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Abstract Biological systems can be modeled and described by biological networks. Biological net-

works are typical complex networks with widely real-world applications. Many problems arising in

biological systems can be boiled down to the identification of important nodes. For example, biomedi-

cal researchers frequently need to identify important genes that potentially leaded to disease phenotypes

in animal and explore crucial genes that were responsible for stress responsiveness in plants. To facili-

tate the identification of important nodes in biological systems, one needs to know network structures

or behavioral data of nodes (such as gene expression data). If network topology was known, various

centrality measures can be developed to solve the problem; while if only behavioral data of nodes were

given, some sophisticated statistical methods can be employed. This paper reviewed some of the recent

works on statistical identification of important nodes in biological systems from three aspects, that is,

1) in general complex networks based on complex networks theory and epidemic dynamic models; 2)

in biological networks based on network motifs; and 3) in plants based on RNA-seq data. The iden-

tification of important nodes in a complex system can be seen as a mapping from the system to the

ranking score vector of nodes, such mapping is not necessarily with explicit form. The three aspects

reflected three typical approaches on ranking nodes in biological systems and can be integrated into

one general framework. This paper also proposed some challenges and future works on the related

topics. The associated investigations have potential real-world applications in the control of biological

systems, network medicine and new variety cultivation of crops.
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1 Introduction

Complex network science has interfused with many other scientific areas and has wider and
wider real-world applications[1–6]. Plenty of real-world systems can be described or modeled
by complex networks. Such as WWW, Internet, citation networks among scientific journals or
authors, social systems and biological systems. Among which, biological systems are typical
complex systems[1, 7–16].

Biological systems can be described by complex networks at different levels, generally in-
cluding transcriptional regulatory networks (TRNs), gene regulatory networks (GRNs), protein-
protein interaction (PPI) networks, metabolic networks, signaling networks, and so on[7]. Social
networks are another typical example of complex networks. Spreading phenomena in social
networks are ubiquitous, especially for epidemic spreading[17–20], such as SARS[21, 22], SARS-
CoV-2[23–25]. Structure of social networks may affect disease spreading, and thus infectious
diseases should be controlled via different approaches in different types of networks. Therefore,
one should put the investigation of disease transmission and control in complex social networks.
Before the complex network science was widely known, scientists mainly considered the spread-
ing rules of diseases, seldom considered the topological structures of social networks. Network
topological structures have strong effects on epidemic spreading[18–20]. Existing works reported
that infectious disease can be easily spreading among people in scale-free networks[26–28]. Un-
fortunately, many real-world systems have the scale-free property, which indicates that it is
actually difficult to control spreading phenomena in scale-free networks through control trans-
mission strengths, unless spreaders were isolated[28].

Finding influential spreaders is the first step to control infectious disease spreading or design
immunization strategies in social networks. Generally, nodes in complex systems are hetero-
geneous, indicating that nodes with different topological features or dynamical behaviors may
have great differences on infection scopes, thus, a fundamental question is how to rank nodes
in a complex system? Or in other word, how to identify important nodes? In fact, under
different circumstances, important nodes have different meanings. From the epidemic perspec-
tive in complex networks, important nodes are equivalent to influential spreaders, nodes with
high propagation capability/spreading scope[29], and so on. From the functional perspective
in biological systems, important nodes may mean important genes[30], or disease genes[31], or
functional genes[11–16, 32, 33]. In the following, we indiscriminately call important nodes as key
nodes, crucial nodes, and so on.

Many problems in real-world systems can be boiled down to the identification of important
nodes[19, 32, 33]. For example, the identification of influential spreaders in social networks, the
identification of biomarkers or disease-causing genes in biological systems, the screening of
stress responsive crucial genes in plants, and the selection of key points in electrical systems.
To facilitate the identification of important nodes in biological systems, one needs to know
either network structures among entities in the systems or behavioral data of entities. Once
we obtained the networks or data from the biological systems, one of our ultimate goals was to
identify the most important entities in the system.
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A complex network consists of nodes and edges[1]. Mathematically, it can be described
by an adjacency matrix A = (aij)n×n. Here, n denotes the number of nodes in the complex
network. The elements of the adjacency matrix A are always non-negative, aij > 0 if node i

and node j were connected, otherwise, aij = 0. Moreover, if aij = aji for any node i and j, we
call network A is undirected, otherwise, it is directed; If aij took either 0 or 1, then it is called
an unweighted network; Otherwise, it is weighted. Mathematically, node ranking in a complex
network is equivalent to find a mapping[29] from the network A = (aij)n×n to node importance
vector S = (s1, s2, · · · , sn)T:

