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Abstract
The emergence of immersive digital technologies, such as shared augmented reality 
(shAR), virtual reality (VR) and motion capture (MC) offers promising new opportuni-
ties to advance our understanding of human cognition and design innovative technology-
enhanced learning experiences. Theoretical frameworks for embodied and extended cogni-
tion can guide novel ways in which learning in these environments can be understood and 
analyzed. This conceptual paper explores a research method in Educational Technology—
multimodal analysis for embodied technologies—and provides examples from shAR, VR, 
and MC projects that use this approach. This analysis involves tracking learners’ gestures, 
actions on physical and virtual objects, whole body movements and positions, and their 
talk moves, in addition to other relevant modalities (e.g., written inscriptions), over time 
and across space. We show how this analysis allows for new considerations to arise relat-
ing to the design of educational technology to promote collaboration, to more fully capture 
students’ knowledge, and to understand and leverage the perspectives of learners.

Keywords  Augmented reality · Virtual reality · Motion capture · Embodied cognition · 
Multimodal analysis · Gesture

Introduction

The emergence of immersive digital technologies, such as augmented reality (AR), vir-
tual reality (VR) and motion capture (MC) offers promising new opportunities to advance 
our understanding of human cognition and design innovative learning experiences. Indeed, 
researchers have argued that these technologies “have the potential to do for gestures what 
writing did for speaking” and will “transform how people generate, disseminate, and inter-
act with knowledge” (Dimmel & Bock, 2019, p. 2). AR platforms now support experi-
ences that enable people to directly physically and perceptually engage with shared objects. 
We refer to these new forms of AR technology as shared holographic AR (shAR). shAR 
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enables multiple learners to view, manipulate, and reason about the same objects projected 
as holograms in a joint three-dimensional collaborative space, based on each person’s vis-
ual perspective, using intuitive hand gestures. Shared VR technologies are somewhat simi-
lar, but they allow learners to collaborate around shared objects rendered in a fully virtual 
space. Both AR and VR technologies can offer unique affordances for distance learning, as 
students do not need to be co-located. Finally, MC technologies not only allow for the hand 
tracking that powers the gesture-based interfaces of contemporary AR and VR, but can 
direct learners’ body motions, and then relate these body motions to particular concepts or 
learning standards.

There are important similarities and differences between these three technologies. AR is 
a semi-immersive technology where a computer-generated layer is placed on an individu-
al’s view of the real world (Blair, 2016). The layer is semi-transparent, allowing individu-
als to simultaneously manipulate virtual objects and see the real world around them (Blair, 
2016). VR is a fully immersive, three-dimensional, computer-generated environment that 
simulates real or imaged situations that individuals can interact with (Aukstakalnis & Blat-
ner, 1992; Milgram & Kishino, 1994; Onyesolu & Eze, 2011). Collaborators often appear 
as computer-generated avatars in VR. Motion capture digitizes the motion of a person’s dif-
ferent moving parts from a live performance (Menache, 2011), which allows the learning 
system to provide immediate feedback based on the individual’s tracked body movements 
(Johnson-Glenberg et al., 2014). All three technologies support embodied learning beyond 
traditional instructional approaches. The most significant difference is the relationship 
between learners and the learning environment. Learners may show different interaction 
and reasoning patterns with these different technologies, depending on the level of immer-
sion, how collaborative interactions are structured, and how physical movements are used 
and recorded.

This conceptual paper explores a research method for analyzing data from educational 
technology research called multimodal analysis (Jewitt, 2017). We describe a particular 
approach within this umbrella method, where multimodal analysis is adapted for the con-
text of embodied, interactive educational technology systems where there are shared inter-
actions between learners. This differs from how one might analyze data from immersive 
technologies that are not collaborative—where learners play games or experience simu-
lated environment without sustained embodied interactions with other humans (collabora-
tors or instructors). By “embodied interaction” we highlight that interlocutors must have 
access to interactional information beyond others’ speech or writing—such as gestures 
and movements. We refer to this approach multimodal analysis for embodied technologies 
(MAET) and provide examples from shAR, VR, and MC projects that use this approach. 
Our primary aim is to show several ways that MAET allows for deep analyses of the 
embodied and extended nature of cognition—or the ways in which learners use their bodies 
to work together and establish shared meaning in technology-enhanced environments.

