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Abstract
The current study investigated students’ gameplay behavioral patterns as a function of in-
game learning supports delivery timing when played a computer-based physics game. Our 
sample included 134 secondary students (M = 14.40, SD = .90) from all over the United 
States, who were randomly assigned into three conditions: receiving instructional videos 
before a game level (n = 40), receiving instructional videos after a game level (n = 41), and 
without instructional videos (n = 53) while playing the game for about 150 min. We col-
lected students’ gameplay behavior data using game log files and employed sequential anal-
ysis to compare their problem-solving and help-seeking behaviors upon receiving instruc-
tional videos at different timings. Results suggested that the instructional videos, delivered 
either before or after a game level, helped students identify the correct game solution at the 
beginning of medium-difficulty game levels. Moreover, receiving the instructional videos 
delayed students’ help-seeking behaviors—encouraging them to figure out game problems 
on their own before asking for help. However, receiving the instructional videos may pos-
sibly restrict students from creating diverse gaming solutions. Suggestions on design and 
implementation of in-game learning supports based on the findings are also presented.

Keywords  Game-based learning · Timing of support · Sequential analysis · Problem-
solving behaviors · Help-seeking behaviors

Introduction

Educational games can be promising tools to intrinsically motivate students and facilitate 
content learning (Gee, 2005; Kiili, 2005; Reiber, 1996; Squire & Jan, 2007; Squire & Klop-
fer, 2007; Young et al., 2012). Designing games that present reasonable challenges—those 
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that require an effort but are within the players’ ability—are essential to maintaining stu-
dents’ engagement and motivation (Adams, 2013; Gee, 2005; Kiili, 2005; Reiber, 1996). 
Reasonably challenging games provide students a “pleasantly frustrating” (Gee, 2005, p. 
10) experience, i.e., students struggle yet still believe that they can solve the problems. 
Alternatively, challenges that exceed students’ level of competence may cause excessive 
frustration and even elicit quitting behaviors if students are not provided guidance and 
support (Kiili, 2005; Schrader & Bastiaens, 2012). Moreover, Ke (2008) and Young et al. 
(2012) have argued that students engaged in gameplay tend to lack the ability to discern 
the underlying content knowledge without instructional support, leading to poor learning 
or even misconceptions. It is difficult for students to make sense of their gameplay expe-
rience and build connections between gameplay and targeted content knowledge without 
extra instruction (Barab et al., 2009; Furtak & Penuel, 2018; Ke, 2008). For example, stu-
dents may become too focused on accomplishing gameplay objectives that they neglect the 
learning opportunities within an educational game (Cheng et al., 2014).

One way to maintain an appropriate balance of frustration and the promotion of learn-
ing in educational games is to provide in-game learning supports (Kafai, 1996; Moreno & 
Mayer, 2005; Shute et al., 2021; Wouters & Van Oostendorp, 2013). For example, instruc-
tional videos presenting learning content within the guidance on overcoming game chal-
lenges could unobtrusively help students make connections between targeted knowledge 
and gameplay (Barab et al., 2009; Kafai, 1996; Moreno & Mayer, 2005; Yang et al., 2021). 
One problem that remains unresolved relates to the delivery timing of effective learning 
supports. Previous studies (e.g., Gee, 2005; Gresalfi & Barnes, 2016; Hamlen, 2014; Hig-
gins, 2001; Kulik & Kulik, 1988) have explored the effect of delivery timing of support 
in both game-based and non-game-based learning environments. However, more empiri-
cal studies are needed to understand when to provide support (e.g., instructional videos)—
i.e., before a game level or after a game level in educational games. Analyzing students’ 
gameplay behaviors (e.g., manipulating game mechanics, solving or quitting a game level) 
in response to different timings of learning supports can help game designers understand 
how such supports affect students’ learning and gaming performance. Thus, more empiri-
cal studies on the effects of delivery timing of learning supports from the perspective of 
students’ gameplay behavioral patterns are warranted to inform the design and implemen-
tation of learning supports in educational games. The current study aims to fill the gap by 
examining temporal patterns of students’ gameplay behaviors among those who received 
instructional videos before or after a game level, and those who did not receive any instruc-
tional videos when playing a physics game. The findings of this study can shed light on our 
understanding of when and how to provide learning supports (e.g., instructional videos) 
during game-based learning. This information is helpful to educational game designers, 
researchers, and educators. Next, we describe the relevant literature on learning supports 
delivered before and after a game level, and temporal patterns in educational gameplay 
behaviors.

Literature review

Supports before a game level

Supports given before a game level may serve as advance organizers to help students recall 
their prior knowledge (Barzilai & Blau, 2014; Liao et al., 2019; Mayer, 1983). Guided by 
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the meaningful learning theory, Ausubel (1963) proposed the idea of advance organizers, 
providing relevant and inclusive materials in advance of the learning process. Advance 
organizers prime students’ prior knowledge to aid the process of encoding new knowledge 
within the existing schema. Mayer (1983) investigated the effects of advance organizers 
in digital learning environments and found they could facilitate conceptual understand-
ing and problem solving. Liao and colleagues (2019) examined the use of an instructional 
video given before gameplay and its impact on students’ learning and cognitive load. The 
instructional videos explain the underlying concepts and their relations using various rep-
resentations such as graphics, animation, sound, and narratives in application contexts. For 
example, there was one instructional video explaining concepts of displacement and length 
of path in the context of shooting a basketball. According to Liao et al. (2019), such videos 
could serve as advance organizers as they presented the targeted disciplinary knowledge 
to be used in solving upcoming game problems. They found that students who played the 
game with the instructional video showed significantly lower extraneous cognitive load 
and larger learning gains than students who played the same game without the supports. 
Rothkopf (1966) and Richards and DiVesta (1974) explain that pre-level supports help 
direct students’ attention to essential information presented during subsequent gameplay 
(e.g., content knowledge), which is crucial for learning in exploratory environments, e.g., 
educational games (Kirschner et al., 2006; Moreno & Mayer, 2005).

