Z1−α

s

))
(K−Z1−α

t )+
}

=α.

Then the uncertain variable

sup
0≤t≤T

exp(−at)
(

1 − IL

(
inf

0≤s≤t
Zs

))
(K − Zt)+

possesses the inverse uncertain distribution which is

φ−1(α) = sup
0≤t≤T

exp(−at)
(

1 − IL

(
inf

0≤s≤t
Z1−α

s

))
(K − Z1−α

t )+.

So the following equality

fdi =
∫ 1

0

sup
0≤t≤T

exp(−at)
(

1 − IL

(
inf

0≤s≤t
Z1−α

s

))
(K − Z1−α

t )+dα

holds due to Theorem 2.5.
In the second place, we verify that the following uncertain variable

sup
0≤t≤T

exp(−βt)
(

1 − IL

(
inf

0≤s≤t
Zs

))
(K/Zt − 1)+

possesses the inverse uncertain distribution

φ−1(α) = sup
0≤t≤T

exp(−βt)
(

1 − IL

(
inf

0≤s≤t
Z1−α

s

))
(K/Z1−α

t − 1)+,

in which

Z1−α
t = Z0 exp

(
μt +

√
3υt

π
ln

α

1 − α

)
.



AMERICAN BARRIER OPTION PRICING FOR UNCERTAIN CURRENCY 297

Since{
sup

0≤t≤T
exp(−βt)

(
1−IL

(
inf

0≤s≤t
Zs

))
(K/Zt−1)+≤ sup

0≤t≤T
exp(−βt)

(
1−IL

(
inf

0≤s≤t
Z1−α

s

))
(K/Z1−α

t −1)+
}

⊇
{

inf
0≤s≤t

Zs ≥ inf
0≤s≤t

Z1−α
s , Zt ≥ Z1−α

t , t ∈ [0, T ]
}

⊇{Zt ≥ Z1−α
t , t ∈ [0, T ]

}
and{

sup
0≤t≤T

exp(−βt)
(
1−IL

(
inf

0≤s≤t
Zs

))
(K/Zt−1)+> sup

0≤t≤T
exp(−βt)

(
1−IL

(
inf

0≤s≤t
Z1−α

s

))
(K/Z1−α

t −1)+
}

⊇
{

inf
0≤s≤t

Zs < inf
0≤s≤t

Z1−α
s , Zt < Z1−α

t , t ∈ [0, T ]
}

⊇{Zt < Z1−α
t , t ∈ [0, T ]

}
,

we obtain

M

{
sup

0≤t≤T
exp(−βt)

(
1−IL

(
inf

0≤s≤t
Zs

))
(K/Zt−1)+≤ sup

0≤t≤T
exp(−βt)

(
1−IL

(
inf

0≤s≤t
Z1−α

s

))
(K/Z1−α

t −1)+
}

≥M {Zt ≥ Zα
t , st ∈ [0, T ]}

=α (13)

and

M

{
sup

0≤t≤T
exp(−βt)

(
1−IL

(
inf

0≤s≤t
Zs

))
(K/Zt−1)+> sup

0≤t≤T
exp(−βt)

(
1−IL

(
inf

0≤s≤t
Z1−α

s

))
(K/Z1−α

t −1)+
}

≥M {Zt < Zα
t , t ∈ [0, T ]}

=1 − α (14)

by Theorem 2.2 and Theorem 2.10.
According to duality axiom, we have

M

{
sup

0≤t≤T
exp(−βt)

(
1−IL

(
inf

0≤s≤t
Zs

))
(K/Zt−1)+≤ sup

0≤t≤T
exp(−βt)

(
1−IL

(
inf

0≤s≤t
Z1−α

s

))
(K/Z1−α

t −1)+
}

+M

{
sup

0≤t≤T
exp(−βt)

(
1−IL

(
inf

0≤s≤t
Zs

))
(K/Zt−1)+> sup

0≤t≤T
exp(−βt)

(
1−IL

(
inf

0≤s≤t
Z1−α

s

))
(K/Z1−α

t −1)+
}

=1. (15)

It follows from Equations (13)–(15) that

M

{
sup

0≤t≤T
exp(−βt)

(
1−IL

(
inf

0≤s≤t
Zs

))
(K/Zt−1)+≤ sup

0≤t≤T
exp(−βt)

(
1−IL

(
inf

0≤s≤t
Z1−α

s

))
(K/Z1−α

t −1)+
}

=α.

