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Abstract Indazole-derived synthetic cannabinoids (SCs)

featuring an alkyl substituent at the 1-position and L-vali-

namide at the 3-carboxamide position (e.g., AB-CHMI-

NACA) have been identified by forensic chemists around

the world, and are associated with serious adverse health

effects. Regioisomerism is possible for indazole SCs, with

the 2-alkyl-2H-indazole regioisomer of AB-CHMINACA

recently identified in SC products in Japan. It is unknown

whether this regiosiomer represents a manufacturing

impurity arising as a synthetic byproduct, or was inten-

tionally synthesized as a cannabimimetic agent. This study

reports the synthesis, analytical characterization, and

pharmacological evaluation of commonly encountered

indazole SCs AB-CHMINACA, AB-FUBINACA, AB-

PINACA, 5F-AB-PINACA and their corresponding

2-alkyl-2H-indazole regioisomers. Both regioisomers of

each SC were prepared from a common precursor, and the

physical properties, 1H and 13C nuclear magnetic resonance

spectroscopy, gas chromatography–mass spectrometry, and

ultraviolet–visible spectroscopy of all SC compounds are

described. Additionally, AB-CHMINACA, AB-FUBI-

NACA, AB-PINACA, and 5F-AB-PINACA were found to

act as high potency agonists at CB1 (EC50 = 2.1–11.6 nM)

and CB2 (EC50 = 5.6–21.1 nM) receptors in fluorometric

assays, while the corresponding 2-alkyl-2H-indazole

regioisomers demonstrated low potency (micromolar)

agonist activities at both receptors. Taken together, these

data suggest that 2-alkyl-2H-indazole regioisomers of AB-

CHMINACA, AB-FUBINACA, AB-PINACA, and 5F-

AB-PINACA are likely to be encountered by forensic

chemists and toxicologists as the result of improper

purification during the clandestine synthesis of 1-alkyl-1H-

indazole regioisomers, and can be distinguished by dif-

ferences in gas chromatography–mass spectrometry frag-

mentation pattern.

Keywords Indazole synthetic cannabinoid � 2H-indazole
regioisomer � Manufacturing impurity with cannabinoid

activity � CHMINACA � FUBINACA � PINACA

Introduction

Synthetic cannabinoids (SCs) are the most rapidly growing

class of novel psychoactive substances (NPSs) [1]. SC

‘‘designer drugs’’ are intended to mimic the psychoactive

effects of D9-tetrahydrocannabinol (D9-THC, 1, Fig. 1), the

principal bioactive component of cannabis. Unlike D9-

THC—a partial agonist at both cannabinoid type 1 (CB1)
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and type 2 (CB2) receptors—most SCs possess high effi-

cacy agonist activities at both CB receptor subtypes. Since

the discovery of CB1/CB2 agonist JWH-018 (2) in con-

sumer products in Germany, Austria, and Japan in 2008 [2,

3], more than 130 SCs have been reported in Europe, with

30 identified in 2014 alone [4].

The identification and subsequent prohibition of indi-

vidual SCs have motivated clandestine chemists to produce

analogues of increasing structural diversity, intended to

evade legal restriction [5, 6]. Many newer SCs have no

precedent in the scientific literature and little, if anything,

is known of their activity or toxicity [7–14]. One particu-

larly prevalent class of SCs, presumably inspired by recent

Pfizer patents [15, 16], is comprised of an indazole core

decorated at the 1-position with various aliphatic, alicyclic,

or aromatic groups, and at the 3-position with valine- or

tert-leucine-derived carboxamides. Unlike cannabis itself,

these newer SCs are associated with exposures resulting in

hospitalization or death in Europe, the USA, Japan, and

Russia [17–25].

(S)-N-(1-Amino-3-methyl-1-oxobutan-2-yl)-1-(cyclo-

hexylmethyl)-1H-indazole-3-carboxamide (AB-CHMI-

NACA, 3) was formally notified to the European

Monitoring Centre for Drugs and Drug Addiction

(EMCDDA) in 2014 following identification in Latvia

[4], and was also detected in Japan [26] and Germany

[27]. An analogue featuring a 4-fluorobenzene group in

place of the cyclohexane ring, (S)-N-(1-amino-3-methyl-

Fig. 1 Selected natural and synthetic cannabinoids (SCs)
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1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-car-

boxamide (AB-FUBINACA, 4), was found in consumer

products by Japanese researchers at the National Insti-

tute of Health Sciences in 2013 [28], and was also

identified in Belgium [29] and Germany [27].

(S)-N-(1-Amino-3-methyl-1-oxobutan-2-yl)-1-(pen-

tyl)-1H-indazole-3-carboxamide (AB-PINACA, 5), fea-

turing the n-pentyl substituent of JWH-018, was also

found alongside AB-FUBINACA in Japan in 2013 [28].

Consistent with the trend for incorporation of fluorine

into newer SCs [30], the terminally fluorinated analogue

of AB-PINACA, (S)-N-(1-amino-3-methyl-1-oxobutan-2-

yl)-1-(5-fluoropentyl)-1H-indazole-3-carboxamide (5F-AB-

PINACA, 6), was discovered in products originating from

Sweden in 2013 [29], Japan in 2014 [26], and Germany in

2015 [27].