Offering well-designed pre-level supports does not guarantee positive impacts (Gee, 
2005; Higgins, 2001). For example, Gee (2005) argued that students might ignore sup-
ports provided prior to gameplay because they are more interested in completing the game 
objectives. Higgins (2001) found that participants who received help at the beginning of 
the learning task held significantly more negative expectations of their outcome than their 
peers. She randomly assigned 97 participants to play a basketball shooting game in four 
conditions: (1) without any help, (2) with help at the beginning of their trial, (3) with help 
after their first trial, and (4) with help both before and after a trial. Results indicated that 
people tend to perceive help given at the beginning of their trial as expectations of nega-
tive evaluation. In other words, people believe that they receive support before gameplay 
because the game or instructor anticipates that their performance will be unsatisfactory. 
The researcher further argued that students’ negative perceptions of early support might 
shift their attention from learning to protecting their self-esteem. To reduce such negative 
effects, Higgins suggested emphasizing to students that the purpose of offering support is 
to improve their future performance and not a judgment of their current abilities.

Supports after a game level

Offering learning supports after students have engaged in gameplay is supported by a dif-
ferent set of instructional theories. According to impasse-driven learning and productive 
failure theory, letting students struggle or encounter failure is necessary to engage them 
in assembling new information and exploring multiple strategies (Kapur, 2008, 2012; Van 
Lehn et al., 2003). Researchers have argued that help or guidance should be provided after 
students try to solve problems or complete tasks on their own (Hamlen, 2014; Kapur, 2008, 
2012; Kapur & Kinzer, 2009; Van Lehn et al., 2003).

Kapur (2008) proposed a productive failure design including two phases: explora-
tion and consolidation. In the exploration phase, students activate their prior knowledge 
to explore and generate multiple solutions to a new problem. In the consolidation phase, 
external supports (e.g., direct instruction) are provided for students to compare and contrast 
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their solutions with the canonical solution. Kapur and colleagues (2008; 2009; 2012) con-
ducted multiple experiments to validate the productive failure design in classroom learning 
environments. For example, Kapur (2012) compared the direct instruction with the produc-
tive failure for learning the concept of variance in mathematics classrooms. In the direct 
instruction condition, students were taught by the instructor of the canonical solution of a 
mathematical problem using worked examples, followed by solving similar problems on 
their own. In the productive failure condition, students tried to solve the same problem 
without support, followed by teachers’ modeling and explaining the canonical solution to 
the problem. Findings showed that students from the productive failure condition gener-
ated more diverse representations and solutions, and significantly outperformed the direct 
instruction students on the understanding of the targeted concept (Kapur, 2012). Kapur and 
colleagues (2009; 2012) explained that students who received supports before exploration 
might feel constrained, believing their solution must emulate the one presented in the sup-
port. Exploration before direct instruction, however, is critical to activate and differentiate 
students’ prior knowledge, leading to various representations and solutions. In the subse-
quent instruction session, students could further compare and contrast their solutions to the 
canonical ones, which could facilitate their conceptual understanding (Kapur, 2012; Van 
Lehn et al., 2003). That is, students who receive supports after exploration might struggle 
with solving problems in a canonical manner but could yield greater content knowledge 
compared to students given supports early on (Kapur, 2012). More empirical studies are 
needed to validate the productive failure design in the context of educational games with 
embedded learning supports (i.e., supports as a part of gameplay rather than teacher-led 
instruction).

Additionally, supports provided after a game level may be perceived as an assessment 
of individuals’ prior performance (Conati et al., 2013; Gresalfi & Barnes, 2016; Higgins, 
2001). How students react to such supports might depend on their performance (Conati 
et  al., 2013). Conati and colleagues (2013) designed adaptive textual feedback (e.g., the 
definition of key math concepts, elaboration of why certain game moves were incorrect in 
terms of targeted knowledge) in a math game called Prime Climb. Players’ eye-tracking 
data were collected to measure how students interacted with the feedback during gameplay. 
Results indicated that students paid closer attention to the feedback provided after a correct 
move than feedback provided after an incorrect move. Researchers explained that students 
might treat support after correct moves as positive feedback and confirmation of their sat-
isfactory performance, and thus were motivated to pay more attention to supports provided 
after correct moves than supports provided after incorrect moves.

In addition to supports designed to prompt content learning (e.g., instructional videos), 
researchers have also suggested including “game-related supports” such as hints to provide 
partial information on how to solve game levels (e.g., Schrader & Bastiaens, 2012; Sun 
et al., 2011; Yang et al., 2021). Research shows that game-related support could reduce stu-
dents’ cognitive load and regulate students’ frustration during gameplay (Schrader & Bas-
tiaens, 2012). However, Sun and colleagues (2011) have warned that students may overly 
rely on such supports before exploring on their own.

Temporal patterns in educational gameplay behaviors

Researchers have been investigating students’ game-based learning behaviors’ temporal 
patterns to gain an in-depth view into students’ gameplay and learning procedures and to 
answer not only what happens but also why and how it happens in game-based learning 
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(Conati et al., 2013; Hou, 2015; Sung & Hwang, 2018). Researchers have been focused on 
sequence of behaviors such as interactions with game mechanics and in-game learning sup-
ports (e.g., Cheng et al., 2014; Conati et al., 2013; Hou, 2015; Sung & Hwang, 2018; Yang, 
2017). One commonly used method to detect temporal patterns in educational gameplay 
behaviors is sequential analysis (Bakeman & Quera, 2011).

