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Abstract Behavioral responses triggered by the perceived risk of experiencing the disease represent

a key ingredient in the spread of epidemics across human population. In this paper, two forms of indi-

vidual awareness (i.e., the risk perception of an emerging epidemic) are addressed: Contact awareness

that increases with individual contact number, and local awareness that increases with the fraction of

infected contacts. By extending the probability generating functionology, the author shows that it is

possible to track the evolution of the degree distributions among susceptible and infected individuals

when the underlying network of contacts is represented by a semi-random configuration model. It is

hopefully to shed some light on the dynamic aspects of networked epidemiological models.
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1 Introduction

Theoretical study of infectious disease transmission has recently been one of the most active
and prolific fields in complex networks, largely improving the simple mathematical description
of Kermack & McKendrick’s mass action susceptible-infected-recovered (SIR) model[1]. Unlike
mass-action models[1–3], random networks allow considering more realistic and accurate rep-
resentation of heterogeneities in the number of contacts per individual. Various results such
as the epidemic probability, endemic equilibrium, and expected final epidemic size have been
obtained mainly by using the mean-field techniques and stochastic branching processes (see,
e.g., [4–10]).

Due to the heterogeneity induced by the network model, the dynamic epidemic incidence,
however, tends to be difficult to capture. Some viable approximation approaches have become
heavily used. For example, the moment closure methods (or pairwise models) customarily ignore
long-range state dependence between individuals[11–13]. For a network with n different degrees,
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these methods typically produce O(n2) coupled ordinary differential equations (ODE’s). An
algebraic lumping technique is developed in [14], which draws on symmetries and allows further
reductions of the state space. Other researchers get around this difficulty through a mean-field
assumption that all nodes of the same degree having the same infection probability at any
given time[15, 16]. Recently, Volz[17] showed that the SIR epidemic dynamics on configuration
model[18] can be modeled by a coupled system of only three nonlinear ODE’s by using network-
based variables such as the number of edges in a well-defined category rather than node-based
quantities such as the numbers of susceptibles and infected individuals. This approach leads to
excellent agreement with simulations and is further developed to treat a mixed SI(R) model[19].
Based on Volz’s result, the degree distribution dynamics is derived in [20] for the paradigmatic
susceptible-infected-susceptible (SIS) models.

Beyond the basic epidemic models, the elements of human behavioral responses to the pres-
ence of an infectious pathogen have recently gained great research attention. During an epi-
demic outbreak, people aware of the disease in their proximity may adopt measures, such as stay
indoors, avoid public transportation, and wear surgical face masks, in order to reduce their sus-
ceptibility to infection, which in turn, can remarkably affect the epidemic dynamics[21–23]. The
change of individual behavior to the risk of infection is referred to as individual awareness[24].
The effect of awareness is to decrease the infectivity. It is shown[25, 26] that the network ar-
chitecture (homogeneous or heterogeneous) has significant impact on the existence of a critical
level of awareness that halts the epidemics. In [27, 28], the role of different forms of awareness
is further discussed in scale-free networks. However, it is still hard to quantify the impact of
behavioral changes on the alteration of the epidemic spread of an emerging infectious disease
in complex social networks. For a comprehensive survey of awareness in epidemic modeling of
human to human infectious diseases, we refer readers to [29] and the references therein.

In this paper, we extend the previous work [20] by involving the increasingly relevant issue
of awareness in the transmission of infectious diseases. Specifically, we consider an SIS model
in which the infectivity is modulated by two types of awareness: Contact awareness, which in-
creases with individual contact number (i.e., node degree), and local awareness, which increases
with the fraction of infected contacts in an individual’s neighborhood. The concept and theory
of probability generating functions are extended. With these and the network-based quantities
developed in [17], we show that it is possible to track the evolution of the degree distributions
among susceptibles and infected individuals as well as the expected excess degrees in some well-
defined categories for SIS epidemics on random networks represented by configuration model.

Unlike the previous work on awareness mostly at the mean-field level (see, e.g., [24–28, 30]),
we derive rigorously the time-dependent distribution dynamics by using generating function
formalism. Besides, no specific form of local awareness is assumed here. We mention that some
nonlinear and linear functions of local awareness are used in [25, 26, 28] and [27], respectively.
Therefore, our framework provides additional flexibility.