Recently, AB-CHMINACA, AB-FUBINACA, AB-

PINACA, and 5F-AB-PINACA were shown to act as

potent and efficacious agonists at human CB1 and CB2

receptors in vitro [31, 32]. Moreover, AB-CHMINACA,

AB-FUBINACA, and AB-PINACA exert potent cannabi-

mimetic effects on locomotion, body temperature, heart

rate, and nociception in mice and rats, as well as substi-

tuting for D9-THC in drug discrimination assays [31–33].

Taken together, these data indicate that a range of alkyl

substituents are tolerated at the 1-indazole position in this

class of SCs.

These SCs appear more toxic than earlier examples, and

multiple overdoses and fatalities in the USA have been

attributed to AB-CHMINACA, AB-FUBINACA, and AB-

PINACA [34–36]. Due to the abuse potential and toxicity

of these newer SCs, the Federal Government of the USA

has used emergency scheduling laws to temporarily place

AB-FUBINACA, AB-PINACA, and AB-CHMINACA into

Schedule I, the most restrictive category of the Controlled

Substances Act. Similar legislation has been enacted in

Germany, Singapore, and elsewhere [37, 38].

Forensic chemists and toxicologists have developed

methods for the detection of AB-CHMINACA [39, 40],

AB-FUBINACA [41–44], AB-PINACA [41, 45, 46], 5F-

AB-PINACA [45, 46], and their metabolites in various

biological matrices [47]. However, the changing legality of

these substances, and the development of methods for their

detection, increases the likelihood that newer analogues of

this class will begin to appear on the drug market.

Isomerism may be used to generate new SC analogues

[48–50], and the 2H-indazole regioisomer of AB-CHMI-

NACA (AB-CHMINACA 2-isomer, 7) was recently

detected in SC products in Japan [51]. It is currently

unclear if this analogue is an impurity occurring as an

unintended byproduct of AB-CHMINACA synthesis, or if

the 2-isomer was willfully prepared as an intended can-

nabimimetic agent. Incidentally, the 2H-indazole analogue

of APINACA was reported in China recently [52]. One

study of bulk powders used as the active ingredients for SC

products found purity to range from 78 to 96 %, consistent

with the potential presence of manufacturing impurities in

the raw materials [53].

We recently reported the synthesis, structural charac-

terization, in vitro cannabinoid activity, and in vivo

biotelemetry of several indazole synthetic cannabinoid

designer drugs [31]. During the preparation of 5F-AB-

PINACA, it was noted that alkylation of methyl indazole-

3-carboxylate predominantly produced the desired 1-alky-

lated intermediate, with the 2-alkyl regiosiomer formed as

a minor product. Failure to remove the unwanted 2-alkyl

intermediate before the remaining synthetic steps would be

expected to form 5F-AB-PINACA 2-isomer as an impurity.

However, the cannabinoid activity of the 2H-indazole

regioisomers of this class of SCs has never been reported,

and AB-CHMINACA 2-isomer was detected in consumer

products at a concentration similar to those reported for

other SC products.

In this work, we synthesized AB-CHMINACA, AB-

FUBINACA, AB-PINACA, and 5F-AB-PINACA (3–6)

and the corresponding 2H-indazole regiosiomers 7–10

from a common precursor. The characterization of these

regioisomers was achieved using melting point range

determinations, nuclear magnetic resonance (NMR) spec-

troscopy, ultraviolet (UV)-visible (Vis) spectroscopy,

infrared (IR) spectroscopy, and gas chromatography–mass

spectrometry (GC–MS). Additionally, the in vitro

cannabinoid activities of 3–10 at human CB1 and CB2

receptors were evaluated using fluorometric imaging plate

reader (FLIPR) assays.

Materials and methods

General chemical synthesis details

The synthesis of 3–10 is shown in Fig. 2. All reactions

were performed under an atmosphere of nitrogen or argon

unless otherwise specified. Anhydrous tetrahydrofuran

(THF), methanol, acetonitrile, and dimethyl sulfoxide

(DMSO) (Sigma Aldrich, St. Louis, MO, USA) were used

as purchased. Commercially available chemicals (Sigma-

Aldrich) were used as purchased. Analytical thin-layer

chromatography was performed using Merck aluminum-

backed silica gel 60 F254 (0.2 mm) plates (Merck,

Darmstadt, Germany), which were visualized using short-

wave (254 nm) UV fluorescence. Flash chromatography

was performed using Merck Kieselgel 60 (230–400 mesh)

silica gel. Melting point (m.p.) ranges were measured in

open capillaries using a Stuart SMP10 m.p. apparatus

(Bibby Scientific, Staffordshire, UK) and were
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uncorrected. NMR spectra were recorded at 300 K using

either a Bruker AVANCE DRX400 (400.1 MHz) or

AVANCE III 500 Ascend (500.1 MHz) spectrometer

(Bruker, Bremen, Germany). The data are reported as

chemical shift (d ppm) relative to the residual protonated

solvent resonance, relative integral, multiplicity (s, singlet;

br s, broad singlet; d, doublet; t, triplet; quin., quintet; sept.,

septet; dt, doublet of triplets; m, multiplet), coupling con-

stants (J Hz) and assignment (for 13C, quat., quaternary).