Theoretical framework

The learning potential for emerging interactive technologies like shAR, VR, and MC draws on 
the framework of embodied cognition (Wilson, 2002)—the idea that all thoughts are grounded 
in perception, action (including epistemic and pragmatic actions and gestures), and spatial sys-
tems. Embodied cognition has risen as a particularly powerful framework to describe learn-
ing in mathematics education. For example, research shows that multisensory perceptions can 
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help learners perceive structures in math that might not be available from symbolic represen-
tations (Gerofsky, 2007; Sinclair, 2005) and that students’ math knowledge can be revealed 
through their gestures (Edwards, 2009; Kim et al., 2011; Ng & Sinclair, 2015a, 2015b; Pier 
et al., 2019), action-oriented language (Nathan et al., 2014), and body-based and spatial meta-
phors (Lakoff & Núñez, 2000; Roth, 2011). Some members of a branch of embodied cogni-
tion called enactivism (Varela et  al., 1991/2017) make the bold statement that “learning is 
moving in new ways” (Abrahamson & Sánchez-García, 2016, p. 233). This means that when 
students perform new embodied behaviors, they are engaging concomitantly with movements 
and emergent cognitive structures that enable perceptual processes, which guide the motor 
enactment of these movements.

Increasingly, enactivist scholars have attended to the collaborative nature of embodied 
behaviors, especially as they relate to joint attention (Shvarts & Abrahamson, 2019). Dual eye 
tracking can reveal the formation of intersubjectivity among teacher-student dyads where joint 
(visual) attention, along with strategic pedagogical prompts, enables the emergence of joint 
action and joint attention. This in turn signals a unified, dynamical coordination between the 
teacher’s and student’s attention and actions.

However, research on embodied learning has not broadly embraced the collaborative 
nature of learning environments (see Abrahamson et al., 2020), which has become increas-
ingly important as technologies like shAR allow multiple learners to simultaneously engage. 
Research on extended and distributed cognition (Clark & Chalmers, 1998; Salomon, 1993) 
reveals some of the ways in which knowledge and learning can be understood as stretched over 
people, places, and objects, rather than describing its location as merely in the head of indi-
viduals. For example, observations of complex, multiday, project-based engineering classes 
reveal how teachers exercise numerous mechanisms for fostering and maintaining cohesion. 
Here, cohesion refers to the integrated understanding students’ have of key STEM concepts in 
the project. These concepts are presented in ways that vary across time, spaces, and artifacts as 
a single scientific concept is manifest in various symbols, drawings, software simulations, and 
material forms (Nathan et al., 2017; Walkington et al., 2014). Detailed analyses of these teach-
ing and learning interactions highlight how key STEM concepts are embedded in these multi-
modal contexts and how knowledge can be distributed across a multitude of physical, digital, 
cultural, and social resources. This lays the groundwork for an embodied theory of transfer, 
where, through careful coordination, “both teachers and learners engage embodied processes 
as they map invariant relations across various modal forms… to apply prior modes of perceiv-
ing and acting to new contexts and to create movements that will activate those invariant rela-
tions through transduction” (Nathan & Alibali, 2021, p. 50). Describing cognition as extended 
and distributed is particularly relevant when considering how people collaborate with each 
other when supported by digital tools. In addition, digital tools have become increasingly 
well-suited for supporting the distributed and embodied nature of cognition as hand/skeleton 
tracking, eye tracking, touch screens, and physiological sensors have become more powerful, 
accurate, and affordable, and tools for managing and analyzing the large amounts of data have 
become more efficient and user-friendly.

Multimodal analysis for embodied technologies

The increasingly embodied and distributed affordances of educational technology has cre-
ated a need for methods of analysis to examine the rich interactions learners have in these 
contexts. Multimodal analysis (Alibali & Nathan, 2012; Jewitt, 2017; McNeill, 1992; see 
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also Nathan et al., 2017) is a research method originally drawn primarily from the literature 
on gesture. The method we detail, MAET, is adapted from multimodal analysis to take into 
account other embodied, distributed, and action-based ways in which students engage with 
mathematics learning materials and technologies. A modality is a channel that people used 
to communicate—like speech, writing, gesture, etc.—and multimodal analysis attempts to 
account for the varied modalities that arise as collaborative problem-solving is carried out 
within or outside of school. In MAET, we seek to do away with the tendency to privilege 
particular modalities that have been traditionally emphasized in academic settings—like 
speech and written work—and instead capture a broader concept of the many forms of 
embodied knowledge that learners express.