F : A −→ S. (1)

Here, si represents the importance of node i in the network. Additionally, if there were some
further node attributes (such as functional annotations of genes, gene expression profiles in
different samples) described by matrix B = (bij)n×d and edge attributes (such as repression or
activation) described by matrix C = (cij)n×h, then the mapping may be written as:

F : f(A, B, C) −→ S. (2)

Here, d represents the maximum number of node attributes, n represents the total number of
nodes in the network, and h denotes the maximum degree of nodes. cij represents the value
of edge attribute for the j’th edge of node i. f(A, B, C) was a function of A, B, C. Actually,
the problem can be degenerated into a network embedding problem or dimensional reduction
problem[34, 35]. It is noted that the mapping F or function f(·) can be with explicit form, but
usually, it is difficult to find the explicit form, such as those methods based on the integration
of matrices A, B, C.

With the rapid development of complex network science, various methods have been estab-
lished to rank nodes if topological structure of complex networks were known[19]. These methods
include the neighbor-based methods, path-based methods, iterative refinement measures and so
on. But different methods have different advantages and different scopes of applications; There
are no universal methods for all cases. Therefore, new measures are continuously proposed.
Especially, with the rapid development of big data, some sophisticated statistical methods[36]

have been proposed to deal with the cases where only behavioral data of entities in the complex
system were known. In this paper, we introduce some works on the statistical identification
of important nodes from three aspects, including our works in general complex networks[29],
in biological networks[30, 37] and based on RNA-seq data[32]. The three approaches depend
on different conditions, which can be integrated into one general framework, and seen as the
dimensional reduction problems. The rest paper is organized as follows. From Sections 2 to 4,
we introduce the three aspects of works, and in the last Section 5, we propose some challenge
problems of the related topics and give some concluding remarks.
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2 Statistical Identification of Important Nodes in General Complex

Networks

2.1 The SpectralRank and Weighted SpectralRank Algorithms

Generally, the importance of a node in a complex network can be reflected by the quantity
and quality of its neighbors, as well as the shortest paths that pass from this node. Thus, many
neighbor-based methods, path-based methods and iterative refinement measures have been
proposed[19]. Neighbor-based methods include degree centrality, semi-local centrality, k-shell,
h-index, ING[38]; path-based methods include betweenness centrality, eccentricity, closeness,
Katz centrality; PageRank (PR)[39], LeaderRank[40, 41] (LR), and eigenvector centrality are
iterative refinement measures[19]. The mentioned measures have broad applications in real-
world systems. For example, the well-known PR algorithm was originally used by Google to
rank websites.

Each measure has limited scopes of applications and many of them can not be well explained
through statistical theory[29]. For example, for the PR and LR algorithms in a degree uncor-
related network, based on mean-field theory, we proved that the average importance score for
nodes within the node group with degree k = (kout, kin) is proportional to kin, that is,

s(k) ≈ θkin, θ = n/[(n + 1)〈kin〉]. (3)

Here, s(k) is the average importance score for nodes within the node group with degree k =
(kout, kin). kout, kin denote out-degree and in-degree respectively. n denotes the number of
nodes in the complex network. 〈kin〉 denotes the average in-degree of the network.

Similar to the LR, by adding a ground node that was bidirectionally connected all the n

nodes in the network, we propose two novel algorithms to rank node’s propagation capability,
which are called Spectralrank (SR) and weighted Spectralrank (WSR)[29]. Mathematically, the
algorithms are described as:

S = c ˜AS, (4)

Sw = cWSw. (5)

Here, S denotes the SR score and Sw denotes the WSR score; ˜A is the adjacency matrix of the
augmented network,

˜A =

⎛

⎝

A 1n

1T
n 0

⎞

⎠ . (6)

W = ˜A + P , P = diag{p1, p2, · · · , pn, pn+1} is a priori knowledge of node’s importance score,
and we always set pn+1 = 0 for the ground node. c is a tuning parameter and is usually selected
as the reciprocal of dominant eigenvalue of ˜A or W , that is c = 1/λ1. On the basis of this fact,
the SR and WSR scores reduce to the dominant eigenvectors of ˜A and W , respectively.