Assignment of signals was assisted by correlation spec-

troscopy (COSY), distortionless enhancement by polar-

ization transfer (DEPT), heteronuclear single quantum

coherence (HSQC), and heteronuclear multiple-bond cor-

relation (HMBC) experiments where necessary. Low-res-

olution mass spectra (LRMS) were recorded using

electrospray ionization (ESI) recorded on a Finnigan LCQ

ion trap mass spectrometer (ThermoFisher Scientific,

Waltham, MA, USA). High-resolution mass spectra

(HRMS) were run on a Bruker 7T Apex Qe Fourier

Transform Ion Cyclotron resonance mass spectrometer

equipped with an Apollo II ESI/APCI/MALDI Dual source

by the Mass Spectrometry Facility of the School of

Chemistry at The University of Sydney. IR absorption

spectra were recorded on a Bruker ALPHA FT-IR spec-

trometer as solid or thin film from ethanol, and the data are

reported as vibrational frequencies (cm-1). Please see the

supplementary material for 1H and 13C NMR spectra and

Fourier-transform infrared (FTIR) spectra of all final

compounds.

Methyl 1H-indazole-3-carboxylate (12)

To a cooled (0 �C) solution of indazole-3-carboxylic acid

(11, 3.0 g, 18.5 mmol) in methanol (45 mL), sulfuric acid

(3 mL) was slowly added and the solution heated at reflux

for 24 h. The solvent was evaporated under reduced pres-

sure and the residue partitioned between ethyl acetate

(100 mL) and water (100 mL). The layers were separated

and the aqueous layer was extracted with ethyl acetate

(2 9 100 mL). The combined organic phases were washed

with sat. aq. sodium bicarbonate (3 9 100 mL), brine

(100 mL), dried (MgSO4), and the solvent evaporated

under reduced pressure. The crude material was purified

using flash chromatography (hexane/ethyl acetate 50:50, Rf

0.31) to give 12 (3.1 g, 95 %) as a white solid. m.p.

165–169 �C; 1H NMR (300 MHz, CDCl3): d 8.24 (1H, d,

J = 8.2 Hz), 7.69 (1H, d, J = 8.4 Hz), 7.48 (1H, t,

J = 7.0 Hz), 7.35 (1H, t, J = 7.2 Hz), 4.07 (3H, s); 13C

NMR (75 MHz, CDCl3): d 163.6 (CO), 141.5 (quat.),

136.3 (quat.), 127.6 (CH), 123.5 (CH), 122.5 (quat.), 121.8

(CH), 111.5 (CH), 52.3 (CH3); LRMS (?ESI) m/z 198.95

([M?Na]?, 54 %), 374.99 ([2M ? Na]?, 100 %).

General procedure A: 1-alkylation of methyl 1H-

indazole-3-carboxylate using potassium tert-

butoxide

To a cooled (0 �C) solution of 1H-indazole-3-carboxylate

(500 mg, 2.84 mmol, 1.0 equiv.) in THF (15 mL),

Fig. 2 Synthesis of indazole SC regioisomers 3–10. Reagents and

conditions: a conc. sulfuric acid, methanol, reflux, 24 h, 95 %;

b bromoalkane, potassium tert-butoxide, tetrahydrofuran, 0 �C–rt,
48 h, 65–84 %; c bromoalkane, potassium carbonate, potassium

iodide, acetonitrile, reflux, 24 h, 20–32 %; d sodium hydroxide,

methanol, rt, 24 h, 76–91 %; e L-valinamide, (benzotriazol-1-yl-

oxy)tripyrrolidinophosphonium hexafluorophosphate, N,N-diiso-

propylethylamine, dimethyl sulfoxide, rt, 24 h, 55–87 %
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potassium tert-butoxide (350 mg, 3.12 mmol, 1.1 equiv.)

was added portionwise, and the mixture stirred at ambient

temperature for 1 h. The cooled (0 �C) mixture was treated

dropwise with appropriate bromoalkane (2.98 mmol, 1.05

equiv.) and stirred at ambient temperature for 48 h. The

mixture was poured onto H2O (100 mL), extracted with

ethyl acetate (3 9 100 mL), dried (MgSO4), and the sol-

vent evaporated under reduced pressure. Following purifi-

cation by flash chromatography (hexane/ethyl acetate

80:20 unless otherwise stated), methyl 1-alkyl-1H-inda-

zole-3-carboxylate was obtained as the major product, and

methyl 2-alkyl-2H-indazole-3-carboxylate as the minor

product.

Methyl 1-(cyclohexylmethyl)-1H-indazole-3-carboxylate

(13)

Subjecting (bromomethyl)cyclohexane (415 lL,
2.98 mmol, 1.05 equiv.) to general procedure A gave, after

purification by flash chromatography (hexane/ethyl acetate

85:15), 13 (505 mg, 65 %) as a pale yellow oil. Rf 0.60

(hexane/ethyl acetate 80:20); 1H NMR (300 MHz, CDCl3):

d 8.22 (1H, dt, J = 8.1, 0.9 Hz), 7.48–7.39 (2H, m),

7.33–7.28 (1H, m), 4.28 (2H, d, J = 7.5 Hz), 4.03 (3H, s),

2.08 (1H, m), 1.74–1.52 (5H, m), 1.32–0.98 (5H, m); 13C

NMR (75 MHz, CDCl3): d 163.3 (CO), 141.3 (quat.),

134.6 (quat.), 126.8 (CH), 123.7 (quat.), 123.1 (CH), 122.3

(CH), 110.0 (CH), 56.1 (CH2), 52.1 (CH3), 38.9 (CH2),

31.7 (CH), 26.3 (CH2), 25.7 (CH2); LRMS (?ESI) m/z

295.05 ([M?Na]?, 100 %); IR (diamond cell, thin film):

2925 (s), 2851 (m), 1710 (s), 1477 (s), 1441 (m), 1224 (s),

1161 (s), 1121 (s), 751 (s).