Then the uncertain variable

sup
0≤t≤T

exp(−βt)
(

1 − IL

(
inf

0≤s≤t
Zs

))
(K/Zt − 1)+
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possesses the inverse uncertain distribution which is

φ−1(α) = sup
0≤t≤T

exp(−βt)
(

1 − IL

(
inf

0≤s≤t
Z1−α

s

))
(K/Z1−α

t − 1)+.

So the following equality

fdi =
∫ 1

0

sup
0≤t≤T

exp(−βt)
(

1 − IL

(
inf

0≤s≤t
Z1−α

s

))
(K/Z1−α

t − 1)+dα

holds due to Theorem 2.5.
Moreover, the equation

IL

(
inf

0≤s≤t
Z1−α

s

)
= 0

holds if and only if

inf
0≤s≤t

Z1−α
s = inf

0≤t≤T
Z0

(
μt +

√
3υt

π
ln

α

1 − α

)
< L (16)

holds for arbitrary given t ∈ [0, T ].
Because of Z0 ≥ L, (16) can be reduced to

Z0

(
μT +

√
3υT

π
ln

α

1 − α

)
< L,

which shows that

α <

(
1 + exp

(
π(μT + ln Z0 − ln L)√

3υT

))−1

� b.

Consequently, the pricing formula of American down-and-in put option is

fdi =
1
2

∫ 1

0

sup
0≤t≤T

exp(−at)
(

1 − IL

(
inf

0≤s≤t
Z1−α

s

))
(K − Z1−α

t )+dα

+
1
2

∫ 1

0

sup
0≤t≤T

exp(−βt)
(

1 − IL

(
inf

0≤s≤t
Z1−α

s

))
Z0(K/Z1−α

t − 1)+dα

=
1
2

∫ b

0

sup
0≤t≤T

exp(−at)(K − Z1−α
t )+dα +

1
2
Z0

∫ b

0

sup
0≤t≤T

exp(−βt)(K/Z1−α
t − 1)+dα

=
1
2

∫ b

0

sup
0≤t≤T

exp(−at)

(
K − Z0 exp

(
μT +

√
3υT

π
ln

α

1 − α

))+

dα

+
1
2

∫ b

0

sup
0≤t≤T

exp(−βt)

(
K/ exp

(
μT +

√
3υT

π
ln

α

1 − α

)
− Z0

)+

dα.

Thus, the proof is finished.

Corollary 3.7 Let fdi be the price of American down-and-in put option under uncertain
currency Model (2). Then,

1) fdi is a decreasing function of a. 2) fdi is a decreasing function of β.
3) fdi is a decreasing function of μ. 4) fdi is a decreasing function of υ.
5) fdi is a decreasing function of Z0. 6) fdi is an increasing function of K.



AMERICAN BARRIER OPTION PRICING FOR UNCERTAIN CURRENCY 299

Example 3.8 Considering Model (2) where we set a = 0.03, β = 0.025, μ = −0.02, υ =
0.05. And assuming that Z0 = 10, K = 7, T = 10, L = 8. Then fdi = 2.6496 according to
Theorem 3.6.

In Figure 2, we directly obtain that fdi is monotonously increasing with respect to L pro-
viding the other parameters are unchanged.

Figure 2 The price fdi in regard to barrier level L in Example 3.8

4 Knock-Out Options

In this section, we investigate another kind of barrier option, the knock-out option which
is divided into up-and-out scenario and down-and-out scenario. Knock-out option refers to the
option is expire worthless only in which the market price of the underlying asset exceeded a
certain price level within a specified period. In addition, we derive and give their concerning
pricing formulas.

For one thing, we study the up-and-out scenario that is of no effect in which the exchange
rate is beneath the trigger point L and goes up within its maturity time. In the uncertain
finance market, the currency model for the American up-and-out put option whose exercise
price is K, maturity time is T and trigger point is L was defined by Model (2).

Assume that the contract price is fuo in domestic currency. At time 0, the buyer pays fuo

to purchase the contract. And the buyer possesses a present value of the revenue in domestic
currency at time t which is

sup
0≤t≤T

(
1 − IL

(
sup

0≤s≤t
Zs

))
(K − Zt)+.

So at time 0, the net revenue of the buyer is

−fuo + sup
0≤t≤T

exp(−at)
(

1 − IL

(
sup

0≤s≤t
Zs

))
(K − Zt)+.
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In contrast, at time 0, the seller obtains fuo. And the seller obtains (K/Zt − 1)+ in foreign
currency at time t, then the seller need to pay

sup
0≤t≤T

(
1 − IL

(
sup

0≤s≤t
Zs

))
Z0(K/Zt − 1)+.