The algorithms include three steps: Firstly, we add a ground node to the graph, which
bidirectionally connected with all other nodes in the complex network. This step can make all
nodes in the network strongly connected. In the second step, if the WSR was considered, we
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add the a priori knowledge, which is a diagonal matrix, with values represent a priori knowledge
of node importance. If SR was considered, we omit the second step. We calculate the principle
eigenvector of the obtained matrix as SR or WSR score in the last step. Figure 1 shows an
illustrative example. If we consider the total degree of each node in the original network as a
priori knowledge, we obtain the following weighted augmented adjacency matrix:

W =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 1 0 0 1 0 0 1

1 3 0 0 0 0 0 1

0 1 2 1 0 0 0 1

0 0 1 2 0 0 0 1

1 0 0 1 3 1 0 1

0 0 0 0 0 1 0 1

0 1 0 0 0 0 1 1

1 1 1 1 1 1 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (7)

The dominant eigenvectors of ˜A and W can be obtained as follows:

S = (0.3676, 0.2774, 0.3280, 0.2660, 0.4034, 0.1715, 0.2514, 0.5951)T,

Sw = (0.4207, 0.3843, 0.3260, 0.2343, 0.5370, 0.1008, 0.1924, 0.4226)T.

Therefore, the ranks for the seven nodes in the original network according to the SR is

RankSR = (2, 4, 3, 5, 1, 7, 6)T

and
RankWSR = (2, 3, 4, 5, 1, 7, 6)T

corresponds to the WSR. Obviously, the rankings from the SR and WSR were quite similar,
except for nodes 2 and 3. This is because that the total degree for node 2 is 3, which is larger
than that for node 3, thus, if this priori knowledge was considered, the WSR ranks node 2 more
important than node 3.

A
A

AW P

Figure 1 An illustrative example[29]. (a) An augmented network with a ground

node. (b) The adjacency matrix of the original network. (c) The adjacency

matrix of the augmented network as shown in (a). (d) The augmented

adjacency matrix with a priori knowledge
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2.2 Statistical Explanation and Applications in Biological Networks

The algorithms are very simple and efficient. Moreover, we established some probability
frameworks to illustrate that the proposed algorithms are statistically meaningful[29]. For sim-
plicity, we considered undirected and unweighted complex networks, and we assumed that the
networks follow the fitness growth model, that is, the probability p(i, j) of adding an edge
between nodes i and j is proportional to the product of their importance scores si and sj :

p(i, j) ∝ sisj. (8)

Furthermore, we supposed that the generated networks follow the Boltzmann distribution[42]:

p(A; s) =
e−H(A;s)

ZA
, (9)

where the energy is given by the Hamiltonian function H(A; s) = −∑

i,j∈V aijsisj and ZA =
∑

A∈A p(A; s) is the partition constant. Note that this distribution coincides with the Ising
model without an external field[42]. A denotes the ensemble of all the generated networks.

Based on the above assumptions, the following conclusions were obtained:
1) The maximum likelihood estimation of importance score vector S in the fitness model is

exactly the eigenvector centrality of the network A under the constraint STS = 1. Furthermore,
c = 1/λ1 is the necessary condition of the maximum likelihood estimation:

S = arg max
s

log p(A; s) = arg max
s

∑

i,j∈V

aijsisj = arg max
s

sTAs. (10)

Here, s = (s1, s2, · · · , sn+1)T and sTs = 1, similarly hereinafter.
2) We assume that a priori distribution of s is governed by the conjugate a priori p(s) =

e−sTPs/ZF , ZF =
∫

p(s)ds is a partition constant. We deduced that the priori knowledge P

functioned as a L2 norm penalty, which can effectively prevent over-fitting:

S = argmax
s

log p(s|A) = argmax
s

log p(A|s) + log p(s)

= argmax
s

sTAs +
N

∑

i=1

s2
i P (i, i). (11)

3) The addition of the ground node is also a kind of L2 norm penalty, which can also prevent
over-fitting:

S = arg max
s

sTAs + sT

(

2
λ
1T1

)

s. (12)

For details, one can refer to [29].
The proposed algorithms were evaluated by 32 real-world networks[29]. The actual impor-

tance scores of nodes were simulated according to the SIR model. Each node was successively
set as initial spreader, and the final propagation scope of a node after the spreading process
reached its stable state was taken as its actual importance score. The actual average im-
portance score vector was obtained by averaging over 100 independent simulation runs. The
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Kendall correlation coefficient between actual importance score vector and S was used to eval-
uate the performance of the proposed algorithm. Numerical results show that the proposed
algorithms outperform many other existing algorithms, and it can be applied to binary net-
works, undirected and directed networks.