For example, Hou (2015) adopted sequential analysis to investigate students’ gameplay 
behavioral patterns across flow states when playing a role-play simulation science game. 
Eighty-six college students played the game for 30 min individually, followed by complet-
ing a flow scale. Their gameplay behaviors were video-recorded and manually coded, such 
as correct manipulation, incorrect manipulation, and analysis (i.e., comparing and selecting 
specific chemical equipment or materials). Results showed that students who scored low 
on the flow scale tended to execute incorrect manipulations repeatedly without returning to 
analysis, while students with high flow scores showed a reflective behavioral pattern (i.e., a 
significant transition from incorrect manipulation to analysis).

Unlike Hou who manually coded participants’ behaviors, Sung and Hwang (2018) and 
Yang (2017) analyzed students’ gameplay behaviors that were automatically recorded and 
coded in game log files. For instance, Yang (2017) investigated elementary school stu-
dents’ behavioral patterns when they played a learning game with different types of feed-
back. Yang hypothesized that elaborated feedback would be more beneficial for students’ 
learning than verification feedback, but pretest and posttest showed no significant differ-
ence in learning achievement between students receiving verification feedback and elabora-
tion feedback. The researcher used students’ playing (e.g., starting the game) and in-game 
learning behaviors (e.g., referring to the learning materials) data from the game log files 
and conducted sequential analysis to explore how students interacted with these two types 
of feedback. Results showed that students with verification feedback tended to refer to the 
learning materials (e.g., in-game digital textbook) more often when starting and complet-
ing the game than those with elaborated feedback. The researcher posited that verifica-
tion feedback did not inform why an answer was correct or incorrect, forcing students to 
go back to the learning materials to check themselves. The regular referring of learning 
materials might compensate for the disadvantage of verification feedback and thus result 
in equivalent learning achievements between verification and elaboration feedback groups.

In summary, providing supports before a game level can facilitate content learning and 
problem-solving during gameplay (Barzilai & Blau, 2014; Liao et al., 2019; Mayer, 1983), 
but special cautions are needed to prevent negative perceptions of students toward such 
supports (Gee, 2005; Higgins, 2001). Supports delivered after a game level, based on pro-
ductive failure design, can also scaffold knowledge acquisition (Kapur, 2008, 2012; Van 
Lehn et al., 2003). However, students’ performance may mediate the effects of post-level 
supports (Conati et  al., 2013). Moreover, students with post-level supports tend to have 
diverse solutions but solve fewer problems compared to those with pre-level supports. 
Research on the effects of supports delivery timing in educational games is still scarce. 
Investigating the timing of learning supports by employing behavior analysis on temporal 
patterns (e.g., sequential analysis) can provide an in-depth understanding of how students 
react to supports delivered in different timings.

Current study

In this study, we used a 2D computer-based game called Physics Playground (Shute et al., 
2019) with in-game instructional videos explaining targeted physics concepts in the context 
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of the game. We collected game log data and conducted sequential analysis (Bakeman & 
Quera, 2011) to investigate students problem-solving behaviors across students who played 
the game with the instructional videos delivered (a) before a game level, (b) after a game 
level, or (c) without videos for the control condition.

In addition to the instructional videos, we also included hints in the game to provide 
partial advice on game solutions to prevent students from becoming unproductively frus-
trated. All three groups could access hints at any time. Seeking help before it is needed 
demonstrates a lack of self-regulation, and self-regulation is critical to academic perfor-
mance (Zimmerman, 2008). Therefore, we also examined the effects of delivery timing 
of the instructional videos on students’ behaviors related to accessing hints before explor-
ing game problems on their own. The research questions we addressed and corresponding 
hypotheses are below.

RQ1: Are students who play the game with the instructional videos (either delivered 
before or after a game level) more likely to determine correct game solutions than 
those who play the game without the instructional videos?
H1: Students who play the game with the instructional videos before or after a game 
level are more likely to quickly figure out correct game solutions than those who play 
the game without the instructional videos, because receiving the instructional videos 
before or after a game level can facilitate students’ content learning during game-
play (Barzilai & Blau, 2014; Kapur, 2008, 2012; Liao et al., 2019; Mayer, 1983; Van 
Lehn et al., 2003).
RQ2: Do students who receive the instructional videos after a game level generate 
more diverse solutions than those with instructional videos delivered before a game 
level?
H2: Students who receive the instructional videos after a game level would generate 
more diverse solutions than those with the instructional videos before a game level 
because the instructional videos given after a game level allows students the opportu-
nity to explore the game problems on their own (Kapur, 2008, 2012).
RQ3: Are students who receive the instructional videos before or after a game level 
less likely to seek hints before trying to solve game problems on their own than those 
without the videos?
H3: Students who receive the instructional videos before or after a game level would 
be less likely to seek hints before trying to solve game problems on their own than 
those without the videos, because receiving the instructional videos can facilitate stu-
dents’ content learning which may enhance their sense of competence, thus intrinsi-
cally motivate them during gameplay (via self-determination theory; Rogers, 2017).

Method

Participants

We recruited 134 students from all over the United States between the ages of 12 and 
17 (M = 14.40, SD = .90). Of those that reported their gender, 62 reported as female, 64 
reported as male, one reported as other. Participating students came from diverse ethnic 
backgrounds (i.e., White = 31.3%; Black or African American = 26.6%; Asian = 11.7%; 
Hispanic = 7.0%; Others or Mixed = 23.4%). We randomly assigned these students into one 
of three conditions: before (n = 40), after (n = 41), and control (n = 53). The unequal sample 



1447Exploring students’ behavioral patterns when playing…

1 3

sizes across conditions were due to the fact that some students signed up for the study and 
were assigned to certain condition but did not participate the actual experiment. All stu-
dents played the same game for the same total amount of time. In the before condition, stu-
dents watched an instructional video immediately before starting a game level; in the after 
condition, students watched an instructional video immediately upon solving or quitting 
(i.e., giving up) a game level; in the control condition, students received no instructional 
videos. A total of 12 students (four from the before condition, six from the after condition, 
and two from the control condition) were excluded from further analysis because they did 
not complete the study (i.e., their pretest or posttest data were missing; the tests will be 
discussed below). There was not a statistically significant association between missing data 
and assignment to conditions (χ2 (2) = 3.42, p = .181). That is, we ended with 122 students 
across the before (n = 36), after (n = 35), and control (n = 51) conditions.