So at time 0, the net revenue of the seller is

fuo − sup
0≤t≤T

exp(−βt)
(

1 − IL

(
sup

0≤s≤t
Zs

))
Z0(K/Zt − 1)+.

The derived contract price should make the expected revenues of the buyer and the seller
equal, which means that,

− fuo + E

[
sup

0≤t≤T
exp(−at)

(
1 − IL

(
sup

0≤s≤t
Zs

))
(K − Zt)+

]

=fuo − E

[
sup

0≤t≤T
exp(−βt)

(
1 − IL

(
sup

0≤s≤t
Zs

))
Z0(K/Zt − 1)+

]
.

Through the above analysis, we give the pricing formula as follows.

Definition 4.1 Assuming that there exists an American up-and-out put option whose
trigger point is L, exercise price is K and maturity time is T . Then the price of this American
up-and-out put option for Model (2) is

fuo =
1
2
E

[
sup

0≤t≤T
exp(−at)

(
1 − IL

(
sup

0≤s≤t
Zs

))
(K − Zt)+

]

+
1
2
E

[
sup

0≤t≤T
exp(−βt)

(
1 − IL

(
sup

0≤s≤t
Zs

))
Z0(K/Zt − 1)+

]
.

Theorem 4.2 Assuming that there exists an American up-and-out put option whose trig-
ger point is L, exercise price is K and maturity time is T . Then the price of this American
up-and-out put option is controlled by the following equality

fuo =
1
2

∫ b

0

sup
0≤t≤T

exp(−at)

(
K − Z0 exp

(
μt +

√
3υt

π
ln

α

1 − α

))+

dα

+
1
2

∫ b

0

sup
0≤t≤T

exp(−βt)

(
K/ exp

(
μt +

√
3υt

π
ln

α

1 − α

)
− Z0

)+

dα,

in which

b =
(

1 + exp
(

π(μt + ln Z0 − ln L)√
3υt

))−1

.

Proof In the first place, we verify that the following uncertain variable

sup
0≤t≤T

exp(−at)
(

1 − IL

(
sup

0≤s≤t
Zs

))
(K − Zt)+
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possesses the inverse uncertain distribution

φ−1(α) = sup
0≤t≤T

exp(−at)
(

1 − IL

(
sup

0≤s≤t
Z1−α

s

))
(K − Z1−α

t )+,

in which

Z1−α
t = Z0 exp

(
μt +

√
3υt

π
ln

α

1 − α

)
.

Since{
sup

0≤t≤T
exp(−at)

(
1−IL

(
sup

0≤s≤t
Zs

))
(K−Zt)+≤ sup

0≤t≤T
exp(−at)

(
1−IL

(
sup

0≤s≤t
Z1−α

s

))
(K−Z1−α

t )+
}

⊇
{

sup
0≤s≤t

Zs ≥ sup
0≤s≤t

Z1−α
s , Zt ≥ Z1−α

t , t ∈ [0, T ]
}

⊇{Zt ≥ Z1−α
t , t ∈ [0, T ]

}
and{

sup
0≤t≤T

exp(−at)
(
1−IL

(
sup

0≤s≤t
Zs

))
(K−Zt)+ > sup

0≤t≤T
exp(−at)

(
1−IL

(
sup

0≤s≤t
Z1−α

s

))
(K−Z1−α

t )+
}

⊇
{

sup
0≤s≤t

Zs < sup
0≤s≤t

Z1−α
s , Zt < Z1−α

t , t ∈ [0, T ]
}

⊇{Zt < Z1−α
t , t ∈ [0, T ]

}
,

we obtain

M

{
sup

0≤t≤T
exp(−at)

(
1−IL

(
sup

0≤s≤t
Zs

))
(K−Zt)+≤ sup

0≤t≤T
exp(−at)

(
1−IL

(
sup

0≤s≤t
Z1−α

s

))
(K−Z1−α

t )+
}

≥M
{
Zt ≥ Z1−α

t , t ∈ [0, T ]
}

=α (17)

and

M

{
sup

0≤t≤T
exp(−at)

(
1−IL

(
sup

0≤s≤t
Zs

))
(K−Zt)+ > sup

0≤t≤T
exp(−at)