MAET first involves a close examination of learners’ gestures, which we define as spon-
taneous or planned movements of the hands or arms that often accompany speech and that 
sometimes convey spatial or relational information. Gestures have been the subject of both 
observational and intervention research because of their relationship with thinking, social 
cuing, and cognitive development (Goldin-Meadow, 2005). Several important types of ges-
tures have been identified, including pointing gestures that indicate positional information 
(e.g., pointing to a triangle on the board), depictive or iconic gestures which form shapes 
or show movements using the hands (e.g., forming a triangle with two palms and thumbs), 
and beat gestures which emphasize ideas presented in speech (e.g., a vertical downward 
movement of the hand to emphasize the word congruent; McNeill, 1992; Alibali & Nathan, 
2012). A review by Alibali and Nathan (2012) found converging evidence that representa-
tional gestures, which depict objects and processes, exhibit mental simulations of actions, 
perception, and conceptual metaphors.

There are many existing multimodal data analysis approaches that have been proposed 
by researchers (see Jewitt et  al., 2016). Although most of these approaches can be used 
to handle actions or speech in collaboration analytics, different approaches have different 
aims and draw upon different theories of learning and interaction. For example, the social 
semiotics approach (Bezemer & Kress, 2015; Jewitt & Henriksen, 2016) recognizes the 
relationship between social actors and the agency of their communication. In this approach, 
purposive interaction establishes actors’ relationships. The conversation analysis approach 
(Deppermann, 2013; Mondada, 2019) explores how participants organize their actions 
sequentially. The base assumption of this approach is that social acts can be understood 
by the acts before and after them. The multimodal (inter)action analysis approach (Norris, 
2016) investigates how various semiotic resources are introduced into and make up social 
interaction, identities, and relationships, and this approach emphasizes interactive actions 
are mediated by space and artefacts. The primary affordance of MAET, however, is that it 
is aligned with theories of embodied cognition, which have enormous potential for design-
ing immersive learning environments using interactive and movement-based technologies. 
Other multimodal data analysis methods do not have this focus. MAET is particularly use-
ful for research that relates to using physical or virtual manipulations or actions to help 
people learn. Although other approaches can include actions, the value of actions is usually 
related to facilitating communication (e.g., Bezemer & Kress, 2015; Mondada, 2019; Nor-
ris, 2016). While communication is important to learning, embodied approaches highlight 
that action itself also can help students learn. This valuing of action as a conceptual tool is 
not as accounted for in other multimodal traditions.

An analysis of these categories of gestural interactions has been traditional in mul-
timodal analysis, however recent work has identified further important classes of ges-
ture used during collaboration in technology-enhanced environments. One particularly 
important form of depictive gestures, dynamic depictive gestures, show a motion-based 
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transformation of an object through multiple states. For example, a student might make 
a rectangle with their thumbs and forefingers, and then slant it to one side to show a 
triangle being taken off one side and added to another. Strong associations have been 
found between dynamic gestures and valid mathematical and spatial reasoning (Göksun 
et  al., 2013; Nathan et  al., 2014; Newcombe & Shipley, 2012; Pier et  al., 2019; Uttal 
et al., 2013).

In addition, gesture studies offer an important link between individualized and social 
forms of embodiment. This is because, while gesture production has well-established 
cognitive benefits for the individual actor (e.g., Goldin-Meadow, 2005), gesture produc-
tion is facilitated when speakers operate in a social context (e.g., Goodwin, 2000; Moll & 
Tomasello, 2007; Vygotsky, 1978), even when the speakers cannot see one another (Alibali 
et al., 2001). An important class of gestures borne from multi-person interactions are col-
laborative gestures—i.e., gestures that are directly related to or that build upon the gestures 
of interactional partner(s) (Walkington et al., 2019a, 2019b). Observations of collaborative 
learning reveal that learners regularly repeat each other’s gestures through echoing (when 
one student repeats a representational gesture of another student) or mirroring (when two 
or more students simultaneously make similar gestures) gestures. Learners also build on 
one another’s gestures through alternation gestures that respond to other gestures, and 
learners physically co-represent a single object using joint gestures. Several studies suggest 
that gesturing collaboratively can be associated with higher performance than making indi-
vidual gestures (Vest et al., 2020). An examination of collaborative gestures differs from 
examining individual gestures as the prior interactional context of gestures during reason-
ing episodes is explicitly taken into account.

MAET also takes into account body position, gaze, and other body language, as well 
as physical movements around a learning environment, to capture learners’ joint focus of 
attention and opportunities for engagement. For example, by tracking learners’ gaze we 
can see how their attention shifts between their collaborator’s faces, gestures, and the vir-
tual or physical objects they are working with. By paying attention to body position, we 
can understand the perspective the learner is taking on the scene or simulation they are 
interacting with, as well as how they are positioned or not positioned for collaboration with 
others due to physical proximity. Students can become immersed in mathematical repre-
sentations and use body positions to see the object from different perspectives (Dimmel 
et al., 2021). A collaborative view of physical movements differs from an individual view 
of such movements in that we are concerned with how bodies are positioned with respect 
to other bodies (rather than only with respect to instructional objects), how learners con-
sider issues of perspective in a collaborative situation, and how body cues are used to focus 
joint attention.