We also applied the algorithms to biological networks, including the neural network of C.
elegans, TRN of E. coli. Taken the command interneurons in the neural network, the 18
global regulators and 7 key global regulators in the TRN as gold standards, we performed ROC
analysis, results show that the proposed algorithms also have good performance in biological
networks. The applicability of the algorithms in biological networks indicated that functional
important transcription factors (TFs) or neurons may also play important roles in signaling
spreading.

v1

v2

v3

v4

v5

A

B

C

Figure 2 Network motif[43] and motif centrality[44]. Network motifs are patterns

that recur much more frequently in the real network (a) than in an ensem-

ble of randomized networks (b). Each node in the randomized networks

has the same number of incoming and outgoing edges as does the corre-

sponding node in the real network. Red dashed lines indicate edges that

participate in the FFL motif, which occurs five times in the real network.

(c) A target graph; (d) the FFL motif; (e) The FFL motif with three dif-

ferent roles A, B and C. (f) The motif-based centrality given by the FFL

without roles; (g) The extended motif-based centrality given by the FFL

with roles
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3 Statistical Identification of Important Nodes in Biological Networks

3.1 Network Motifs

Real-world biological networks are too complex, which have hindered our comprehensive
understanding of them. Fortunately, researchers have founded that biological networks consist
of simple regulatory circuits, called as network motifs[43]. Thus, investigations on network
motifs are the first step to the system level understanding of biological networks.

The concept of network motifs was proposed by Uri Alon and coauthors in the year 2002[43].
Network motifs are patterns of interconnections occurring in a complex network at numbers
that are significantly higher than those in randomized networks (Figures 2 a and b). For each
network, one generates hundreds of randomized networks. The number of a subgraph in the
real-world network is denoted as Nrl. The average number in random networks is denoted
as Nrd, with standard deviation denoted by Sd. The Zscore measures the significance of the
subgraph[43], which is defined as Zscore = (Nrl − Nrd)/Sd. Another index U is defined as the
number of times a subgraph appears in the investigated network with distinct sets of nodes.
Generally, subgraphs with Zscore ≥ 2, U ≥ 4 and Nrl − Nrd ≥ 0.1Nrd are identified as motifs.

Uri Alon and coauthors reported that the three-node feed-forward loop (FFL) is a typical
network motif. FFLs thus attracted wide attentions. Many works have been published to clarify
the relationships among structures, functions and dynamics of network motifs[45].

Network motifs are building blocks of complex biological networks, thus, they can be used to
evaluate node importance in biological networks. Previously, some researchers have considered
to use network motifs to rank nodes. For example, Koschützki, et al.[44] proposed a node
centrality measure based on the FFL and the role of each node in the FFL (Figures 2 c–g).
They counted the frequency of each node involved in the FFL according to three roles, and
nodes can be ranked by the sum of their total frequencies or according to each role. Except
that, network motifs have been also used to evaluate node importance in neuron networks[46–49].

3.2 A Novel Network Motif Centrality Measure for Directed Biological Networks

Motivated by existing works and network motifs, we proposed a new measure based on prin-
cipal component analysis (PCA)[50] for directed biological networks[30]. The proposed method
includes two steps: Motif counts and PCA analysis. Firstly, we detected all two-node, three-
node and four-node network motifs in a biological network, and we counted the frequency of
each node involved in each type of motifs, and then different motifs were weighted according to
their total frequencies. Finally, we performed PCA analysis on the obtained data and our new
measure was proposed as the first principal component.

Mathematically, suppose that there were totally m types of two-node, three-node and four-
node network motifs. We denoted the occurrences of node i in the j-th type of motif as
uij , i = 1, 2, · · · , n, j = 1, 2, · · · , m. Then, we derived a matrix U = (uij)n×m for the network.
In real-world networks, the importance of different types of motifs were varied. Therefore,
we endowed each motif with a weight wj , j = 1, 2, · · · , m, where wj = cj/

∑m
k=1 ck. Here,

ck (k = 1, 2, · · · , m) denotes the number of the k-th type of motif. Subsequently, we derived a
revised matrix B = (bij)n×m = (b1, b2, · · · , bm) = (wjuij)n×m. Based on B and the idea of the
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PCA[50], we constructed the following index to obtain importance score S for the n nodes in
the network:

S =
m

∑

j=1

αjbj . (13)

It was proved that the parameter vector α = (α1, α2, · · · , αm)T was just the eigenvector of the
dominant eigenvalue of the covariance matrix for matrix B[30]:

Σ =
1

n − 1
(BTB − nB B

T
).