(
1−IL

(
sup

0≤s≤t
Z1−α

s

))
(K−Z1−α

t )+
}

≥M
{
Zt < Z1−α

t , t ∈ [0, T ]
}

=1 − α (18)

by Theorem 2.2 and Theorem 2.10.
According to duality axiom, we have

M

{
sup

0≤t≤T
exp(−at)

(
1−IL

(
sup

0≤s≤t
Zs

))
(K−Zt)+≤ sup

0≤t≤T
exp(−at)

(
1−IL

(
sup

0≤s≤t
Z1−α

s

))
(K−Z1−α

t )+
}

+M

{
sup

0≤t≤T
exp(−at)

(
1−IL

(
sup

0≤s≤t
Zs

))
(K−Zt)+ > sup

0≤t≤T
exp(−at)

(
1−IL

(
sup

0≤s≤t
Z1−α

s

))
(K−Z1−α

t )+
}

=1. (19)
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It follows form Equations (17)–(19) that

M

{
sup

0≤t≤T
exp(−at)

(
1−IL

(
sup

0≤s≤t
Zs

))
(K−Zt)+≤ sup

0≤t≤T
exp(−at)

(
1−IL

(
sup

0≤s≤t
Z1−α

s

))
(K−Z1−α

t )+
}

=α.

Then the uncertain variable

sup
0≤t≤T

exp(−at)
(

1 − IL

(
sup

0≤s≤t
Zs

))
(K − Zt)+

possesses the inverse uncertain distribution which is

φ−1(α) = sup
0≤t≤T

exp(−at)
(

1 − IL

(
sup

0≤s≤t
Z1−α

s

))
(K − Z1−α

t )+.

So the following equality

fuo =
∫ 1

0

sup
0≤t≤T

exp(−at)
(

1 − IL

(
sup

0≤s≤t
Z1−α

s

))
(K − Z1−α

t )+dα

holds due to Theorem 2.5.
In the second place, we verify that the following uncertain variable

sup
0≤t≤T

exp(−βt)
(

1 − IL

(
sup

0≤s≤t
Zs

))
(K/Zt − 1)+

possesses the inverse uncertain distribution

φ−1(α) = sup
0≤t≤T

exp(−βt)
(

1 − IL

(
sup

0≤s≤t
Z1−α

s

))
(K/Z1−α

t − 1)+,

in which

Z1−α
t = Z0 exp

(
μt +

√
3υt

π
ln

α

1 − α

)
.

Since{
sup

0≤t≤T
exp(−βt)

(
1−IL

(
sup

0≤s≤t
Zs

))
(K/Zt−1)+≤ sup

0≤t≤T
exp(−βt)

(
1−IL

(
sup

0≤s≤t
Z1−α

s

))
(K/Z1−α

t −1)+
}

⊇
{

sup
0≤s≤t

Zs ≥ sup
0≤s≤t

Z1−α
s , Zt ≥ Z1−α

t , t ∈ [0, T ]
}

⊇{Zt ≥ Z1−α
t , t ∈ [0, T ]

}
and{

sup
0≤t≤T

exp(−βt)
(
1−IL

(
sup

0≤s≤t
Zs

))
(K/Zt−1)+> sup

0≤t≤T
exp(−βt)

(
1−IL

(
sup

0≤s≤t
Z1−α

s

))
(K/Z1−α

t −1)+
}

⊇
{

sup
0≤s≤t

Zs < sup
0≤s≤t

Z1−α
s , Zt < Z1−α

t , t ∈ [0, T ]
}

⊇{Zt < Z1−α
t , t ∈ [0, T ]

}
,
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we obtain

M

{
sup

0≤t≤T
exp(−βt)

(
1−IL

(
sup

0≤s≤t
Zs

))
(K/Zt−1)+≤ sup

0≤t≤T
exp(−βt)

(
1−IL

(
sup

0≤s≤t
Z1−α

s

))
(K/Z1−α

t −1)+
}

≥M
{
Zt ≥ Z1−α

t , st ∈ [0, T ]
}

=α (20)

and

M

{
sup

0≤t≤T
exp(−βt)

(
1−IL

(
sup

0≤s≤t
Zs

))
(K/Zt−1)+ > sup

0≤t≤T
exp(−βt)

(
1−IL

(
sup

0≤s≤t
Z1−α

s

))
(K/Z1−α

t −1)+
}

≥M
{
Zt < Z1−α

t , t ∈ [0, T ]
}

=1 − α (21)

by Theorem 2.2 and Theorem 2.10.
According to duality axiom, we have

M

{
sup

0≤t≤T
exp(−βt)