Methyl 1-(4-fluorobenzyl)-1H-indazole-3-carboxylate (14)

Subjecting 4-fluorobenzyl bromide (371 lL, 2.98 mmol,

1.05 equiv.) to general procedure A gave 14 (570 mg,

71 %) as a colorless oil. Rf 0.35 (hexane/ethyl acetate

80:20); 1H NMR (300 MHz, CDCl3): d 8.25 (1H, d,

J = 7.8 Hz), 7.42–7.29 (3H, m), 7.21 (2H, t, J = 6.9 Hz),

6.99 (2H, t, J = 8.1 Hz), 5.67 (2H, s), 4.06 (3H, s); 13C

NMR (75 MHz, CDCl3): d 163.1 (CO), 162.6 (d,
1JC–F = 245.3 Hz, quat.), 140.6 (quat.), 135.3 (quat.),

131.6 (d, 4JC–F = 3.8 Hz, quat.), 129.2 (d, 3JC–F = 8.3 Hz,

CH), 127.3 (CH), 124.3 (quat.), 123.5 (CH), 122.5 (CH),

116.0 (d, 2JC–F = 21.8 Hz, CH), 53.5 (CH2), 52.2 (CH3);
19F NMR (282 MHz, CDCl3): d -113.8 (s); LRMS

(?ESI): m/z 307.00 ([M?Na]?, 100 %). IR (diamond cell,

thin film): 3071 (w), 2952 (w), 1712 (s), 1510 (s), 1479 (s),

1268 (s), 1157 (s), 749 (s).

Methyl 1-pentyl-1H-indazole-3-carboxylate (15)

Subjecting 1-bromopentane (370 lL, 2.98 mmol, 1.05

equiv.) to general procedure A gave 15 (585 mg, 84 %) as

a colorless oil. Rf 0.55 (hexane/ethyl acetate 80:20); 1H

NMR (300 MHz, CDCl3): d 8.24 (1H, d, J = 8.0 Hz),

7.50–7.44 (2H, m), 7.35–7.27 (1H, m), 4.47 (2H, t,

J = 7.4 Hz), 4.04 (3H, s), 1.97 (2H, quin., J = 7.0 Hz),

1.32 (4H, m), 0.87 (3H, t, J = 6.6 Hz); 13C NMR

(75 MHz, CDCl3): d 163.3 (CO), 140.6 (quat.), 134.6

(quat.), 126.8 (CH), 123.9 (quat.), 123.1 (CH), 122.3 (CH),

109.7 (CH), 52.1 (CH2), 50.1 (CH3), 29.7 (CH2), 29.0

(CH2), 22.4 (CH2), 14.0 (CH3); LRMS (?ESI): m/z 269.03

([M?Na]?, 60 %), 515.16 ([2 M ? Na]?, 100 %); IR

(diamond cell, thin film): 2954 (m), 2932 (m), 2860 (w),

1709 (s), 1477 (s), 1215 (s), 1159 (s), 1117 (s), 751 (s).

Methyl 1-(5-fluoropentyl)-1H-indazole-3-carboxylate (16)

Subjecting 1-bromo-5-fluoropentane (370 lL, 2.98 mmol,

1.05 equiv.) to general procedure A gave 16 (560 mg,

75 %) as a colorless oil. Rf 0.30 (hexane/ethyl acetate

80:20); 1H NMR (300 MHz, CDCl3): d 8.24 (1H, d,

J = 8.1 Hz), 7.49–7.45 (2H, m), 7.32 (1H, t, J = 6.3 Hz),

4.52–4.47 (3H, m), 4.33 (1H, t, J = 5.7 Hz), 4.04 (3H, s),

2.03 (2H, quin., J = 7.2 Hz), 2.00–1.63 (2H, m), 1.46 (2H,

quin., J = 12.0 Hz); 13C NMR (75 MHz, CDCl3): d 163.2

(CO), 140.6 (quat.), 134.8 (quat.), 127.0 (CH), 123.9

(quat.), 123.2 (CH), 122.4 (CH), 109.6 (CH), 83.8 (d,
1JC–F = 163.5 Hz, CH2F), 52.1 (CH2), 49.8 (CH3), 30.0 (d,
2JC–F = 19.5 Hz, CH2), 29.6 (CH2), 22.8 (d,
3JC–F = 4.5 Hz, CH2);

19F NMR (282 MHz, CD3OD): d
-218.6 (m); LRMS (?ESI): m/z 287.03 ([M?Na]?,

100 %); IR (diamond cell, thin film): 2950 (m), 2867 (w),

1729 (s), 1710 (s), 1478 (s), 1163 (s), 1118 (s), 752 (s).

General procedure B: 2-alkylation of methyl 1H-

indazole-3-carboxylate using potassium carbonate

To a stirred mixture of methyl 1H-indazole-3-carboxylate

(500 mg, 2.84 mmol, 1.0 equiv.), potassium carbonate

(785 mg, 5.68 mmol, 2.0 equiv.) and potassium iodide

(24 mg, 0.14 mmol, 0.05 equiv.) in acetonitrile (5 mL),

the appropriate bromoalkane (2.98 mmol, 1.05 equiv.)

was added dropwise. The suspension was heated at reflux

for 24 h and the cooled reaction was poured onto H2O

(30 mL) and extracted with ethyl acetate (3 9 30 mL).