The rest of the paper is organized as follows. In Section 2, we present the SIS model with
individual awareness. We report our main results in Section 3. Finally, we suggest some possible
directions for future research in Section 4.
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2 Model

We study the SIS epidemics of an infection spreading over a contact network of n individuals.
The individuals are labeled 1, 2, · · · , n, and N = {1, 2, · · · , n} represents the host population in
question. Each individual is assigned a disease-related state of susceptible or infected. Denote
by S and I the sets of individuals that are susceptible and infected, respectively. By definition,
we have N = S ∪I. Each susceptible individual i ∈ S is infected independently with a rate βij

if it has a neighboring infected individual j ∈ I. Below we will instantiate the infection rate βij

to incorporate the effect of awareness. An infected individual is cured and become susceptible
again (i.e., can still catch infections) at constant rate γ. As is customary, let S and I denote
the fractions of individuals in the sets S and I, respectively. Therefore, S + I = 1 at any time
instant.

The network of contacts is defined in terms of configuration models[18], where random graphs
can be seen as networks drawn uniformly at random from a family of all possible networks whose
node degrees follow the specified one. Here, each individual is modeled as a node in the network.
Let d1, d2, · · · , dn be i.i.d random variables representing the degrees of nodes 1, 2, · · · , n and
pk = P (d1 = k) (k = 0, 1, · · · ) is the probability distribution of connectivity k. Make sure that
Sn = d1 + d2 + · · · + dn is even. Attach di stubs (half-edges) to individual i and pair up the
Sn stubs completely at random to form complete edges. The resulting graph accounts for the
interaction among individuals. Note that there may exist self-loops and multiple edges between
pairs of individuals. However, subject to d1 having finite variance, such imperfections are very
rare in the network for large n; cf. [5, Theorem 3.1.2] and [31]. Therefore, we may safely ignore
these effects.

To capture the impact of individual awareness, we make the transmission of the disease
dependent on the quality of the information available to a given susceptible individual. Specif-
ically, suppose that an individual i ∈ S has k neighbors, namely di = k, from which l(≤ k) are
infected at time t. We assume that the infection rate βij = βij(t) take the following form:

βij(t) = β · ψk · φl/k(t), (1)

where β is the bare infection rate, the second multiplicative factor ψk = k−μ stands for the
contact awareness with μ ∈ [0, 1] denoting the level of precaution measures adopted[27, 28], and
the third factor φl/k(t) stands for the local awareness, which is proportional to the fraction
of contacts with infected neighbors, with respect to the total number of contacts, i.e., l/k.
By definition, we have 0 ≤ ψk ≤ 1, and it is taken as a decreasing function of k. This has
an intuitive interpretation: Behavioral responses triggered by awareness of experiencing the
disease depends on the amount of contact information individuals have access to and the risk
of being infected is higher when the contact number is larger. Hence, the contact awareness of
i can reduce its susceptibility (by taking precaution measures). On the other hand, we assume
that the local awareness φl/k(t) is a decreasing function of l/k and 0 ≤ φl/k(t) ≤ 1. Its effect
is also that of reducing the bare infection rate β when the quantity of local information l/k

increases[29]. Some specific forms of local awareness have been used in the literature. Bagnoli,
et al.[25], for example, took φl/k = exp(J(l/k)α) with α ∈ [0, 1] denoting the use of special
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prophylaxis, while Shang[28] took φl/k = 1 − c(l/k)α with α ≥ 1 as an impact strength factor
on the admission rate and c ∈ [0, 1] representing the level of precaution measures. It is worth
noting that, in (1), when μ = 0 and φl/k(t) ≡ 1, we reproduce the bare infection rate βij = β

independent of the infection levels of individuals.
For μ ∈ [0, 1] and a ≥ 0, we define the μ-extended probability generating function ga(x) for

the network’s degree distribution as

ga(x) =
∞∑

k=0

pka
k1−μ

xk, (2)

where pk governs the probability that a node has degree k (i.e., k neighbors) as before. It can be
seen that if the augmented variable a = 1, we obtain the usual probability generating function

g1(x) =
∞∑

k=0

pkx
k. (3)

Therefore, the definition of the μ-extended probability generating function can be regarded
as a generalization of that of probability generating function. Given a, we have two extreme
cases: ga(x) = ag1(x) when μ = 1, and ga(x) = g1(ax) when μ = 0. By virtue of the suitable
normalization, we can derive that g1(1) = 1, g′1(1) = 〈k〉 (which is the average degree) and
g′′1 (1) = 〈k2〉 − 〈k〉.