(
1−IL

(
sup

0≤s≤t
Zs

))
(K/Zt−1)+≤ sup

0≤t≤T
exp(−βt)

(
1−IL

(
sup

0≤s≤t
Z1−α

s

))
(K/Z1−α

t −1)+
}

+M

{
sup

0≤t≤T
exp(−βt)

(
1−IL

(
sup

0≤s≤t
Zs

))
(K/Zt−1)+ > sup

0≤t≤T
exp(−βt)

(
1−IL

(
sup

0≤s≤t
Z1−α

s

))
(K/Z1−α

t −1)+
}

=1. (22)

It follows from Equations (20)–(22) that

M

{
sup

0≤t≤T
exp(−βt)

(
1−IL

(
sup

0≤s≤t
Zs

))
(K/Zt−1)+≤ sup

0≤t≤T
exp(−βt)

(
1−IL

(
sup

0≤s≤t
Z1−α

s

))
(K/Z1−α

t −1)+
}

=α.

Then the uncertain variable

sup
0≤t≤T

exp(−βt)
(

1 − IL

(
sup

0≤s≤t
Zs

))
(K/Zt − 1)+

possesses the inverse uncertain distribution which is

φ−1(α) = sup
0≤t≤T

exp(−βt)
(

1 − IL

(
sup

0≤s≤t
Z1−α

s

))
(K/Z1−α

t − 1)+.

So the following equality

fuo =
∫ 1

0

sup
0≤t≤T

exp(−βt)
(

1 − IL

(
sup

0≤s≤t
Z1−α

s

))
(K/Z1−α

t − 1)+dα

holds due to Theorem 2.5.
Moreover, the equation

IL

(
sup

0≤s≤t
Z1−α

s

)
= 0
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holds if and only if

sup
0≤t≤T

Z1−α
t = sup

0≤t≤T
Z0

(
μt +

√
3υt

π
ln

α

1 − α

)
< L (23)

holds for arbitrary given t ∈ [0, T ].
Because of Z0 < L, (23) can be reduced to

Z0

(
μT +

√
3υT

π
ln

α

1 − α

)
< L,

which shows that

α <

(
1 + exp

(
π(μT + ln Z0 − ln L)√

3υT

))−1

� b.

Consequently, the pricing formula of American up-and-out put option is

fuo =
1
2

∫ 1

0

sup
0≤t≤T

exp(−at)
(

1 − IL

(
sup

0≤s≤t
Z1−α

s

))
(K − Z1−α

t )+dα

+
1
2

∫ 1

0

sup
0≤t≤T

exp(−βt)
(

1 − IL

(
sup

0≤s≤t
Z1−α

s

))
Z0(K/Z1−α

t − 1)+dα

=
1
2

∫ b

0

sup
0≤t≤T

exp(−at)(K − Z1−α
t )+dα +

1
2
Z0

∫ b

0

sup
0≤t≤T

exp(−βt)(K/Z1−α
t − 1)+dα

=
1
2

∫ b

0

sup
0≤t≤T

exp(−at)

(
K − Z0 exp

(
μT +

√
3υT

π
ln

α

1 − α

))+

dα

+
1
2

∫ b

0

sup
0≤t≤T

exp(−βt)

(
K/ exp

(
μT +

√
3υT

π
ln

α

1 − α

)
− Z0

)+

dα.

Thus, the proof is finished.

Corollary 4.3 Let fuo be the price of American up-and-out put option under uncertain
currency Model (2). Then,

1) fuo is a decreasing function of a. 2) fuo is a decreasing function of β.
3) fuo is a decreasing function of μ. 4) fuo is a decreasing function of υ.
5) fuo is a decreasing function of Z0. 6) fuo is an increasing function of K.

Example 4.4 Considering Model (2) where we set a = 0.03, β = 0.025, μ = −0.02, υ =
0.05. And assuming that Z0 = 10, K = 7, T = 10, L = 12. Then fuo = 2.6565 according to
Theorem 4.2.

In Figure 3, we directly obtain that fuo is monotonously increasing with respect to L pro-
viding the other parameters are unchanged.
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Figure 3 The price fuo in regard to barrier level L in Example 4.4

For another thing, we study the down-and-out scenario that is of no effect in which the
exchange rate is above the trigger point L and goes down within its maturity time. In the
uncertain finance market, the currency model for the American down-and-out call option whose
exercise price is K, maturity time is T and trigger point is L was defined by Model (2).