Further, MAET examines how these actions are coordinated with speech, with a par-
ticular emphasis on collaborative talk moves (Andrews-Todd et al., 2019). During collabo-
ration, gestures operate synchronously with speech and other movements (e.g., lifting a 
pen), acting as a mechanism to create cohesion and bind conversational elements (Enyedy, 
2005; Koschmann & LaBarron, 2002). When using collaborative talk moves in technol-
ogy-enhanced environments, learners negotiate, plan, represent, and exchange ideas using 
language. These discourse moves are related to profiles of collaboration, which in turn 
predict task performance measures (Andrews-Todd & Forsyth, 2020). Collaborative talk 
moves differ from individual talk moves in that they take into account the interpersonal and 
multimodal context in which utterances are made, they attend to how people respond to 
and build off of one another’s multimodal reasoning, and account for the kinds of historical 
multimodal interactions proceeded each talk move.
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While collaborative talk moves have been important in our work, there are many other 
ways to code learners’ verbal language. For example, we have found “operational speech” 
where learners express themselves performing operations on mathematical objects through 
spoken language, to be an important category in our multimodal analyses (see Pier et al., 
2019). Scholars have also utilized text mining tools like LIWC (Pennebaker et al., 2007) 
and Coh-Metrix (McNamara et al., 2013) to automatically code the textual properties of 
students’ speech—especially their use of pronouns, verbs, situation model construction, 
and logic as they express and explain mathematical ideas (e.g., Nathan et al., 2020).

Finally, MAET involves looking carefully at learners’ actions with objects and tools in 
their environment, including virtual objects like holograms. Actions on objects are defined 
here as physical manipulations of objects like turning a plastic cylinder on its side or click-
ing to rotate a triangle in a Dynamic Geometry System (DGS). They are distinct from ges-
tures in that the hands are used as a vehicle to manipulate physical or virtual objects and 
are pragmatic actions, rather than having the hand gestures themselves represent or index 
these objects. In a DGSs, learners can use menu commands to construct line segments 
within a geometric figure, or learners can orient a manipulative towards a particular person. 
These would not be considered gestures, but such actions may have an important embodied 
influence on learning (Goldin-Meadow & Beilock, 2010). Collaborative actions on objects 
could be cases where a student repeats or attempts to anticipate an action an interactional 
partner is going to take (e.g., resizing a virtual cube as their partner mentions resizing in 
speech), and these may also occur differentially depending on the collaborative situation. A 
collaborative view of manipulating objects and using digital tools differs from an individ-
ual view by exploring how these actions are proceeded by previous multimodal actions of 
collaborators, and how current actions are performed in particular, embodied ways because 
collaborators are present.

These four interactional categories are often captured through video recordings, screen 
recordings, and motion capture technologies. Video cameras from different perspectives 
are aimed on multiple students working together and are synced with first-person camera 
feeds from each students’ device (e.g., a headset) when appropriate. Body and hand posi-
tioning coordinates can be captured from motion capture systems, as we do in our work on 
The Hidden Village. In addition, for embodied environments that use a screen (rather than 
a headset), the screen itself is recorded with the actions students take through the screen in 
the environment. Once the different video feeds have been synced together, analysis can 
begin. We also sometimes utilize log files collected by the technology system in conjunc-
tion with video-based data streams.

These four multimodal streams of data (gestures, movements, speech, actions) are coded 
first at coarser grain sizes across a corpus, after video recordings are divided up into “epi-
sodes” that represent student exploration of one task or idea. The codes from these epi-
sodes can be quantitative in nature—for example, dichotomous codes such as whether a 
collaborative talk move was present (coded as 0/1), and frequencies, such as how many 
gestures were produced, etc. In this way quantitative patterns can be determined from the 
data using predictive and correlational analyses (e.g., Walkington et  al., 2019b, 2022). 
Analyses can also be done on how these individual classes of multimodal moves are used 
either in sequence (e.g., a collaborative structure where students perform actions on objects 
first, and then discuss their ideas verbally) or simultaneously (e.g., pointing to a virtual 
object while a collaborator is talking). For these analyses, episodes may be broken down 
further into sub-episodes that coalesce around learners exploring one idea or concept. We 
have used qualitative video analysis software like Transana, NVivo, and V-Note to perform 
these analyses, sometimes followed by quantitative analyses in software like R or SPSS.
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After this broader analysis, particular video instances are “zoomed in” on, creat-
ing multimodal transcripts of key trouble spots, learning opportunities, and collaborative 
exchanges (see Goodwin, 2000; Sacks et al., 1974). This is especially important when the 
volume, sequencing, and complexity of the multimodal exchanges in an individual episode 
is not well-captured by broader codes. When we create these transcripts, we often use over-
laid lines or arrows to highlight gestures, actions, movements, and eye gaze, so that atten-
tion is focused on these other modalities for communication, and speech is presented as 
just another channel. We also explicitly transcribe the knowledge captured in gesture and 
movement by describing the gestural forms and types of movement in words.