The combined organic layers were dried (MgSO4) and the

solvent removed under reduced pressure. Following

purification by flash chromatography (hexane/ethyl acet-

ate 80:20 unless otherwise stated), methyl 1-alkyl-1H-
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indazole-3-carboxylate was obtained as the major pro-

duct, and methyl 2-alkyl-2H-indazole-3-carboxylate as

the minor product.

Methyl 2-(cyclohexylmethyl)-2H-indazole-3-carboxylate

(17)

Subjecting (bromomethyl)cyclohexane (415 lL,
2.98 mmol, 1.05 equiv.) to general procedure B gave, after

purification by flash chromatography (hexane/ethyl acetate

93:7), 17 (235 mg, 30 %) as a colorless solid. m.p.

83–85 �C; Rf 0.72 (hexane/ethyl acetate 80:20); 1H NMR

(300 MHz, CDCl3): d 8.02 (1H, d, J = 8.4 Hz), 7.79 (1H,

d, J = 8.7 Hz), 7.35 (1H, t, J = 7.2 Hz), 7.30 (1H, t,

J = 7.8 Hz), 4.78 (2H, d, J = 7.2 Hz), 4.03 (3H, s),

2.12–2.01 (1H, m), 1.70–1.56 (5H, m), 1.20–1.05 (5H, m);
13C NMR (75 MHz, CDCl3): d 160.9 (CO), 147.4 (quat.),

126.3 (CH), 125.0 (CH), 123.9 (quat.), 123.6 (quat.), 121.5

(CH), 118.4 (CH), 59.3 (CH2), 52.0 (CH3), 39.6 (CH), 30.7

(CH2), 26.4 (CH), 25.8 (CH2); LRMS (?ESI): m/z 295.08

([M?Na]?, 100 %). IR (diamond cell, thin film): 2923 (m),

2850 (m), 1711 (s), 1462 (s), 1250 (s), 1153 (s), 997 (s),

758 (s).

Methyl 2-(4-fluorobenzyl)-2H-indazole-3-carboxylate (18)

Subjecting 4-fluorobenzyl bromide (370 lL, 2.98 mmol,

1.05 equiv.) to general procedure B gave, after purification

by flash chromatography (hexane/ethyl acetate 85:15), 18

(225 mg, 28 %) as a white solid. m.p. 116.5–118.5 �C; Rf

0.57 (hexane/ethyl acetate 80:20); 1H NMR (300 MHz,

CDCl3): d 8.01 (1H, d, J = 8.1 Hz), 7.81 (1H, d,

J = 8.4 Hz), 7.35–7.28 (4H, m), 6.98 (2H, t, J = 7.8 Hz),

6.07 (2H, s), 4.01 (3H, s); 13C NMR (75 MHz, CDCl3): d
162.6 (d, quat., 1JC–F = 246.6 Hz), 160.8 (CO), 147.8

(quat.), 132.2 (quat.), 130.0 (d, 3JC–F = 8.3 Hz), 126.7

(CH), 125.4 (CH), 123.8 (quat.), 123.5 (quat.), 121.6 (CH),

118.5 (CH), 115.6 (d, 2JC–F = 21.8 Hz, CH), 56.0 (CH2),

52.2 (CH3);
19F NMR (282 MHz, CDCl3): d -114.2 (s);

LRMS (?ESI): m/z 307.02 ([M?Na]?, 100 %); IR (dia-

mond cell, thin film): 3054 (w), 2954 (w), 1710 (s), 1554

(s), 1510 (s), 1222 (s), 1210 (s), 1083 (s), 758 (s).

Methyl 2-pentyl-2H-indazole-3-carboxylate (19)

Subjecting 1-bromopentane (370 lL, 2.98 mmol, 1.05

equiv.) to general procedure B gave, after purification by

flash chromatography (hexane/ethyl acetate 93:7), 19

(175 mg, 25 %) as a colorless oil. Rf 0.69 (hexane/ethyl

acetate 80:20); 1H NMR (500 MHz, CD3OD): d 8.01 (1H,

d, J = 8.5 Hz), 7.70 (1H, d, J = 8.5 Hz), 7.36 (1H, t,

J = 7.0 Hz), 7.28 (1H, t, J = 7.5 Hz), 4.86 (2H, t,

J = 7.0 Hz), 4.02 (3H, s), 1.94 (2H, quin., J = 7.0 Hz),

1.39–1.31 (4H, m), 0.90 (3H, t, J = 6.5 Hz); 13C NMR

(125 MHz, CD3OD): d 161.8 (CO), 148.5 (quat.), 127.7

(CH), 126.0 (CH), 124.8 (quat.), 124.6 (quat.), 122.5 (CH),

118.6 (CH), 54.4 (CH2), 52.5 (CH3), 31.6 (CH2), 29.8

(CH2), 23.2 (CH2), 14.2 (CH3); LRMS (?ESI): m/z 269.03

([M?Na]?, 60 %), 515.16 ([2M ? Na]?, 100 %); IR (di-

amond cell, thin film): 2955 (m), 2930 (w), 2860 (w), 1710

(s), 1463 (s), 1278 (s), 1206 (s), 1078 (s), 758 (s).