Here, B is the column mean vector of matrix B. Figure 3 shows an illustrative example for the
proposed motif centrality[30].

a b d

c
v2 v3

v4

v5v6

v1

Node Frequency Node importance

M338 M3108
3

M26 Score S Rank

v1 6 1 0 4.0034 2

v2 1 1 1 0.6725 6

v3 6 2 2 4.0098 1

v4 3 0 0 1.9986 5

v5 5 1 0 3.3372

v6 3 1 1 2.0049 4

Num. M338 M3108 M26
4

1 v1,v2,v3 v1,v2,v3 v2, v3
2 v1, v3,v4 v3,v5,v6 v3, v6
3 v1, v3, v5
4 v1, v3, v6
5 v1, v4, v5
6 v1, v5, v6
7 v3, v4, v5
8 v3, v5, v6

Figure 3 An illustrative example for the proposed motif centrality[30]. (a) A simple

network with six nodes. (b) Subgraphs that are assumed to be motifs

in network (a). (c) Members that consist of the three types of motifs.

(d) Appearances of nodes in each motif and node importance rankings

according to the proposed motif centrality

We applied the proposed algorithm to five real-world biological networks, including the
neuronal network for C. elegan, TRNs for E. coli, drosophila and yeast, a signal transduction
network for human[30]. These networks encompassed hundreds to thousands of nodes, and tens
to tens of thousands of network motifs. ROC curve analysis revealed that the proposed method
can well identify command interneurons in the neuron network, and global regulators in the
TRN for E. coli. The proposed algorithm can exclude not important hubs but rank non-hub
and actually important nodes at the top. Moreover, based on rich-club analysis, the proposed
algorithm can also help us to find densely connected clusters, the top ranked nodes were more
densely connected than those identified by the other methods.
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3.3 An Integrative Measure for Undirected PPI Network: An Extension of the
Motif Centrality

The above work only considered directed biological networks. PPI networks are generally
undirected. Extensive measures have been proposed to evaluate the structural importance of a
node in a complex network[19]. Motivated by the proposed motif centrality and based on PCA,
by integrating different centrality measures via PCA, we proposed an integrative measure in PPI
networks, which can help to identify structural dominant proteins (SDPs)[37]. The proposed
measures can integrate many existing measures (Figure 4). For simplicity, we considered the
well-known degree centrality, betweenness, closeness, k-shell, semi-local centrality and motif
centrality measures, and integrated them together.

Based on literature survey and existing databases, we constructed several real-world PPI
networks with different sizes for the yeast. Moreover, in order to see the evolution of SDPs, we
also constructed artificial PPIs, which are based on the duplication-divergence (DD) model[37].
We considered the anti-preference duplication process and the edge deletion, dimerization, edge
addition and isolated node removal divergence processes. The DD model can generate an
ensemble of random networks. The artificial PPI networks have similar topological features as
the real-world ones with fine tuning parameters in the DD model[37].

By applying the algorithm to the constructed PPI networks, we can find SDPs in the PPI
networks. Moreover, we found that only a small fraction of proteins were structurally dominant.
SDPs evolved more slowly than unimportant nodes. Targeted mutations on SDPs can keep
certain robustness, as compared with targeted mutations on hubs[37].

C : Degree

C2: Betweenness

C3: Closeness
C4: k-shell

C5: Semi-local 

C6: Motif 
centrality

…

Determine w, such that:  
Max Var(S) 

wTw=1, w=(w1,…,wm)T

S = ωi

i=1

m

∑ Ci

Figure 4 Basic idea of the integrative measure for undirected PPI network

4 Statistical Identification of Important Genes Based on RNA-Seq

Data

4.1 RNA-Seq

RNA sequencing (RNA-seq) uses the next generation sequencing (NGS) technologies to
reveal the presence and quantity of RNA molecules in biological samples. RNA-seq analyses
can be performed at four different levels: Sample-level, gene-level, transcript-level, and exon-
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level[51]. In the sample-level analysis, the results are usually summarized into a similarity
matrix. The gene-level analysis summarizes the counts of RNA-seq reads mapped to genes
in samples of different conditions, and it subsequently compares genes’ expression levels that
were calculated based on read counts. The transcript-level analysis focuses on reads mapped
to different isoforms. The exon-level analysis mostly considers the reads mapped to or skipping
the exon of interest.