3 Degree Distribution Dynamics

The contact network, albeit undirected, is conveniently viewed as a directed graph so that we
can keep track of who infects who. In particular, an edge is regarded as two arcs with opposite
directions. The start node of an arc is called base, while the end node is called target. Following
the notations in [17], let pI be a measure of the probability that an arc with a susceptible base
has an infected target. Likewise, let pS be a measure of the probability that an arc with a
susceptible base has a susceptible target. To formally define pI , let A represent the set of all
arcs in the contact network, AX be the subset of arcs such that base ∈ X , and AXY be the
subset of arcs such that base ∈ X and target ∈ Y . Define MX = #{AX}/#{A} as the fraction
of arcs in set AX , and MXY = #{AXY }/#{A} as the fraction of arcs in set AXY . Thus we
have

pI =
MSI

MS
and pS = 1 − pI =

MSS

MS
, (4)

respectively. It is worth noting that the sets AX , AXY , etc. change over time. Consequently,
pI and pS are dynamical, not only dependent of connectivity structures but also coupled with
epidemic information.

To derive the degree distribution among susceptibles or infected nodes, we consider a sus-
ceptible node with degree k at time t. We call this susceptible node as base and its k neighbors
as target1, target2, · · · , targetk. For i = 1, 2, · · · , k, we assume that for each arc from base to
targeti there will be a uniform probability pI that targeti is infected. Then the hazard for base
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becoming infected at time t can be shown as[17]

λk(t) = kpI(t) · βψkφpI (t). (5)

Let uk(t) be the probability that base remains susceptible at time t, and then

uk(t) = e−
∫

t
0 λk(τ)dτ =

(
e−

∫
t
0 βpI (τ)φpI

(τ)dτ
)k1−μ

:= θk1−μ

, (6)

where θ = u1 is the fraction of degree one nodes that remain susceptible at time t. It follows
from the μ-extended generating function (2), the fraction of nodes which is susceptible at time
t is given by

S =
∞∑

k=0

pkuk =
∞∑

k=0

pkθ
k1−μ

= gθ(1). (7)

We establish the following results regarding the degree distribution dynamics.

Theorem 3.1 Let dummy variables xS and xI correspond to the number of arcs from a
base to a target in sets S and I, respectively. We have

(i) the degree distribution for susceptible nodes at time t is generated by

gS(xS , xI) =
gθ(xSpS + xI(1 − pS))

gθ(1)
; (8)

(ii) the degree distribution for infected nodes at time t is generated by

gI(xS , xI) =
g1(xSpS + xI(1 − pS)) − gθ(xSpS + xI(1 − pS))

1 − gθ(1)
; (9)

(iii) the excess degree distribution[8] for susceptible nodes selected with probability propor-
tional to the number of arcs to infected nodes at time t is generated by

gSI(xS , xI) =
g′θ(xSpS + xI(1 − pS))

g′θ(1)
, (10)

and what’s more, gSS(xS , xI) = gSI(xS , xI);
(iv) the excess degree distribution for infected nodes selected with probability proportional to

the number of arcs to susceptible nodes at time t is generated by

gIS(xS , xI) =
g′1(xSpS + xI(1 − pS)) − g′θ(xSpS + xI(1 − pS))

〈k〉 − g′θ(1)
, (11)

and what’s more, gII(xS , xI) = gIS(xS , xI).