Assume that the contract price is fdo in domestic currency. At time 0, the buyer pays fdo

to purchase the contract. And the buyer possesses a present value of the revenue in domestic
currency at time t which is

sup
0≤t≤T

IL

(
inf

0≤s≤t
Zs

)
(Zt − K)+.

So at time 0, the net revenue of the buyer is

−fdo + sup
0≤t≤T

exp(−at)IL

(
inf

0≤s≤t
Zs

)
(Zt − K)+.

In contrast, at time 0, the seller obtains fdo. And the seller obtains (1 − K/Zt)+ in foreign
currency at time t, then the seller need to pay

sup
0≤t≤T

IL

(
inf

0≤s≤t
Zs

)
Z0(1 − K/Zt)+.

So at time 0, the net revenue of the seller is

fdo − sup
0≤t≤T

exp(−βt)IL

(
inf

0≤s≤t
Zs

)
Z0(1 − K/Zt)+.

The derived contract price should make the expected revenues of the buyer and the seller
equal, which means that,

− fdo + E

[
sup

0≤t≤T
exp(−at)IL

(
inf

0≤s≤t
Zs

)
(Zt − K)+

]

=fdo − E

[
sup

0≤t≤T
exp(−βt)IL

(
inf

0≤s≤t
Zs

)
Z0(1 − K/Zt)+

]
.
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Through the above analysis, we give the pricing formula as follows.

Definition 4.5 Assuming that there exists an American down-and-out call option whose
trigger point is L, exercise price is K and maturity time is T . Then the price of this American
down-and-out call option for Model (2) is

fdo =
1
2
E

[
sup

0≤t≤T
exp(−at)IL

(
inf

0≤s≤t
Zs

)
(Zt − K)+

]

+
1
2
E

[
sup

0≤t≤T
exp(−βt)IL

(
inf

0≤s≤t
Zs

)
Z0(1 − K/Zt)+

]
.

Theorem 4.6 Assuming that there exists an American down-and-out call option whose
trigger point is L, exercise price is K and maturity time is T . Then the price of this American
down-and-out call option is controlled by the following equality

fdo =
1
2

∫ 1

b

sup
0≤t≤T

exp(−at)

(
Z0 exp

(
μt +

√
3υt

π
ln

α

1 − α

)
− K

)+

dα

+
1
2

∫ 1

b

sup
0≤t≤T

exp(−βt)

(
Z0 − K/ exp

(
μt +

√
3υt

π
ln

α

1 − α

))+

dα

in which

b =
(

1 + exp
(

π(μt + ln Z0 − ln L)√
3υt

))−1

.

Proof In the first place, we verify that the following uncertain variable

sup
0≤t≤T

exp(−at)IL

(
inf

0≤s≤t
Zs

)
(Zt − K)+

possesses the inverse uncertain distribution

φ−1(α) = sup
0≤t≤T

exp(−at)IL

(
inf

0≤s≤t
Zα

s

)
(Zα

t − K)+,

in which

Zα
t = Z0 exp

(
μt +

√
3υt

π
ln

α

1 − α

)
.

Since{
sup

0≤t≤T
exp(−at)IL

(
inf

0≤s≤t
Zs

)
(Zt − K)+ ≤ sup

0≤t≤T
exp(−at)IL

(
inf

0≤s≤t
Zα

s

)
(Zα

t − K)+
}

⊇
{

inf
0≤s≤t

Zs ≤ inf
0≤s≤t

Zα
s , Zt ≤ Zα

t , t ∈ [0, T ]
}

⊇{Zt ≤ Zα
t , t ∈ [0, T ]}
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and{
sup