An important question is how MAET is different from methods used to analyze 
“unplugged” embodied learning, or from typical multimodal analyses. First, MAET 
capitalizes on the affordance of being able to dynamically manipulate virtual objects in 
real-time, with precise and instantaneous measurement of key values. These technologies 
also allow for scale to be changed in new and exciting ways. The coding categories for 
MAET were formulated with these particular affordances of embodied technologies in 
mind. MAET also capitalizes on the increasingly gestural-based interfaces of embodied 
technologies, and their important role in mathematical reasoning and in collaboration. Fur-
ther, MAET’s focus on body positioning and viewpoint becomes increasingly important 
in virtual environments like VR where learners must purposefully navigate and achieve 
collaborative discourse with their virtual rather than physical bodies. It is also important as 
technologies can allow students to instantly take different perspectives (e.g., teleport to an 
area in a virtual world or instant switch from a view where a coordinate plane is position 
vertically as a blackboard would be or horizontally atop the floor). Finally, MAET lever-
ages the coordination of many different data streams (distant camera, first person device or 
screen-recording, log and position tracking data), which have not been traditionally avail-
able in unplugged embodied learning.

Our research has used MAET to explore learning in three contexts—motion capture, 
shared VR, and shAR. We will discuss each of these projects as cases of the ways in which 
MAET can be used to explore data from learners engaging with educational technology.

MAET in a motion capture game

We engaged in a MC project where high school students were engaged in a video game 
environment called The Hidden Village. In the game, which utilized the visual novel 
genre, the players crash-land on an alien planet, and are asked to perform different 
arm motions as they meet different villagers (Fig. 1). Their motions are captured by a 
Kinect™ camera (although a current version of THV uses a laptop camera) to determine 
if players make the desired poses. Each set of arm motions is related to a geometry con-
jecture that students would subsequently have to prove as being always true or ever false 
(Fig. 2). For example, the students might make arm motions where their arms make a 
growing triangle (to show mathematically similar triangles) before being asked to prove 
or disprove the conjecture “Given that you know the measure of all three angles of a tri-
angle, there is only one unique triangle that can be formed with these three angle meas-
urements.” This conjecture is false, as triangles with different sizes can have the same 
angle measurements (i.e., similar triangles). The game also allows learners to create 
their own arm motions and program them into the game to correspond to new geometric 
ideas, using the Conjecture Builder feature (Fig. 3; see Walkington et al., under review). 
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Fig. 1   Game flow: meet villager, perform directed actions, followed by free-responses to the given conjec-
ture and selecting a multiple-choice response, and receiving a token of knowledge

 

Conjecture Relevant Actions Intended 
Relevance of 

Actions 
1. Given that you know the 

measure of all three angles of a 

triangle, there is only one 

unique triangle that can be 

formed with these three angle 

measurements. (False) 
 

Poses show a 

triangle getting 

larger. 

2. The area of a parallelogram 

is the same as the area of a 

rectangle with the same base 

and width. 

 

Poses show a 

rectangle, and 

then a 

parallelogram 

where area is re-

organized. 

3. The diagonals of a rectangle 

always have the same length. 

 

Poses show two 

right triangles that 

make up the 

diagonals of a 

recntagle. 

4. The opposite angle of two 

lines that crosses are always 

the same. 

 

Poses show sets 

of vertical angles 

that are forced to 

be equal no 

matter how two 

lines are 

positioned. 

Fig. 2   Examples of relevant action sequences programmed into The Hidden Village game
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This allows the students to determine how different physical motions mighty correspond 
to geometry ideas.