Educational game

Physics Playground is a 2D computer-based game created for 7th to 11th graders targeting 
nine Newtonian physics competencies. In the current study, we focused on two of them, 
i.e., energy can transfer and properties of torque. The goal in this game is to hit a red bal-
loon with a green ball by drawing objects and creating simple machines on the screen. 
Similar to real life, gravity and laws of physics act on the objects and the ball. The game 
used in this study included five tutorial levels teaching students the basic game mechanics 
(e.g., how to nudge the ball; how to draw a springboard), two warm-up levels, and 28 focal 
levels which were designed to be solved by one of the four simple machines (i.e., ramp, 
lever, springboard, pendulum). Figure 1 shows an example level called Trunk Slide. In this 
example, the student created a springboard (the right panel) and attached a weight to it (in 
pink color). The next action would be to delete the weight to launch the ball at the proper 
angle to hit the balloon.

As mentioned earlier, we included Hints to provide textual advice on applicable simple 
machines for each game level (e.g., “Try drawing a ramp”). Students could access the hints 
via a button that was available during gameplay, located at the bottom of the screen.

Instructional videos

We used instructional videos as the focal learning support in this study based on the results 
of a previous study where we examined the effectiveness of eight different learning sup-
ports and found that only the usage of instructional videos was related to student learning 
gains (Shute et al., 2021). The instructional videos were created based on Mayer’s Princi-
ples of Multimedia Learning and Merrill’s First Principles of Instruction (see Kuba et al., 
2021) with the help from two physics experts. The instructional videos used animations, 
on-screen text, and audio narration to explain physics concepts in the game environment 
(i.e., directing a green ball to hit a red balloon). For example, a level explaining property 
of torque with a lever solution would be matched with an instructional video using a lever 
to demonstrate torque (see Fig. 2). The videos were created using gameplay footage and 
followed the same structure (i.e., first the narrator would introduce and define the physics 
concept to be presented in the video, then the concept was explained via a failed attempt 
followed by a successful attempt).

We counterbalanced the delivery of the videos. We assigned half of the students in the 
treatment conditions to counterbalance order A and they received the videos on 14 focal 
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levels. The other half of the treatment students received order B with videos on the other 
14 focal levels. Orders A and B were organized in an alternating fashion. The first time 
viewing a video on a game level, students had to watch the video in its entirety. Subsequent 
views of the same video when replaying the game level could be exited at any time. Table 1 
shows the list of focal levels, associated instructional videos, and counterbalance for the 
videos.

For example, “ECT-Ramp” means that this video explained energy can transfer in a 
ramp solution

ECT energy can transfer, POT property of torque
As indicated by Higgins (2001), game designers should emphasize that help is provided 

to improve students’ performance rather than served as a judgment of their abilities. In the 
current study, students assigned to the before condition received a message leading them 
to watch a video to help them solve the upcoming level. Students in the after condition 
received a similar message when they wanted to quit a level or when they solved a level 
(see Fig. 3).

Procedure

Students participated in the study across a 3-day virtual summer camp or a 5-day after-
school program. Due to the COVID-19 pandemic, all sessions were held online. Students 
and parents electronically signed the assent and consent forms before the study, respec-
tively. During the summer camp or afterschool program, students first completed a ques-
tionnaire including demographic questions and the physics understanding pretest (this 
part took about 25  min). Then all students played through the game for about 150  min 
individually (actual gameplay time per day slightly varied between the summer camp and 
afterschool program). We assume that the potential impact of the difference in the actual 
gameplay time per day between the afterschool and summer camp participants is minimal 
as their total gameplay time was identical. Finally, students completed the posttest (25 min) 
and we distributed awards (certificates) to high-performing students including a monetary 
award ($10 e-Gift card) given to the student(s) who had the highest gain in score on the 
physics test. Note that the current study focuses on the temporal patterns in behaviors, 

Fig. 2   A screenshot of an instructional video explaining property of torque using a lever. See https://​bit.​ly/​
3ydsW​Jt for the full video

https://bit.ly/3ydsWJt
https://bit.ly/3ydsWJt
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while the results of the pretest and posttest of physics understanding were reported in 
another paper (see Rahimi et al., 2022).

Coding scheme

We collected behavioral data that were automatically recorded and coded in the game log 
files. When players played the game, the game engine logged students’ behaviors (e.g., 

Table 1   The order of the focal 
levels and counterbalancing for 
the instructional videos

a The name indicates the physics concept explained in the video and in 
what solution it was explained
b The “x” indicates that the students assigned to counterbalance order 
A or B would receive the instructional videos on the corresponding 
levels

No Level Instructional videoa Counterbal-
ance for the 
instructional 
videob

A B

1 Chocolate factory ECT-ramp x
2 Sunny day ECT-lever x
3 Shark POT-lever-distance x
4 On the upswing ECT-pendulum x
5 Scale POT-lever-mass x
6 Trunk slide ECT-springboard x
7 Diving board world POT-springboard x
8 Big watermill ECT-ramp x
9 Spider web ECT-lever x
10 One at a time POT-lever-distance x
11 Cloudy day ECT-pendulum x
12 Timing is everything POT-lever-mass x
13 Little mermaid ECT-springboard x
14 Stiff curtains POT-springboard x
15 Ultimate pinball ECT-ramp x
16 Leprechaun ECT-lever x
17 Need fulcrum POT-lever-distance x
18 Uphill battle ECT-pendulum x
19 Crazy seesaw POT-lever-mass x
20 Yippie! ECT-springboard x
21 Roller coaster POT-springboard x
22 Around the tree ECT-ramp x
23 Wavy ECT-lever x
24 Up in the air POT-lever-distance x
25 Maze ECT-pendulum x
26 Can opener POT-lever-mass x
27 Diving board ECT-springboard x
28 Perfect toss POT-springboard x



1451Exploring students’ behavioral patterns when playing…

1 3

Fi
g.