Define δXY as the average degree of nodes in set X , selected with probability proportional
to the number of arcs to nodes in set Y , not counting one arc to nodes of type Y . The notion
of δXY is commonly called average excess degree[8]. Furthermore, define δXY (Z) as δXY but
counting only arcs directed to nodes in set Z. By taking derivative of the probability generating
functions, we obtain the following corollary immediately.
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Corollary 3.2 The following statements for average excess degrees at time t hold.
(i) δSI = d

dx (gSI(x, x))
∣∣
x=1

= g′′
θ (1)

g′
θ(1) ;

(ii) δSI(I) = d
dxI

(gSI(xS , xI))
∣∣∣
xS=xI=1

= (1−pS)g′′
θ (1)

g′
θ(1) ;

(iii) δSI(S) = d
dxS

(gSI(xS , xI))
∣∣∣
xS=xI=1

= pSg′′
θ (1)

g′
θ
(1) ;

(iv) δIS = d
dx (gIS(x, x))

∣∣
x=1

= g′′
1 (1)−g′′

θ (1)
g′
1(1)−g′

θ(1) = 〈k2〉−〈k〉−g′′
θ (1)

〈k〉−g′
θ(1) ;

(v) δIS(I) = d
dxI

(gIS(xS , xI))
∣∣∣
xS=xI=1

= (g′′
1 (1)−g′′

θ (1))(1−pS)
g′
1(1)−g′

θ(1) = (〈k2〉−〈k〉−g′′
θ (1))(1−pS)

〈k〉−g′
θ(1) ;

(vi) δIS(S) = d
dxS

(gIS(xS , xI))
∣∣∣
xS=xI=1

= (g′′
1 (1)−g′′

θ (1))pS

g′
1(1)−g′

θ(1) = (〈k2〉−〈k〉−g′′
θ (1))pS

〈k〉−g′
θ(1) .

Now we present the proof of Theorem 3.1.
Proof of Theorem 3.1 Considering two arcs from a base to two targets: target1 and target2.

For two sets X and Y , we assume that the event that target1 ∈ X is independent of the event
that target2 ∈ Y [17]. Accordingly, arcs from a base to nodes in sets S and I are distributed
according to a binomial distribution with probabilities pS and pI = 1 − pS. Let dbase(X) be
the random variable denoting the number of arcs from base to nodes in set X . Suppose that c
normalizes the distribution. In what follows, we prove the four statements separately.

For (i), by using (2) and (6), the generating function of degree distribution for susceptible
nodes can be written as

gS(xS , xI) =
∞∑

k=0

pkuk

k∑

i=0

xi
Sx

k−i
I P (dbase(S) = i|pS)/c

=
∞∑

k=0

pkθ
k1−μ

(xSpS + xI(1 − pS))k/c

= gθ(xSpS + xI(1 − pS))/gθ(1), (12)

where c =
∑∞

k=0 pkθ
k1−μ

(pS + (1 − pS))k = gθ(1) normalizes the distribution.
For (ii), similar derivation can be applied by taking the complement. Indeed, we obtain

gI(xS , xI) =
∞∑

k=0

pk(1 − uk)
k∑

i=0

xi
Sx

k−i
I P (dbase(S) = i|pS)/c

=
g1(xSpS + xI(1 − pS)) − gθ(xSpS + xI(1 − pS))

1 − gθ(1)
. (13)

For (iii), the excess degree distribution can be though of as choosing a random arc in set
ASI , following it to the susceptible node, and then counting the number of arcs out of that
node except the one we arrived on. Hence, we have

gSI(xS , xI) =
∑∞

k=0 pkuk

∑k
i=0(k − i)xi

Sx
k−i−1
I P (dbase(S) = i|pS)

∑∞
k=0 pkuk

∑k
i=0(k − i)P (dbase(S) = i|pS)

=
(

d

dxI
gS(xS , xI)

) /(
d

dxI
gS(xS , xI)

)∣∣∣∣
xS=xI=1

=
g′θ(xSpS + xI(1 − pS))

g′θ(1)
, (14)
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in light of the binomial theorem and (12). Similarly, we obtain

gSS(xS , xI) =
∑∞

k=0 pkuk

∑k
i=0 ix

i−1
S xk−i

I P (dbase(S) = i|pS)
∑∞

k=0 pkuk

∑k
i=0 iP (dbase(S) = i|pS)

=
(

d

dxS
gS(xS , xI)