In Fig. 4, we present an example of MAET of learners using the Conjecture Builder 
to create arm motions to accompany a geometry conjecture about quadrilaterals. We 
approached this analysis by examining how the multimodal resources that students used 
to reason about their focal game conjecture—which here was “The diagonals of a rhom-
bus bisect the angles at all four vertices” changed over time. The video footage of stu-
dents working with the Conjecture Creator was segmented into different episodes as 
they responded to different portions of the creation task (e.g., explore the focal conjec-
ture, come up with a formal proof for the focal conjecture, come up with poses for the 
focal conjecture, etc.). Figure 4 shows the MAET of the episodes where the two learners 
were coming up with arm poses to accompany the conjecture. This episode was coded 
with different types of collaborative gestures, such as in Lines 1–4 when the students 
are mirroring each other’s gestures. It was also coded with collaborative talk moves, 
like Representing talk moves where learners build representations of the problem and 
formulating hypotheses (Lines 3–7) and Negotiating talk moves that express agreement 
or disagreement (Line 8). The MAET of this episode shows how much of the conversa-
tion is expressed in rich gesture sequences rather than in precise mathematical speech. 
We coded this theme as “gesturally embodied argumentation spurred by pose creation,” 
and examined its conditions of incidence across the corpus (see Walkington et al., under 
review).

Fig. 3   The Conjecture and Module Editor: (top-left) Main Menu and Conjecture Selector; (top-right), Con-
jecture Editor; (bottom-left) The Pose Editor; (bottom-right) Module Builder and Admin Panel
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Students also used multimodal forms of communication and reasoning, including ges-
ture, when they were playing through and solving problems in the THV, rather than creat-
ing their own poses. Figure 5 shows two students coming up with a justification as to why 

Fig. 4   Pair of high school students working together to come up with motions for the conjecture “The diag-
onals of a rhombus bisect the angles at all four vertices”
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the conjecture “The area of a parallelogram is the same as the area of a rectangle with the 
same base and width” is true. We first see S4 using depictive gestures to display what a 
parallelogram looks like, with forearm gestures highlighting the two sets of parallel sides 
(Line 1). She uses vertical gestures that are slightly slanted, and horizontal gestures that are 
parallel to the floor. S3 then responds to these gestures by bringing into the exchange a new 
dynamic gesture, where the parallel vertical sides first go straight up and down, and then 
are transformed into a slanted position, as the horizontal parallel sides remain constant in 
their angle (Line 4). This transcript shows how learners build off of each other’s gestures 
and use gestures to dynamically transform simulated mathematical objects while engaging 
with embodied technologies. We again see that the most relevant mathematical knowledge 
in this excerpt is expressed via gesture rather than speech or writing alone. These analy-
ses point to the importance of considering gesture as a means of knowledge sharing and 
knowledge demonstration that is on equal footing with other modalities.

MAET in immersive VR environments

We also engaged in a VR project where mathematics teachers, engaging in professional 
learning remotely at the beginning of the COVID-19 pandemic, used VR goggles in a 
collaborative simulation environment to learn about 3D geometric shapes (Huang et  al., 
in press; Walkington et al., 2021). This VR environment allowed teacher-learners to join 
a virtual classroom as avatars (with their head, torso, and hands virtually rendered), and 
manipulate and interact with 3D shapes like cubes and cylinders. Teachers confronted sce-
narios where they had to explore conjectures about shapes or orient combinations of shapes 
or their own bodies in particular ways. We present MAET from this data that examines the 
ways in which the teachers coordinated multiple modalities in real time while in a VR envi-
ronment, and the patterns by which they would activate modalities in sequence while learn-
ing. The teachers were in separate physical locations (i.e., their individual homes) wearing 
Oculus Quest VR goggles.

Fig. 5   Two students formulating an argument as to why the conjecture “The area of a parallelogram is the 
same as the area of a rectangle with the same base and width” is true
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Figure  6 shows two teachers, Amy and Lily, exploring a task about the volume of a 
cylinder, and how the volume relates to the radius and the height. An important element 
in this technology context is the existence of virtual objects that can be dynamically and 
collaboratively interacted with, which offers different affordances for gesture and action. 
Another important element to consider is that hands and bodies are rendered virtually, as 
is the surrounding world. In Line 1, Amy makes a gesture where she is showing what an 
increasing/decreasing action on the virtual object (the cylinder) would look like, without 
actually performing it. This gesture may function to connect her words to the objects in the 
environment and communicate her meaning to her partner. In Line 2, Lily responds with a 
beat gesture to emphasize her agreement. In Line 3 we see Lily move her virtual body for-
wards towards the cylinder, signaling that she is likely planning to interact with it, and then 
in Line 4 she carries out an action (resizing) on the virtual object. The limitations of the 
VR environment make it difficult to observe whether the learners’ focus of attention is on 
their partner or on the object, given that they are positioned on opposite sides of the object. 
It can also be seen from the transcript that their hands are not always present—the hands 
have to be in the view of the VR goggles to appear.