 3
  

Th
e 

m
es

sa
ge

 fo
r t

he
 in

str
uc

tio
na

l v
id

eo
 in

 th
e 

be
fo

re
 (l

ef
t) 

an
d 

af
te

r c
on

di
tio

ns
 (r

ig
ht

)



1452	 X. Yang et al.

1 3

drawing simple machines, starting a level) along with their user ID, the game level in 
which the behaviors occurred, and the event’s timestamp. To answer our three research 
questions, eight behaviors concerning solving game problems and assessing hints were col-
lected and coded (Table 2).

Draw Ramp, Draw Pendulum, Draw Lever, and Draw Springboard behaviors refer to 
students drawing the corresponding simple machines. Drawing the correct simple machine 
demonstrated that students figured out the correct game solution to the given level (Karum-
baiah et al., 2019). Start Level, Pass Level, and Quit Level refer to students starting a game 
level, successfully solving a game level, and quitting a game level without solving it. Hint 
refers to students accessing a textual hint.

Data analysis

In the current study, we adopted sequential analysis (Bakeman & Quera, 2011) as the data 
analysis method. Sequential analysis is a statistical method to be used to examine dynamic 
behavioral sequences (i.e., to what extent one behavior might occur after another behavior) 
based on timed-event data of group interactions (Bakeman & Quera, 2011). We selected 
sequential analysis because our research questions could be answered by comparing the 
behavioral sequences between two continuous pre-defined events. For example, in answer-
ing RQ1, we could compare the behavioral sequences from starting a game level to deter-
mining the correct game solution across conditions. Other analysis methods aiming to 
detect sequential patterns including sequential pattern mining (Mooney & Roddick, 2013) 
and process mining (van der Aalst, 2012) are not applicable because they do not focus on 
the sequence between two specific events. Instead, sequential pattern mining is to find fre-
quent subsequences from sequence databases while process mining is to discover the real 
operational processes from event logs.

We filtered out  the data from the five  tutorial levels and two warm-up levels (as they 
did not have instructional videos) and coded students’ behaviors in playing the remaining 
28 focal game levels based on the coding schema. A total of 30,050 behavioral codes pro-
duced by 115 students were coded (note that four students from the before condition, one 
student from after condition, and two students from the control condition did not play any 
focal levels).

As mentioned earlier, each game level was designed to be solved by one out of four 
simple machines. To investigate how students determined the correct game solutions (i.e., 
simple machines) across conditions, we grouped students’ coded behaviors by game levels 

Table 2   Coding scheme of 
students’ gameplay behaviors

Code Description

Draw ramp Students draw a ramp
Draw pendulum Students draw a pendulum
Draw lever Students draw a lever
Draw springboard Students draw a springboard
Start level Students start a level
Pass level Students solve a level
Quit level Students quit a level without solving it
Hint Students click the help button to access the hint
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with the same solvable simple machine. In total, 12 sequential analyses (3 conditions × 4 
simple machines) were conducted.

In each sequential analysis, we first computed a behavior frequency transition matrix 
presenting the frequency of each behavior transition (i.e., from an initial behavior to a sub-
sequent behavior). Then, we computed the adjusted residuals table (z-score table) to iden-
tify the statistical significance of individual transition, i.e., to what extent that sequence of 
behaviors can be predicted by prior behavior (Bakeman & Quera, 2011). A z-score of a 
transition greater than 1.96 indicated that the specific transition was statistically significant 
(p < .05). Next, we drew the behavioral transition diagram to visualize the significant transi-
tions shown in the adjusted residuals table. Finally, to compare sequence strength between 
different behavioral patterns, we calculated the index of effect size: Yule’s Q. According 
to Bakeman and Quera (2011), Yule’s Q is an index of the strength of sequential associa-
tion. Similar to the Pearson correlation coefficient, Yule’s Q ranges from − 1 to 1 and a 
larger absolute value indicates stronger sequential association (i.e., the subsequent behav-
ior is more likely to occur after the initial behavior). The adjusted residuals and Yule’s Q 
were calculated via an HTML5 application for sequential analysis published on GitHub by 
Yung-Ting Chen (2007). To validate the application, we calculated the adjusted residuals 
of sample data in three different ways: (1) Chen’s application, (2) pencil and paper by fol-
lowing the equations in Bakeman and Quera’s (2011, p. 109) book, and (3) another sequen-
tial analysis software program called GSEQ 5.1 (Bakeman & Quera, 2011). Results from 
all these three approaches were consistent.

Results

Our random assignment of the participants into the three conditions resulted in balanced 
conditions in terms of age, gaming experience, and prior knowledge. In the demographic 
questionnaire at the beginning of the experiment, students were asked “How often do you 
play video games?” Seven students (three from the before condition and four from the after 
condition) did not complete that questionnaire. We did not exclude them from the sequen-
tial analysis as long as they have behavior data on the focal game levels. One-way ANO-
VAs showed no significant difference among conditions regarding age (F (2, 112) = .29, 
p = .750) and gaming experience (F (2, 112) = .30, p = .742). To validate the consistency in 
prior knowledge across conditions, we conducted another one-way ANOVA to compare the 
pretest scores between the three conditions (see Rahimi et al., 2022 for full results of the 
pretest and posttest). Results revealed no significant difference in students’ pretest scores 
across conditions (F (2, 119) = 2.89, p = .059). Furthermore, there was no significant differ-
ence among the before (M = 10.58, SD = 10.02), after (M = 11.22, SD = 9.07), and control 
(M = 10.00, SD = 7.10) conditions in terms of total focal levels solved (F (2, 117) = .21, 
p = .813). We met the assumption of homogeneity of variance with all the ANOVAs above.