Methyl 2-(5-fluoropentyl)-2H-indazole-3-carboxylate (20)

Subjecting 1-bromo-5-fluoropentane (370 lL, 2.98 mmol,

1.05 equiv.) to general procedure B gave 20 (152 mg,

20 %) as a colorless oil. Rf 0.50 (hexane/ethyl acetate

80:20); 1H NMR (300 MHz, CDCl3): d 8.02 (1H, d,

J = 8.4 Hz), 7.78 (1H, d, J = 8.6 Hz), 7.36 (1H, t,

J = 7.9 Hz), 7.29 (1H, t, J = 7.7 Hz), 4.93 (2H, t,

J = 7.4 Hz), 4.43 (2H, dt, J = 47.5 Hz, J = 6.2 Hz), 4.04

(3H, s), 2.03 (2H, quin., J = 7.5 Hz), 1.76 (2H, m), 1.50

(2H, quin., J = 7.6 Hz); 13C NMR (75 MHz, CDCl3): d
160.8 (CO), 147.5 (quat.), 126.4 (CH), 125.1 (CH), 123.6

(quat.), 123.5 (quat.), 121.5 (CH), 118.3 (CH), 83.9 (d,
1JC–F = 163.5 Hz, CH2F), 53.5 (CH3), 52.1 (CH2), 30.6

(CH2), 30.1 (d, 2JC–F = 20.3 Hz, CH2), 22.6 (d,
3JC–F = 5.3 Hz, CH2);

19F NMR (282 MHz, CDCl3): d
-218.7 (m); LRMS (?ESI): m/z 287.05 ([M?Na]?,

100 %); IR (diamond cell, thin film): 2954 (w), 2865 (w),

1708 (s), 1463 (s), 1278 (s), 1205 (s), 1042 (s), 758 (s).

General procedure C: ester hydrolysis of methyl

1-alkyl-1H-indazole-3-carboxylates and methyl

2-alkyl-2H-indazole-3-carboxylates

To a solution of the appropriately substituted indazole-3-

carboxylic acid methyl ester (0.43 mmol) in methanol

(5 mL), a solution of 1 M aq. sodium hydroxide (650 lL,
0.65 mmol, 1.5 equiv.) was added dropwise, and the

solution stirred at ambient temperature for 18 h. Solvent

was evaporated in vacuo, and sat. aq. sodium hydrogen

carbonate (50 mL) was added to the residue. The aqueous

phase was washed with diethyl ether (10 mL), adjusted to

pH *2 using 1 M aq. hydrochloric acid solution, and

extracted with diethyl ether (3 9 50 mL). The combined

organic phases were washed with brine (50 mL), dried

(MgSO4), and the solvent evaporated under reduced

pressure.

1-(Cyclohexylmethyl)-1H-indazole-3-carboxylic acid (21)

Subjecting 13 (475 mg, 1.74 mmol) to general procedure C

gave 21 (388 mg, 86 %) as a white solid. m.p. 124–126 �C;
1H NMR (300 MHz, CD3OD): d 8.16 (1H, d, J = 8.1 Hz),

7.66 (1H, d, J = 8.4 Hz), 7.47 (1H, t, J = 7.2 Hz), 7.31
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(1H, t, J = 7.8 Hz), 4.34 (2H, d, J = 7.2 Hz), 2.05 (1H,

m), 1.72–1.66 (3H, m), 1.56 (2H, d, J = 12.9 Hz),

1.26–1.02 (5H, m); 13C NMR (75 MHz, CD3OD): d 165.5

(CO), 142.6 (quat.), 135.9 (quat.), 128.0 (CH), 124.5

(quat.), 124.1 (CH), 123.0 (CH), 111.4 (CH), 56.5 (CH2),

40.0 (CH), 31.7 (CH2), 27.7 (CH), 26.7 (CH2); LRMS (–

ESI): m/z 257.16 ([M-H]-, 100 %); IR (diamond cell, thin

film): 3060 (bs), 2926 (s), 2851 (m), 1707 (s), 1479 (s),

1230 (s), 1174 (s), 752 (s).

1-(4-Fluorobenzyl)-1H-indazole-3-carboxylic acid (22)

Subjecting 14 (560 mg, 1.97 mmol) to general procedure C

gave 22 (480 mg, 91 %) as a white solid. m.p.

198.5–199.5 �C; 1H NMR (300 MHz, CD3OD): d 8.17

(1H, d, J = 8.1 Hz), 7.62 (1H, d, J = 8.7 Hz), 7.44 (1H, t,

J = 7.5 Hz), 7.31 (3H, m), 7.04 (2H, t, J = 8.4 Hz), 5.71

(2H, s, CH2).;
13C NMR (75 MHz, CD3OD): d 165.5 (CO),

163.9 (d, 1JC–F = 244.5 Hz, quat.), 142.1 (quat.), 136.7

(quat.), 133.7 (d, 4JC–F = 3.0 Hz, quat.), 130.6 (d,
3JC–F = 8.3 Hz, quat.), 128.3 (CH), 125.0 (quat.), 124.3

(CH), 123.1 (CH), 116.5 (d, 2JC–F = 21.8 Hz, quat.), 111.4

(CH), 53.6 (CH2);
19F NMR (285 MHz, CD3OD): d

-118.0 (s); LRMS (–ESI): m/z 269.07 ([M-H]-, 100 %);

IR (diamond cell, thin film): 3058 (bs), 2926 (w), 1696 (s),

1510 (s), 1481 (s), 1224 (s), 1170 (s), 1157 (s), 749 (s).