A flow chart of RNA-seq analysis typically includes the following steps: Experimental design,
RNA sequencing, data analysis, biological mechanism clarification and experimental verification
(Figure 5). The first step is to design experiments and cultivate samples for certain purpose.
And then sequencing the samples via high-throughput sequencer and obtaining sequence data.
The subsequently complicated work is to perform data analysis. Such as sequence alignment,
finding differentially expressed genes (DEGs) and perform hypothesis test. One of the ulti-
mate goal of data analysis is to find important genes that cause phenotype variation among
experimental samples. Based on the selected genes, researchers can clarify the related molec-
ular mechanism. The obtained results should be verified according to qRT-PCR experiments
or functional verification (such as gene mutation experiments) for further applications in the
cultivation of new crop varieties[10, 32, 33].

Control              Treated
Experimental design RNA sequencing Data analysis

Molecular mechanismFunctional verification

Figure 5 A flow chart of RNA-seq analysis typically includes the following steps:

Experimental design, RNA sequencing, data analysis, biological mecha-

nism clarification and experimental verification

4.2 Important Genes Identification Based on RNA-Seq Data

As we have mentioned, one of the most important goal of RNA-seq data analysis is the
identification of important genes that possibly cause phenotype variation. Many methods have
been proposed to cope with this problem. Traditionally, log2 fold change values and hypothesis
tests are frequently used to select crucial DEGs[32, 33, 51]. If there are m treated samples and
m samples served as controls, and the expression values (FPKM, RPKM or other methods)
of gene i (i = 1, 2, · · · , n) in the treated samples are denoted as yi = (yi1, yi2, · · · , yim)T, and
those in the controlled samples are denoted as xi = (xi1, xi2, · · · , xim)T. The mean expression
values under treatment and control are denoted as yi and xi respectively. Then the log2 fold
change value for gene i was defined as:

log2(FCi) = log2(yi/xi). (14)
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log2(FCi) > 1 indicates that gene i was up-regulated under treatment in comparison with
control, and the expression under treatment was more than two times higher than that under
control; log2(FCi) < −1 indicates that gene i was down-regulated under treatment in compar-
ison with control, and the expression under control was more than two times higher than that
under treatment.

Moreover, one can perform hypothesis t test (the expression values of genes in repeated
samples under a certain condition are assumed to be normally distributed) to verify whether
the expression of gene i under treatment was significantly different from that under control.
Generally, due to experimental costs, the sample size m is very small. Thus, the revised t

statistic can be used to test the null hypothesis that the expression values of a gene between
the treated and the control samples have no significant difference, which is written as[52]:

ti =
yi − xi

√

s2
yi/m + s2

xi/m
. (15)

Here, s2
yi =

∑m
j=1(yij −yi)

2/(m−1), s2
xi =

∑m
j=1(xij −xi)2/(m−1). Under the null hypothesis,

the ti statistic follows the t distribution with degree of freedom:

dfi =
(m − 1)(s2

yi + s2
xi)

2

s4
yi + s4

xi

.

Conventionally, one can use | log2(FCi)| > 1 and Pi = p{|t(dfi)| > ti} < 0.05 as criterion
to evaluate whether gene i was a DEG. If there are too many DEGs, one can choose larger
threshold values for log2(FC) and P . For example, | log2(FCi)| > 2 and P < 0.01. Recently,
some novel methods to screen DEGs from RNA-seq data have been proposed, which were based
on the assumption that the read counts follow negative binomial distribution, and the related
R package DESeq[53] and DESeq2[54] were successively developed.

Except the above mentioned method, researchers have developed many other methods to
identify crucial genes from omics data. For example, Li, et al.[55], Chen, et al.[56] and Hou,
et al.[57] introduced the hidden Markov model (HMM) for genome-wide association studies
(GWAS). Among which, based on the HMM and the ‘guilt-by-rewiring’ principle of the gene
co-expression networks, Hou, et al.[57] identified disease genes in crohn’s disease and parkinson’s
disease.