Sequential analyses were conducted to investigate behavioral patterns in terms of 
solving game problems and accessing help before trying any simple machines across 
students who received instructional videos before a game level, after a game level, and 
no videos. The adjusted residual tables of students’ targeted gameplay behaviors by con-
ditions for ramp, pendulum, lever, and springboard levels are shown in Appendix. In 
these tables, the first column represents the initial behaviors, and the first row presents 
the subsequent behaviors that occurred after the corresponding initial behaviors. We 



1454	 X. Yang et al.

1 3

selected all statistically significant sequences and drew behavioral transition diagrams 
by conditions and by simple machines (see Figs. 4, 5, 6, 7).

Fig. 4   The behavioral transition diagram of ramp levels by condition
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RQ1: determining correct game solutions

Regarding the first research question, we hypothesized that students who played the game 
with the instructional videos before or after a game level would be more likely to determine 
correct game solutions than those who played the game without any instructional videos. 
To test the hypothesis, we compared the sequence from starting a level to drawing the cor-
rect simple machine across students who played the game with the instructional videos 

Fig. 5   The behavioral transition diagram of pendulum levels by condition
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before a level, after a level, and without the videos. To better compare across conditions, 
we summarized these sequences from Figs. 4, 5, 6, 7 in Table 3.

As shown in Table 3, when playing ramp and pendulum levels, all conditions showed a 
significant sequence from starting a level to drawing the correct simple machine (i.e., Start 
Level → Draw Ramp, Start Level → Draw Pendulum, respectively). However, when play-
ing lever and springboard levels, no significant sequence from starting a level to drawing 

Fig. 6   The behavioral transition diagram of lever levels by condition
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the correct simple machine was found. The results indicated that students, regardless of 
condition, were more likely to determine the correct game solutions after starting a ramp 
or pendulum level than lever or springboard level. This suggests that lever and springboard 
levels might be harder than ramp and pendulum levels for students (more discussion can be 
found in the next section). Yule’s Q was computed to compare the strength of the signifi-
cant sequence Start Level → Draw the correct simple machine in ramp and pendulum levels 
across conditions (see Table 3). In ramp levels, the Yule’s Q of this sequence for the before 

Fig. 7   The behavioral transition diagram of springboard levels by condition
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(.91), after (.94), and control conditions (.93) were all close to 1, indicating that almost all 
students figured out the correct simple machine right after starting a ramp level. In pen-
dulum levels, the Yule’s Q of this sequence for the before, after, and control conditions 
were .60, .58, .49, respectively. That is, only in pendulum levels, students with instructional 
videos, either before or after a game level, were more likely to adopt the correct simple 
machine at the beginning of a game level compared to those without videos. Therefore, our 
hypothesis that students who play the game with the instructional videos before or after a 
game level would be more likely to determine correct game solutions than those who play 
the game without the instructional videos was partially accepted.

RQ2: generating diverse game solutions

Regarding the second research question, we hypothesized that students with the instruc-
tional videos after a game level would generate more diverse solutions than those with 
the instructional videos before a game level. To test the hypothesis, we compared the sig-
nificant sequence from drawing simple machines to passing a level across conditions. For 
the convenience of comparison, we summarized all the significant sequences from drawing 
simple machines to passing a level from Figs. 4, 5, 6, 7 in Table 4.

As shown in Table 4, there was a significant sequence Draw Ramp → Pass Level for all 
three conditions when students played ramp levels. However, compared to the before and 
after conditions, students from the control condition showed another significant sequence 
Draw Springboard → Pass Level. That is, most students tended to solve ramp levels by 
drawing a ramp, but students in the control condition also solved these levels by using 
springboards. In playing pendulum levels, there was no significant sequence from drawing 
simple machines to passing a level, indicating that students might not solve the pendulum 
levels even though they determined the correct simple machine. Regarding lever levels, we 
found students in the before and after conditions tended to solve these levels by ramp (Draw 
Ramp → Pass Level), while students from the control condition tended to solve these lev-
els by pendulum or springboard (Draw Pendulum → Pass Level, Draw Springboard → Pass 
Level). All students tended to solve springboard levels with springboards (Draw Spring-
board → Pass Level). In summary, students from the control condition were more likely to 
have diverse solutions than those in the before and after conditions when playing ramp and 
level levels. Therefore, our hypothesis that students with the instructional videos after a 
game level would generate more diverse solutions than those with the instructional videos 
before a game level was rejected.

Table 3   Sequences from starting a level to drawing the correct simple machine across conditions

Condition Ramp Pendulum Lever Springboard

Before Significant
Yule’s Q = .91

Significant
Yule’s Q = .60

Nonsignificant Nonsignificant

After Significant
Yule’s Q = .94

Significant
Yule’s Q = .58

Nonsignificant Nonsignificant

Control Significant
Yule’s Q = .93

Significant
Yule’s Q = .49

Nonsignificant Nonsignificant
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RQ3: accessing hints before exploration

Regarding the third research question, we hypothesized that students with the instruc-
tional videos before or after a game level would be less likely to access hints before 
trying to solve game problems on their own compared to those without videos. To test 
the hypothesis, we compared the sequence from starting a level to accessing hints across 
conditions. For the convenience of comparison, we summarized all these sequences 
from Figs. 4, 5, 6, 7 in Table 5.

As shown in Table  5, there was no significant sequence Start Level → Hint for all 
three conditions when students played the ramp levels. However, when playing all other 
levels, students, regardless of condition, tended to refer to hints right after starting a 
lever level. We computed Yule’s Q to compare the strength of this sequence across con-
ditions. Results showed that students in the control group had a stronger sequential pat-
tern of accessing hints after starting a pendulum, lever, or springboard level than those 
in the before and after conditions. That is, students with the instructional videos before 
or after a game level were less likely to access hints before playing on their own than 
those without the videos in playing the most levels. Therefore, our hypothesis that stu-
dents with the instructional videos before or after a game level would be less likely to 
access hints before exploring on their own than those without the videos was partially 
accepted.