1-Pentyl-1H-indazole-3-carboxylic acid (23)

Subjecting 15 (600 mg, 2.58 mmol) to general procedure C

gave 23 (510 mg, 85 %) as a white solid. m.p.

76.5–78.0 �C; 1H NMR (300 MHz, CD3OD): d 8.26 (1H,

d, J = 8.1 Hz), 7.52–7.44 (2H, m), 7.35 (1H, t,

J = 7.8 Hz), 4.48 (2H, t, J = 7.2 Hz), 1.99 (2H, quin.,

J = 7.2 Hz), 1.34 (4H, m), 0.89 (3H, t, J = 6.0 Hz); 13C

NMR (75 MHz, CD3OD): d 165.4 (CO), 142.0 (quat.),

135.9 (quat.), 127.9 (CH), 124.5 (quat.), 124.0 (CH), 122.9

(CH), 111.0 (CH), 49.7 (CH2), 30.4 (CH2), 29.8 (CH2),

23.1 (CH2), 14.1 (CH3); LRMS (–ESI): m/z 231.12

([M-H]-, 100 %); IR (diamond cell, thin film): 3053 (bs),

2956 (m), 2931 (m), 2860 (w), 1687 (s), 1503 (s), 1218 (s),

1176 (s), 1121 (s), 752 (s).

1-(5-Fluoropentyl)-1H-indazole-3-carboxylic acid (24)

Subjecting 16 (750 mg, 2.84 mmol) to general procedure C

gave 24 (580 mg, 81 %) as a white solid. m.p. 199–200 �C;
1H NMR (300 MHz, CD3OD): d 8.36 (1H, d, J = 7.8 Hz),

7.52 (2H, m), 7.33 (1H, t, J = 7.5 Hz), 4.53–4.49 (3H, m),

4.34 (1H, t, J = 5.7 Hz), 2.03 (2H, quin., J = 7.2 Hz),

1.82–1.65 (2H, m), 1.50 (2H, quin., J = 6.9 Hz); 13C NMR

(75 MHz, CD3OD): d 165.5 (CO), 142.2 (quat.), 136.1

(quat.), 128.1, 124.7 (quat.), 124.2 (CH), 123.0 (CH), 111.2

(CH), 84.6 (d, 1JC–F = 162.8 Hz, CH2), 50.3 (CH2), 31.0

(d, 2JC–F = 20.3 Hz, CH2), 30.4 (CH2), 23.6 (d,
3JC–F = 5.3 Hz, CH2);

19F NMR (282 MHz, CD3OD): d
-221.8 (m); LRMS (–ESI): m/z 249.12 ([M-H]-, 100 %);

IR (diamond cell, thin film): 3052 (bs), 2941 (m), 2866 (w),

1685 (s), 1480 (s), 1167 (s), 1120 (s), 751 (s).

2-(Cyclohexylmethyl)-2H-indazole-3-carboxylic acid (25)

Subjecting 17 (100 mg, 0.37 mmol) to general procedure C

gave 25 (72 mg, 76 %) as a white solid. m.p.

178–179.5 �C; 1H NMR (300 MHz, CD3OD): d 8.07 (1H,

d, J = 8.1 Hz), 7.69 (1H, d, J = 8.4 Hz), 7.35 (1H, t,

J = 7.2 Hz), 7.25 (1H, t, J = 6.9 Hz), 4.75 (2H, d,

J = 7.2 Hz), 2.03 (1H, m), 1.72–1.63 (3H, m), 1.53 (2H,

m), 1.22–1.05 (5H, m); 13C NMR (75 MHz, CD3OD): d
162.6 (CO), 148.4 (quat.), 127.6 (CH), 126.1 (quat.), 125.7

(CH), 124.9 (quat.), 122.9 (CH), 118.4 (CH), 59.7 (CH2),

40.8 (CH), 31.6 (CH2), 27.4 (CH2), 26.8 (CH2); LRMS (–

ESI): m/z 257.17 ([M-H]-, 100 %); IR (diamond cell, thin

film): 2923 (m), 2851 (m), 2567 (bs), 1706 (s), 1471 (s),

1271 (s), 1208 (s), 1197 (s), 1053 (s), 757 (s).

2-(4-Fluorobenzyl)-2H-indazole-3-carboxylic acid (26)

Subjecting 18 (100 mg, 0.35 mmol) to general procedure C

gave 26 (75 mg, 79 %) as a white solid. m.p.

207.5–210 �C; 1H NMR (500 MHz, CD3OD): d 8.07 (1H,

d, J = 8.5 Hz), 7.72 (1H, d, J = 8.5 Hz), 7.37 (1H, t,

J = 7.0 Hz), 7.33 (2H, t, J = 7.0 Hz), 7.27 (1H, t,

J = 7.5 Hz), 7.02 (2H, t, J = 8.0 Hz), 6.09 (2H, s); 13C

NMR (125 MHz, CD3OD): d 163.8 (d, 1JC–F = 242.5 Hz),

162.5 (CO), 148.9 (quat.), 134.3 (quat.), 130.8 (d,
3JC–F = 8.8 Hz, CH), 127.9 (CH), 125.9 (CH), 125.8

(quat.), 125.0 (quat.), 122.9 (CH), 118.6 (CH), 116.3 (d,
2JC–F = 21.3 Hz, CH), 56.3 (CH2);

19F NMR (470 MHz,

CD3OD): d -116.6 (s); LRMS (–ESI): m/z 269.12

([M-H]-, 100 %); IR (diamond cell, thin film): 2922 (w),

2525 (bs), 1712 (s), 1605 (m), 1511 (s), 1214 (m), 1152 (s),

1018 (s), 755 (s).