0≤t≤T
exp(−at)IL

(
inf

0≤s≤t
Zs

)
(Zt − K)+ > sup

0≤t≤T
exp(−at)IL

(
inf

0≤s≤t
Zα

s

)
(Zα

t − K)+
}

⊇
{

inf
0≤s≤t

Zs > inf
0≤s≤t

Zα
s , Zt > Zα

t , t ∈ [0, T ]
}

⊇{Zt > Zα
t , t ∈ [0, T ]} ,

we obtain

M

{
sup

0≤t≤T
exp(−at)IL

(
inf

0≤s≤t
Zs

)
(Zt − K)+ ≤ sup

0≤t≤T
exp(−at)IL

(
inf

0≤s≤t
Zα

s

)
(Zα

t − K)+
}

≥M {Zt ≤ Zα
t , t ∈ [0, T ]}

=α (24)

and

M

{
sup

0≤t≤T
exp(−at)IL

(
inf

0≤s≤t
Zs

)
(Zt − K)+ > sup

0≤t≤T
exp(−at)IL

(
inf

0≤s≤t
Zα

s

)
(Zα

t − K)+
}

≥M {Zt > Zα
t , t ∈ [0, T ]}

=1 − α (25)

by Theorem 2.2 and Theorem 2.10.
According to duality axiom, we have

M

{
sup

0≤t≤T
exp(−at)IL

(
inf

0≤s≤t
Zs

)
(Zt − K)+ ≤ sup

0≤t≤T
exp(−at)IL

(
inf

0≤s≤t
Zα

s

)
(Zα

t − K)+
}

+M

{
sup

0≤t≤T
exp(−at)IL

(
inf

0≤s≤t
Zs

)
(Zt − K)+ > sup

0≤t≤T
exp(−at)IL

(
inf

0≤s≤t
Zα

s

)
(Zα

t − K)+
}

=1. (26)

It follows from Equations (24)–(26) that

M

{
sup

0≤t≤T
exp(−at)IL

(
inf

0≤s≤t
Zs

)
(Zt−K)+≤ sup

0≤t≤T
exp(−at)IL

(
inf

0≤s≤t
Zα

s

)
(Zα

t −K)+
}

=α.

Then the uncertain variable

sup
0≤t≤T

exp(−at)IL

(
inf

0≤s≤t
Zs

)
(Zt − K)+

possesses the inverse uncertain distribution which is

φ−1(α) = sup
0≤t≤T

exp(−at)IL

(
inf

0≤s≤t
Zα

s

)
(Zα

t − K)+.

So the following equality

fdo =
∫ 1

0

sup
0≤t≤T

exp(−at)IL

(
inf

0≤s≤t
Zα

s

)
(Zα

t − K)+dα
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holds due to Theorem 2.5.
In the second place, we verify that the following uncertain variable

sup
0≤t≤T

exp(−βt)IL

(
inf

0≤s≤t
Zs

)
(1 − K/Zt)+

possesses the inverse uncertain distribution

φ−1(α) = sup
0≤t≤T

exp(−βt)IL

(
inf

0≤s≤t
Zα

s

)
(1 − K/Zα

t )+,

in which

Zα
t = Z0 exp

(
μt +

√
3υt

π
ln

α

1 − α

)
.

Since{
sup

0≤t≤T
exp(−βt)IL

(
inf

0≤s≤t
Zs

)
(1 − K/Zt)+≤ sup

0≤t≤T
exp(−βt)IL

(
inf

0≤s≤t
Zα

s

)
(1 − K/Zα

t )+
}

⊇
{

inf
0≤s≤t

Zs ≤ inf
0≤s≤t

Zα
s , Zt ≤ Zα

t , t ∈ [0, T ]
}

⊇{Zt ≤ Zα
t , t ∈ [0, T ]}

and{
sup

0≤t≤T
exp(−βt)IL

(
inf

0≤s≤t
Zs

)
(1 − K/Zt)+ > sup

0≤t≤T
exp(−βt)IL

(
inf

0≤s≤t
Zα

s

)
(1 − K/Zα

t )+
}

⊇
{

inf
0≤s≤t

Zs > inf
0≤s≤t

Zα
s , Zt > Zα

t , t ∈ [0, T ]
}

⊇{Zt > Zα
t , t ∈ [0, T ]} ,

we obtain

M

{
sup

0≤t≤T
exp(−βt)IL

(
inf

0≤s≤t
Zs

)
(1−K/Zt)+≤ sup

0≤t≤T
exp(−βt)IL

(
inf

0≤s≤t
Zα

s

)
(1−K/Zα

t )+
}

≥M {Zt ≤ Zα
t , st ∈ [0, T ]}

=α (27)

and

M

{
sup

0≤t≤T
exp(−βt)IL

(
inf

0≤s≤t
Zs

)
(1−K/Zt)+ > sup

0≤t≤T
exp(−βt)IL

(
inf

0≤s≤t
Zα

s

)
(1−K/Zα

t )+
}

≥M {Zt > Zα
t , t ∈ [0, T ]}

=1 − α (28)

by Theorem 2.2 and Theorem 2.10.
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According to duality axiom, we have