In the following, taking one of our works on Brassica napus (B. napus) as an example, we
briefly introduce one work on the identification of important genes based on RNA-seq data[32].
The Brassica genus includes a diverse range of vegetable and oilseed crops which are important
for human nutrition, such as Brassica rapa (B. rapa), Brassica oleracea (B. oleracea) and B.
napus. The whole genome map for B. napus[58], B. rapa[59], and B. olercea[60] and Arabidopsis
thaliana[61] have been published, which facilitate us to genome-widely explore these species.

Plants encompass diverse TF families, such as AP2, bZIP, MYB, NAC and WRKY[32].
Some TF families are crucial for stress responsiveness in plants. Thus, the identification of TF
families in B. napus is an interesting yet important problem. Through gene and protein sequence
alignment, we identified five families of TFs in the four species. We genome-widely identified
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totally 2167 TFs in B. napus belonging to the five families, including 518 BnAP2/EREBPs,
252 BnbZIPs, 721 BnMYBs, 398 BnNACs and 278 BnWRKYs, which contained some novel
members in comparison with existing results[32].

We performed structural analysis, synteny analysis and cis-acting element analysis on the
identified TFs[32]. Sub-genome distributions of BnAP2/EREBPs and BnMYBs indicated that
the two families might have suffered from duplication and divergence during evolution. Phylo-
genetic analysis revealed that each TF family can be divided into several subfamilies according
to their sequence similarity. Synteny analysis revealed strong co-linearity between B. napus
and its two ancestors, although chromosomal rearrangements have occurred and 85 TFs were
lost. About 7.6% and 9.4% TFs of the five families in B. napus were novel genes and conserved
genes, which both showed preference on the C sub-genome.

To see the responsiveness of the five TF families under stress, we designed RNA-seq exper-
iments and obtained RNA-seq data. We cultivated B. napus seedings of 7-day-old as samples,
and we considered five treatments, including cold, heat, drought, salt and ABA, The seedlings
without any treatments were taken as controls. Seedlings were sampled at 12h after treat-
ments for RNA extraction. Each experiment was repeated three times. The samples were
sequenced by using the Illumina HiSeq 4000 platform. RNA-Seq data reveals that 449 of the
518 BnAP2/EREBPs, 227 of the 252 BnbZIPs, 585 of the 721 BnMYBs, 332 of the 398 Bn-
NACs, 241 of the 278 BnWRKYs respond to at least one of the five treatments. Based on
log2(FC) (based on FPKM values), hypothesis test and GO annotations, totally 315 crucial
DEGs were screened out, including 93 BnAP2/EREBPs, 42 BnbZIPs, 94 BnMYBs, 48 BnNACs
and 38 BnWRKYs.

GO enrichment analysis revealed that the 315 DEGs totally enriched in 213 biological pro-
cess terms (P < 0.01), including various biological regulation processes, responding to various
stimulus and diverse signaling pathways. Clustering analysis on expression values of the 315
DEGs revealed that crucial TFs in each family were hierarchically clustered[32]. The expression
profiles of crucial TFs under drought, salt and ABA were all similar in the five families. TFs
from the same subfamilies tended to be clustered.

For the 315 crucial TFs, based on gray correlation coefficient, we constructed gene co-
expression networks, and performed comparative analysis with homologous gene network of A
thalina. We found that the crucial TFs could trigger the differential expression of targeted
genes, resulting in a complex clustered network with clusters of genes responsible for targeted
stress responsiveness. To verify the reliability of the data, we verified 40 genes via qRT-PCR
experiments. qRT-PCR results revealed that the obtained data are reproducible[32].

5 Discussions and Conclusions

In this paper, we mainly reviewed some recent works on the identification of important nodes
in biological systems, which are based on three different approaches and depending on different
conditions. We have proposed the SR and WSR algorithms to evaluate node propagation capa-
bility in general complex networks, and we build a new probabilistic framework, which provides
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a theoretic understanding on eigenvector centrality, ground node and a priori knowledge in the
algorithm. The proposed SR and WSR can be seen as a mapping from the adjacency matrix A

of a complex network to node importance score S. We also proposed a network motif central-
ity for directed biological networks, which is based on PCA and network motif detection; We
further extended the idea of the motif centrality to undirected PPI networks, and we proposed
an integrative measure, which can be used to identify SDPs in PPI networks. The motif cen-
trality measure and the integrative measure can not be explicitly written as a mapping from
the adjacency matrix A of a complex network. However, the motif participation matrix U or
weighted matrix B is actually a function of the adjacency matrix A, which can be described
as B = g(A). Here, the function g(·) can not be explicitly written. In this case, the motif
centrality can also be seen as a mapping from A to S, similarly for the integrative measure. We
explored five TF families in B. napus and investigated their stress responsive characteristics,
315 crucial TFs were screened. The last work was totally based on data, thus, it is different from
the previous two works. However, RNA-seq data are obtained from biological systems, which
can also be constructed as a complex network. Thus, identifying crucial TFs from RNA-seq can
be also seen as a mapping. It is interesting yet meaningful to establish a unified framework for
the mentioned works, the recently developed graph representation theory[34] or graph neural
networks[35] are promising tools.