Additionally, in the before condition, we found the strength of the sequence Start 
Level → Hint was greater when playing pendulum levels than playing lever and spring-
board levels. However, in the after and control conditions, the strength of that sequence 
was greater when playing lever and springboard levels than playing pendulum levels.

Discussion

In-game learning supports are crucial to ensure a “pleasantly frustrating” experience for 
the learner and draw the connection between gameplay and content knowledge (Kafai, 
1996; Moreno & Mayer, 2005; Shute et al., 2021; Wouters & Van Oostendorp, 2013). The 
delivery timing of learning supports might influence how students perceive the supports 
and students’ learning via gameplay (Barzilai & Blau, 2014; Gee, 2005; Gresalfi & Barnes, 
2016; Hamlen, 2014; Higgins, 2001; Kulik & Kulik, 1988; Liao et  al., 2019). The cur-
rent study investigated the effects of differential timings of instructional videos on students’ 
problem-solving and help-seeking behaviors as they played Physics Playground.

Table 5   Sequences from starting a level to accessing hints across conditions

Condition Ramp Pendulum Lever Springboard

Before Nonsignificant Significant
Yule’s Q = .71

Significant
Yule’s Q = .67

Significant
Yule’s Q = .44

After Nonsignificant Significant
Yule’s Q = .61

Significant
Yule’s Q = .64

Significant
Yule’s Q = .64

Control Nonsignificant Significant
Yule’s Q = .73

Significant
Yule’s Q = .82

Significant
Yule’s Q = .79
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Determining correct game solutions

Correctly figuring out the simple machine to use at a given level is key to problem solv-
ing and demonstrates students’ conceptual understanding of physics when playing the 
game used in the current study (Karumbaiah et al., 2019; Shute et al., 2013). Karum-
baiah and colleagues (2019) adopted an Epistemic Network Analysis to compare game-
play behaviors between students who quit a level and those who did not when play-
ing Physics Playground. Results showed that students who quit a level tended to miss 
the correct simple machines compared to those who did not quit the level. In line with 
Mayer (1983), we found that receiving supports before a game level could facilitate stu-
dents’ problem-solving performance in some game levels. In contrast to the findings 
by Kapur and colleagues (2009; 2012), we found that receiving supports after students 
played a level on their own also helped them to quickly determine the correct game 
solutions to some extent. One possible explanation is that, unlike the productive failure 
design in Kapur (2012) where students received instruction after the whole exploration, 
in the current after condition, the instructional video provided at the end of one game 
level could work as support to students’ gameplay on subsequent levels to some extent. 
Although the simple machine demonstrated in one instructional video shown at the end 
of a certain game level might not be used to solve the subsequent level (see Table 1), the 
physics concept explained in the video could be applied to other levels.

We suspect that the instructional videos, delivered either before or after a game level, 
would help students to solve game problems, indicating an enhanced understanding of 
the targeted physics. However, such an advantage of instructional videos in facilitat-
ing gaming performance only existed in pendulum levels. We conjecture that this was 
because pendulum levels were neither too easy (like ramp levels) nor too hard (like 
lever and springboard levels) for students.

On the one hand, almost all students figured out the correct simple machine right 
after starting a ramp level, indicating that ramp levels were relatively easy for students. 
Therefore, students might have simply ignored the instructional video as they already 
knew the solution and were eager to dive into gameplay (Gee, 2005; Higgins, 2001). 
On the other hand, when playing lever and springboard levels, no significant sequence 
was found from starting a level to drawing the correct simple machine. Instead, students 
tended to refer to hints after starting a level. The results suggest that students found 
these levels relatively hard (probably because students were unfamiliar with the concept 
of torque) and might have had more unsuccessful attempts than the other levels. As indi-
cated by Conati and colleagues (2013), students were more likely to perceive supports 
that were delivered after incorrect actions as negative feedback, and thus give the sup-
ports less attention. Therefore, we suspect that students might have held negative per-
ceptions and paid insufficient attention to the instructional videos provided in the hard 
levels. As indicated by Higgins (2001), game designers should emphasize that supports 
are provided to improve students’ performance rather than serve as a judgment of their 
abilities to avoid such negative perceptions.

In conclusion, instructional videos may possibly help students adopt the correct solu-
tions on game levels that are not too easy or too hard. We argue that game designers 
should match students’ competency levels with the difficulty of the game levels when 
designing in-game learning supports. In other words, supports should be provided only 
when game levels exceed a student’s current level of competence, and add detailed guid-
ance when more help is needed (Vygotsky, 1978).



1462	 X. Yang et al.

1 3

Generating diverse gaming solutions

We designed game levels in Physics Playground with one solvable simple machine in 
mind. However, similar to our previous research (Shute et  al., 2021), students some-
times created different solutions than expected. Results showed that students without 
instructional videos were more likely to solve game levels using diverse solutions com-
pared to those who received videos. Kapur (2008, 2012) and Van Lehn et  al. (2003) 
have argued that allowing students to explore ill-structured problems on their own first 
would promote diverse problem-solving strategies and solutions compared to provid-
ing supports at the beginning of problem solving. Again, this result might be due to 
the different implementation of the productive failure design between Kapur (2012) and 
the after condition in the current study. The control condition in our study was more 
like the exploration phase in the productive failure design by Kapur (2012) because stu-
dents in this condition received no support at all. Therefore, our findings that the control 
condition generated more diverse solutions compared to the before and after conditions 
provided partial support for the productive failure design in the game-based learning 
context. We suggest future educational game research examine the effects of provid-
ing support after the gameplay session (e.g., the current control condition followed by 
instructional videos) on students’ game performance and conceptual understanding.