M

{
sup

0≤t≤T
exp(−βt)IL

(
inf

0≤s≤t
Zs

)
(1−K/Zt)+≤ sup

0≤t≤T
exp(−βt)IL

(
inf

0≤s≤t
Zα

s

)
(1−K/Zα

t )+
}

+M

{
sup

0≤t≤T
exp(−βt)IL

(
inf

0≤s≤t
Zs

)
(1−K/Zt)+ > sup

0≤t≤T
exp(−βt)IL

(
inf

0≤s≤t
Zα

s

)
(1−K/Zα

t )+
}

=1. (29)

It follows from Equations (27)–(29) that

M

{
sup

0≤t≤T
exp(−βt)IL

(
inf

0≤s≤t
Zs

)
(1−K/Zt)+≤ sup

0≤t≤T
exp(−βt)IL

(
inf

0≤s≤t
Zα

s

)
(1−K/Zα

t )+
}

=α.

Then the uncertain variable

sup
0≤t≤T

exp(−βt)IL

(
inf

0≤s≤t
Zs

)
(1 − K/Zt)+

possesses the inverse uncertain distribution which is

φ−1(α) = sup
0≤t≤T

exp(−βt)IL

(
inf

0≤s≤t
Zα

s

)
(1 − K/Zα

t )+.

So the following equality

fdo =
∫ 1

0

sup
0≤t≤T

exp(−βt)IL

(
inf

0≤s≤t
Zα

s

)
(1 − K/Zα

t )+dα

holds due to Theorem 2.5.
Moreover, the equation

IL

(
inf

0≤s≤t
Zα

s

)
= 1

holds if and only if

inf
0≤s≤t

Zα
s = inf

0≤t≤T
Z0

(
μt +

√
3υt

π
ln

α

1 − α

)
≥ L (30)

holds for arbitrary given t ∈ [0, T ].
Because of Z0 ≥ L, (30) can be reduced to

Z0

(
μT +

√
3υT

π
ln

α

1 − α

)
≥ L,

which shows that

α ≥
(

1 + exp
(

π(μT + ln Z0 − ln L)√
3υT

))−1

� b.
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Consequently, the pricing formula of American down-and-out call option is

fdo =
1
2

∫ 1

0

sup
0≤t≤T

exp(−at)IL

(
inf

0≤s≤t
Zα

s

)
(Zα

t − K)+dα

+
1
2

∫ 1

0

sup
0≤t≤T

exp(−βt)IL

(
inf

0≤s≤t
Zα

s

)
Z0(1 − K/Zα

t )+dα

=
1
2

∫ 1

b

sup
0≤t≤T

exp(−at)(Zα
t − K)+dα +

1
2
Z0

∫ 1

b

sup
0≤t≤T

exp(−βt)(1 − K/Zα
t )+dα

=
1
2

∫ 1

b

sup
0≤t≤T

exp(−at)

(
Z0 exp

(
μT +

√
3υT

π
ln

α

1 − α

)
− K

)+

dα

+
1
2

∫ 1

b

sup
0≤t≤T

exp(−βt)

(
Z0 − K/ exp

(
μT +

√
3υT

π
ln

α

1 − α

))+

dα.

Thus, the proof is finished.

Corollary 4.7 Let fdo be the price of American down-and-out call option under uncertain
currency Model (2). Then,

1) fdo is a decreasing function of a. 2) fdo is a decreasing function of β.
3) fdo is an increasing function of μ. 4) fdo is an increasing function of υ.
5) fdo is an increasing function of Z0. 6) fdo is a decreasing function of K.

Example 4.8 Considering Model (2) where we set a = 0.03, β = 0.025, μ = 0.04, υ =
0.05. And assuming that Z0 = 10, K = 15, T = 10, L = 8. Then fdo = 4.8205 according to
Theorem 4.6.

In Figure 4, we directly obtain that fdo is monotonously decreasing with respect to L

providing the other parameters are unchanged.

Figure 4 The price fdo in regard to barrier level L in Example 4.8
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5 Conclusions

Based on the study of American barrier options for a currency model in uncertain finance
market, our paper obtains some pricing formulas of American barrier options, including four
types: up-and-in, down-and-in, up-and-out and down-and-out. Under the foreshadowing of
this paper, in the future, we can continue to research multi-asset barrier options and derive the
corresponding pricing formulas.
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