Although the proposed methods have some advantages, there are still many issues to be
further explored. For example, for the proposed motif centrality, if there are no network motifs
in a biological system, then the algorithm will lose efficacy. However, one possible extension
of the motif centrality is that one does not consider whether a subgraph was a network motif,
and consider all two-node, three-node and four-node subgraphs. Another extension is that
the PCA is a linear method, possibly one can extend the importance score S as a nonlinear
function. However, nonlinear S will undoubtedly increase the computational difficulty. For the
identification of important genes based on RNA-seq data, we mainly used the log2 fold change
value and hypothesis test methods to identify crucial DEGs. Our future works will consider the
reconstruction of gene co-expression networks based on RNA-seq data, and then we will further
use the gene co-expression networks to identify crucial responsive genes[62]. A big challenge
in RNA-seq data analysis is in that one often encounters the cases with p >> n, that is, the
number of variables or features is far larger than the number of samples[63]. When p >> n,
many traditional statistical methods lose their effectiveness, one must establish new methods
to perform data analysis. Our ongoing works will consider the logistic regression method with
various penalizations[63] to cope with such problem.

The associated works can help us to understand the complex biological systems, and they
may have potential applications in biological network control, network medicine and new variety
cultivation of crops.
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[30] Wang P, Lü J, and Yu X, Identification of important nodes in directed biological networks: A

network motif approach, PLoS One, 2014, 9(8): e106132.
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[50] Härdle W K and Simar L, Applied Multivariate Statistical Analysis, Springer-Verlag, Berlin Hei-

delberg, 2012.

[51] Li W and Li J, Modeling and analysis of RNA-seq data: A review from a statistical perspective,

Quantitative Biol., 2018, 6(3): 195–209.

[52] Samuels M L, Witmer J A, and Schaffner A A, Statistics for the Life Sciences, 5th Edition,

Pearson Education, Edinburgh Gate, Harlow, 2016.

[53] Anders S and Huber W, Differential expression analysis for sequence count data, Genome Biol.,

2010, 11(10): R106.

[54] Love M I, Huber W, and Anders S, Moderated estimation of fold change and dispersion for

RNA-seq data with DESeq2, Genome Biol., 2014, 15(12): 550.

[55] Li H, Wei Z, and Maris J M, A hidden Markov random field model for genome-wide association

studies, Biostat., 2010, 11: 139–150.

[56] Chen M, Cho J, Zhao H, et al., Incorporating biological pathways via a Markov random field

model in genome-wide association studies, PLoS Genet., 2011, 7: e1001353.

[57] Hou L, Chen M, Zhang C K, et al., Guilt by rewiring: Gene prioritization through network

rewiring in genome wide association studies, Hum. Mol. Genet., 2014, 23(10): 2780–2790.

[58] Chalhoub B, Denoeud F, Liu S, et al., Early allopolyploid evolution in the post-neolithic Brassica

napus oilseed genome, Science, 2014, 345: 950–953.

[59] Wang X, Wang H, Wang J, et al., The genome of the mesopolyploid crop species Brassica rapa,

Nat Genet., 43: 1035–1039.

[60] Liu S, Liu Y, Yong C, et al., The Brassica oleracea genome reveals the asymmetrical evolution

of polyploid genomes, Nat. Commun., 2014, 5: 3930.

[61] Huala E, Dickerman A W, Garciahernandez M, et al., The Arabidopsis Information Resource

(TAIR): A comprehensive database and web-based information retrieval, analysis, and visualiza-

tion system for a model plant, Nucleic Acids Res., 2001, 29: 102–105.

[62] Li C and Li H, Network-constrained regularization and variable selection for analysis of genomic

data, Bioinformat., 2008, 24(9): 1175–1182.

[63] Liao J G and Chin K V, Logistic regression for disease classification using microarray data: Model

selection in a large p and small n case, Bioinformat., 2007, 23(15): 1945–1951.