The instructional videos used in the current study only highlighted one simple 
machine when explaining the targeted physics concepts, which might restrict students’ 
solution strategies. Therefore, we suggest that game designers do not refer to specific 
game solutions when explaining the underlying content in instructional videos. Alter-
natively, game designers could include more than one representation of a game solu-
tion in designing instructional videos to avoid constraining students’ problem-solving 
strategies.

Furthermore, we found no significant sequence from drawing pendulum to passing a 
pendulum level. That is, students could not solve a pendulum level even though they cor-
rectly figured out which simple machine to use. This finding can be explained by our recent 
study (see Karumbaiah et al., 2019), which found that students may struggle with the draw-
ing or execution of the solution (e.g., related to timing and placement of simple machines) 
even though they correctly figured out the correct solution.

Help‑seeking behaviors before exploration

Students’ asking for help after exploration on their own is a self-regulation strategy crucial 
to academic achievement (Hamlen, 2014; Zimmerman, 2008). However, we found that stu-
dents significantly accessed hints right after starting a game level when playing all levels, 
except ramp levels. Game designers could consider inactivating the ever-present supports 
(e.g., hints in the current game) for a certain period of time during the beginning of a game 
level.

We found that students who received instructional videos were less likely to access hints 
before drawing any simple machines at the beginning of some game levels compared to 
those without such videos. This suggests that receiving instructional videos before or after 
a game level could delay students’ help-seeking behaviors and encourage them to figure 
out game problems on their own before asking for help. Also note that sequential analysis 
can only reveal the sequence of two events, rather than the actual interval time between the 
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two events. That is, a significant sequential association from starting a level to accessing 
hints provides no information about the time between the occurrence of these two events.

We conjecture that students perceived the instructional videos as helpful in promot-
ing their understanding of the targeted subject knowledge and game performance, which 
enhanced their sense of competence (Ryan et al., 2006). The sense of competence, accord-
ing to the self-determination theory (Rogers, 2017), is crucial to an individual’s intrinsic 
motivation. Therefore, students who received the instructional videos were more engaged 
in gameplay and more likely to explore the game problems themselves before seeking extra 
help than those without the videos.

As discussed earlier, lever and springboard levels might be harder to solve than pendu-
lum levels for students. We found that students in the after and control conditions were less 
likely to access hints when starting a relatively easy level (i.e., pendulum level) than start-
ing a relatively hard level (i.e., lever or springboard level). Chances are that students felt 
more competent when they encountered relatively easy levels and chose to try these levels 
on their own first compared to relatively hard levels. In contrast, students who watched 
instructional videos before entering a game level were more likely to access hints when 
starting relatively easy levels than relatively hard levels. We suspect that it was because 
students were more likely to appreciate the support prior to gameplay in more difficult lev-
els. That is, receiving instruction before gameplay might not facilitate the instant genera-
tion of canonical solutions to difficult game levels (see findings regarding RQ1), but would 
make students feel more confident in exploring these levels on their own.

Conclusions and implications

In the current study, we employed sequential analysis to investigate students’ problem-
solving and help-seeking behaviors when playing a physics game with instructional videos 
before a game level, after a game level, or without videos. We found that the instructional 
videos helped students adopt the correct simple machines at the beginning of reasonably 
difficult game levels but might constrain students’ possible solutions to game problems. 
Moreover, the videos delayed students’ help-seeking behaviors at the beginning of a game 
level and encouraged students to figure out game problems on their own before asking for 
external help.

The current study yields contributions to methodology and practice in the field of game-
based learning. In terms of methodology, this study collected students’ gameplay data via 
game log files and analyzed the data using sequential analysis. Compared to other behav-
ioral data collection methods (e.g., video recording or eye-tracking), game log file data are 
more efficient in collecting and coding. As such, this analysis approach could detect and 
visualize statistically significant behavioral patterns to help uncover students’ behaviors 
when playing educational games. Future researchers can also adopt this methodology to 
explore how people learn via educational games.

With regard to practical implications, the study provided empirical evidence indicat-
ing that instructional videos delivered before or after a game level could enhance students’ 
game performance and encourage them to explore on their own before seeking help. Sug-
gestions regarding the design of in-game learning supports were also discussed based on 
the findings of the current study. For example, the supports should adapt to the difficulty of 
game levels. Game instructions could highlight that the supports are aimed to improve stu-
dents’ performance, not judge their abilities. And to avoid imposing constraints, designers 
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may consider providing multiple voluntary supports with a variety of solution strategy sug-
gestions. Further work is needed to provide additional evidence to verify these in-game 
learning support design suggestions.

Limitations

The current study has some limitations. First, as mentioned earlier, the first view of the 
instructional video on a game level was mandatory, while subsequent views of the video 
on the game level were optional (i.e., students could skip the video on a certain game level 
if they have viewed it before). Thus, students in the treatment conditions could view the 
instructional video of each game level a different number of times. In the current study, 
we treated students who viewed the videos once versus multiple times without distinction, 
although the frequency of views can affect their content learning based on our previous 
study (Shute et  al., 2021). Second, previous research demonstrated that students’ prob-
lem-solving performance in this physics game corresponded to their understanding of the 
underlying physics concepts (Karumbaiah et al., 2019; Shute et al., 2013). To gain a bet-
ter understanding of how students solve game problems differently when received instruc-
tional videos before or after a game level compared to a control condition (without the 
videos), the current study examined the effects of delivery timing of instructional videos 
on students’ in-game problem-solving performance in terms of correctness and diversity 
of solutions. While we made some tentative interpretations regarding the effects of the 
instructional videos’ delivery timing on students’ conceptual understanding based on the 
literature, data analyzed in the current study provided no direct evidence on students’ sub-
ject learning as a function of supports’ delivery timing.

Appendix

See Tables 6, 7, 8, and 9.
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