In this episode, we observed an important multimodal sequence where students plan 
their actions with the virtual objects collaboratively first, using speech, gestures, and move-
ments. The pair then begins to actually interact with the object afterwards to make observa-
tions. We named this theme “discussion before embodied action,” and examined the condi-
tions of its presence across the corpus (see Huang et al., in press). Such sequences helped 
us to understand the interactions of different collaborative groups and the ways in which 
they approached different kinds of mathematical tasks. This can allow for better structuring 
of VR activities for collaboration.

MAET in shared augmented reality (shAR)

We also engaged in a shAR project where high school students explored conjectures about 
2D and 3D geometric objects in pairs, using collaborative dynamic holograms projected by 
Microsoft HoloLens 2 goggles. The objects were rendered using the GeoGebra 3D soft-
ware, and students were physically in the same location, with the objects rendered in an 
“anchored” manner such that they were in the exact same position for each learner. There 
were a variety of different simulations learners could interact with (see Fig. 7), and various 
different measurements and constructions could be dynamically added to each simulation 
with a blue panel that only the controller/facilitator could use. One affordance of the gog-
gles is that we had access to first-person camera views for each learner, which we utilize in 
the present case.

We used MAET to share the ways in which students collaborated using these holograms 
and adjusted their actions to better align with the affordances of the technology (Walking-
ton et al., in press). Figure 8 shows two students using an interactive hologram of paral-
lel lines cut by a transversal (top photo Fig. 7) to explore the mathematical conjecture “If 
two parallel lines are cut by a third line, the pairs of corresponding angles are congru-
ent.” The parallel lines are near eye-level for the students, and students are immersed in 
the parallel lines which are much larger than they are. This larger scale may allow for new 
types of mathematical exploration (Dimmel et  al., 2021). For this reason, this transcript 
shows unique ways in which MAET can capture body movements and positionings related 
to mathematical objects. In Lines 1 and 2, we see the students adjusting the lines, with S6 
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trying to position his body between the lines. In Lines 3 and 4 we see the students engag-
ing in Planning talk moves, with S6 maintaining his body’s position between the lines as 
he moves closer to the transversal line. In Lines 5 and 6, we see the students tilting their 
heads and standing on their toes to get a new perspective on the set of parallel lines that 
they are immersed in. We coded body positioning across the corpus to see how learners 

1. Amy: Oh, so if the formula is radius   

squared so every time you increase it 

you increase it by the square. 

[Amy raises her right hand, open facing   
up, and then makes pinching motion with 
her index finger and thumb, and then      
moving it up and down] 

2. Lily: Yeah exactly.  

[Lily beats her right hand] 

3. Amy: Is that the formula? What was    

the formula for the volume?  

[Lily moves toward the cylinder] 

4. Lily:  pi 'r' squared times... 

[Lily grabs side of the cylinder, and          
increases the radius of the cylinder]  

Fig. 6   Amy and Lily in a VR environment exploring a task about whether increasing the radius or the 
height of a cylinder increases the volume more
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move during different phases of reasoning (see Hunnicutt et al., under review). This MAET 
allowed for important observations about how scale, the positioning of the representation, 
and body positioning may be important design considerations in our context.

Significance and conclusion

These three cases together show MAET to be a flexible approach to understanding how 
learners engage with embodied, collaborative learning technologies. These kinds of analy-
ses can lead to novel insights about designing technologies to leverage the distributed and 
embodied nature of cognition. They can also broaden what counts as “knowing” in aca-
demic settings that have traditionally privileged particular modalities and ways of explor-
ing and communicating.

In this paper, we show how MAET can capture key collaborative moves, like col-
laborative gestures. These kinds of gestures, that arise through learners embodying 
ideas together in concert, have not been the focus of many previous analyses using this 
method. In addition, we add the element of interactions with dynamic, virtual objects in 
a technology-enhanced simulation environment, showing how scale, perspective, and col-
laborative actions on objects are important elements when considering multimodality in 

Simulation Example Task/Conjecture Simulation
Photo

Parallel Lines 

If two parallel lines are cut by a 

third line, the pairs of 

corresponding angles are 

congruent. 

Is it true or false? Why? 

Cylinders 

Given a cylinder with radius r and 

height h, the cylinder can be 

unrolled to include a rectangle with 

length h and width 2 r. 

Is it true or false? Why? 

Prisms 

If the length, width, and height of a 

cube are each doubled, then the 

volume increases by a factor of 8. 

Is it true or false? Why? 