) /(
d

dxS
gS(xS , xI)

)∣∣∣∣
xS=xI=1

=
g′θ(xSpS + xI(1 − pS))

g′θ(1)
= gSI(xS , xI). (15)

Finally, for (iv), we obtain by using (13),

gIS(xS , xI) =
∑∞

k=0 pk(1 − uk)
∑k

i=0 ix
i−1
S xk−i

I P (dbase(S) = i|pS)
∑∞

k=0 pk(1 − uk)
∑k

i=0 iP (dbase(S) = i|pS)

=
(

d

dxS
gI(xS , xI)

) /(
d

dxS
gI(xS , xI)

)∣∣∣∣
xS=xI=1

=
g′1(xSpS + xI(1 − pS)) − g′θ(xSpS + xI(1 − pS))

g′1(1) − g′θ(1)
, (16)

which yields (11) noting that g′1(1) = 〈k〉. We have

gII(xS , xI) =
(

d

dxI
gI(xS , xI)

) /(
d

dxI
gI(xS , xI)

)∣∣∣∣
xS=xI=1

= gIS(xS , xI). (17)

The proof is thus complete.
We remark that the infection rate βij and recovery rate γ are presumably involved in the

probability pS (as well as pI), and the awareness affects pS (as well as pI) in an implicit manner.
The same thing is true for the quantity θ as indicated by (6).

4 Discussions

In this paper, we present an analytical framework for studying the dynamical aspects of
degree distributions among susceptible and infected individuals in a networked SIS model.
Two forms of epidemiological awareness, i.e., contact awareness which increases with individual
contact number, and local awareness which increases with the fraction of infected contacts, are
considered. By extending probability generating function methods, we show that it is possible
to track the evolution of the degree distributions among susceptible and infected individuals
when the underlying contact network is modeled by the configuration model.

The results we obtain is somehow initial steps towards understanding analytically the time-
dependent evolution of networked SIS model with awareness. What we really want is to write
down the equations that actually track degree distributions. It is hoped that the distribution
dynamics described in this paper will shed some light on the final solution of this issue. Other
directions worthy of further investigation include awareness based on some memory mechanism,
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misperception of risk induced by partial or incorrect information [32], and awareness concerning
the prevalence of infection during an outbreak. We will work on some of these topics in the
future.
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[4] Allard A, Noël P A, Dubé L J, and Pourbohloul B, Heterogeneous bond percolation on multitype

networks with an application to epidemic dynamics, Phys. Rev. E, 2009, 79: 036113.

[5] Durrett R, Random Graph Dynamics, Cambridge University, Cambridge, 2006.

[6] Keeling M, The implications of network structure for epidemic dynamics, Theor. Popul. Biol.,

2005, 67: 1–8.

[7] Keeling M and Eames K T D, Networks and epidemic models, J. R. Soc. Interface, 2005, 2:

295–307.

[8] Meyers L A, Pourbohloul B, Newman M E J, Skowronski D M, and Brunham R C, Network

theroy and SARS: Predicting outbreak diversity, J. Theor. Biol., 2005, 232: 71–81.

[9] Pautasso M, Moslonka-Lefebvre M, and Jeger M J, The number of links to and from the starting

node as a predictor of epidemic size in small-size directed networks, Ecol. Complexity, 2010, 7:

424–432.

[10] Shang Y, Asymptotic behavior of estimates of link probability in random networks, Rep. Math.

Phys., 2011, 67: 255–257.

[11] Altmann M, Susceptible-infected-removed epidemic models with dynamic partnerships, J. Math.

Biol., 1995, 33: 661–675.

[12] Bauch C T, A versatile ODE approximation to a network model for the spread of sexually

transmitted diseases, J. Math. Biol., 2002, 45: 375–395.

[13] Eames K T D and Keeling M J, Modeling dynamic and network heterogeneities in the spread of

sexually transmitted disease, Proc. Natl. Acad. Sci. USA, 2002, 99: 13330–13335.

[14] Simon P L, Taylor M, and Kiss I Z, Exact epidemic models on graphs using graph-automorphism

driven lumping, J. Math. Biol., 2011, 62: 479–508.
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