Pyramids or 

Cones 

The volume of a cone is one-third 

the volume of a cylinder with the 

same base and height. 

Is it true or false? Why? 

Fig. 7   Example of GeoGebra 3D simulations, and accompanying conjectures, rendered using Microsoft 
HoloLens 2
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these settings. This consideration of embodied collaboration practices and affordances 
of dynamic embodied technologies extends many previous illustrations of multimodal 
analysis.

Taken together, these three cases can help illustrate important factors that should be 
taken into account when using MAET. First, appropriately capturing detailed informa-
tion about and analyzing how students collaborate over time across different modalities, as 
their reasoning develops, is key to this approach. Examining each interaction in the context 

1. S5 moves closer 
to the lines and tries 
to grab an object 
with the pointer. 
With the pointer, S6 
grabs one of the 
parallel lines, 
widening the 
distance between 
them, then 
narrowing them 
again.  S6 takes a 
step forward. 

2. With the pointer, 
S6 grabs the other 
parallel line and 
changes the angle of 
both parallel lines 
until his view is 
between the lines. 

3. S6: If two parallel 

lines are cut into a 

third line 

S5: Corresponding 

angles are congruent. 

S6: ...the pairs of the 

corresponding angles 

are congruent. 

S5: So basically we 

gotta make two angles 

equal. 

Fig. 8   Two students exploring conjecture “If two parallel lines are cut by a third line, the pairs of corre-
sponding angles are congruent”
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of historical interactions creates a detailed picture of how learners work together to build 
cohesion. Second, explicit consideration of gestures, actions and movements, and think-
ing through how these relate to targeted learning goals, is a key element of MAET which 
we illustrated. For example, students’ developing understanding can be understood by the 
progression of their gestures, actions, and movements over time. This elevating of ges-
tures and movements as forms of knowledge challenges traditional notions of “knowing” 
as being based on verbal and written responses. Third, different learning technologies will 
have different affordances for capturing multimodal data (e.g., body tracking, first-person 
recording, etc.), and the affordances of your system should be considered when planning 

4. S5: How do you 

want to start this? 

S6: I don't know. 

S6 moves between 
the parallel lines 
and steps towards 
the transversal 
staying between the 
parallel lines 

5. S5 tilts her head 
to try to get a 
different view of the 
parallel lines.  S6 
looks at the 
conjecture on the 
board. 
S6: (mumbling) 

S5: You asking me?  

6. S6 moves closer 
to the transversal.  
S5 on tip toes. 
Researcher: So what 

are you guys 

thinking? 

S5: I think it should 

be it. What do you 

think? 

S6: (nods) 

Researcher: Why? 

S6: Because the line 

right here is getting 

cut. And these two are 

here are parallel of 

each other. 

Fig. 8   (continued)
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for different multi-modal streams. Fourth, the learning goals will influence the kinds of 
embodied and collaborative moves that unfold, and designing learning tasks for educa-
tional technologies with possibilities for embodied collaboration in mind may best leverage 
these technologies.

One weakness of the MAET method as presented here is its reliance on video cam-
era feeds, rather than other forms of multimodal learning analytics (e.g., automatic gesture 
detection) that may be easier for researchers to collect in some contexts. In addition to 
such analytics being less intrusive and protecting learners’ identities better than raw video/
audio feeds, they may also be easier to quantitatively analyze—indeed, syncing and coding 
video data from multiple perspectives for micro-interactions can be quite time-consuming. 
We recommend that researchers consider which portions of their data may be richest and 
best suited for the application of MAET. Finally, we have found that a networked system 
of audio, motion, and video data capture technologies are necessary for MAET to be able 
to rigorously examine students’ interactions across different modalities; the cost, technical 
expertise, and setup may be prohibitive in some cases.

By presenting three very different cases of using MAET with respect to technology plat-
form (a motion capture game, a VR environment, and shared holographic AR simulations), 
we demonstrate the flexibility of this approach. We think this kind of analysis will be par-
ticularly beneficial as technologies begin to allow for collaboration and allow for learn-
ers to communicate with each other through ways other than typing, clicking, or talking. 
These issues are on the leading edge of current technology advancements, making MAET 
a highly effective method for studying these innovations.

MAET allows for an expanded view of what learners know and how they work together 
with technology, including their challenges and opportunities for providing important sup-
ports. Many researchers have found that when they start paying attention to gestures and 
other non-verbal forms of communication and reasoning, whole new ways of considering 
thinking and behavior are opened up. Researchers are able to learn more about human cog-
nition and be better informed as they strive to develop effective designs of learning envi-
ronments to promote understanding.
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