2-Pentyl-2H-indazole-3-carboxylic acid (27)

Subjecting 19 (100 mg, 0.43 mmol) to general procedure C

gave 27 (84 mg, 90 %) as a white solid. m.p.

141.5–142.5 �C; 1H NMR (300 MHz, CD3OD): d 8.26

(1H, d, J = 8.1 Hz), 7.52–7.44 (2H, m), 7.35 (1H, t,

J = 7.8 Hz), 4.48 (2H, t, J = 7.2 Hz), 1.99 (2H, quin.,

J = 7.2 Hz), 1.34 (4H, m), 0.89 (3H, t, J = 6.0 Hz); 13C

NMR (75 MHz, CD3OD): d 161.0 (CO), 147.0 (CH), 134.6
(quat.), 126.1 (CH), 124.1 (CH), 123.4 (quat.), 121.3 (CH),

116.8 (CH), 52.7 (CH2), 30.2 (CH2), 28.3 (CH2), 21.8

(CH2), 12.7 (CH3); LRMS (–ESI): m/z 231.13 ([M-H]-,
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100 %); IR (diamond cell, thin film): 2953 (m), 2927 (m),

2869 (m), 2474 (bs), 1701 (s), 1477 (m), 1428 (m), 1274

(s), 1209 (s), 1083 (s), 753 (s).

2-(5-Fluoropentyl)-2H-indazole-3-carboxylic acid (28)

Subjecting 20 (100 mg, 0.38 mmol) to general procedure C

gave 28 (78 mg, 82 %) as a white solid. m.p. 137–138 �C;
1H NMR (300 MHz, CD3OD): d 8.08 (1H, d, J = 8.1 Hz),

7.70 (1H, d, J = 8.7 Hz), 7.37 (1H, t, J = 7.2 Hz), 7.27

(1H, t, J = 7.2 Hz), 4.93 (2H, t, J = 7.2 Hz), 4.48 (1H, t,

J = 6.0 Hz), 4.32 (1H, t, J = 5.7 Hz), 2.01 (2H, quin.,

J = 7.2 Hz), 1.80–1.66 (2H, m), 1.45 (2H, quin.,

J = 7.5 Hz); 13C NMR (75 MHz, CD3OD): d 162.5 (CO),

148.6 (quat.), 127.7 (CH), 125.75 (CH), 125.74 (quat.),

124.9 (quat.), 122.8 (CH), 118.4 (CH), 84.6 (d,
1JC–F = 162.8 Hz, CH2F), 54.0 (CH2), 31.6 (CH2), 31.0 (d,
2JC–F = 19.5 Hz, CH2), 23.4 (d,

3JC–F = 5.3 Hz, CH2);
19F

NMR (282 MHz, CD3OD): d -222.0 (m); LRMS (–ESI):

m/z 249.14 ([M-H]-, 100 %); IR (diamond cell, thin film):

2927 (w), 2863 (w), 2548 (bs), 1692 (s), 1428 (s), 1390

(m), 1202 (s), 1079 (s).

General procedure D: preparation of indazole-3-

carboxamides

A cooled (0 �C) solution of the appropriate 1-alkyl-1H- or

2-alkyl-2H-indazole-3-carboxylic acid (0.19 mmol, 1.0

equiv.), L-valinamide (31 mg, 0.20 mmol, 1.05 equiv.), and

(benzotriazol-1-yl-oxy)tripyrrolidinophosphonium hex-

afluorophosphate (PyBOP�) (106 mg, 0.20 mmol, 1.05

equiv.) in DMSO (3 mL) was treated dropwise with N,N-

diisopropylethylamine (DIPEA, 68 lL, 0.39 mmol, 2.0

equiv.) and stirred at ambient temperature for 2 h. The

reaction was poured onto sat. aq. sodium hydrogen car-

bonate and extracted with diethyl ether (3 9 50 mL). The

combined organic layers were dried (MgSO4) and the

solvent evaporated under reduced pressure. The crude

products were purified using flash chromatography.

(S)-N-(1-Amino-3-methyl-1-oxobutan-2-yl)-1-

(cyclohexylmethyl)-1H-indazole-3-carboxamide (AB-

CHMINACA, 3)

Subjecting 21 (150 mg, 0.58 mmol) to general procedure D

gave, following purification by flash chromatography

(hexane/ethyl acetate 60:40), 3 (135 mg, 65 %) as a white

solid. Rf 0.25 (hexane/ethyl acetate 50:50); m.p.

88.5–92.5 �C; 1H NMR (400 MHz, DMSO-d6): d 8.16

(1H, dt, J = 8.0, 0.8 Hz), 7.77 (1H, d, J = 8.4 Hz), 7.68

(1H, d, J = 8.4 Hz), 7.67 (1H, br s), 7.45 (1H, ddd,

J = 8.4, 6.8, 1.2 Hz), 7.27 (1H, ddd, J = 8.2, 7.2, 0.8 Hz),

7.22 (1H, br s), 4.42 (1H, dd, J = 9.0, 6.4 Hz), 4.34 (2H, d,

J = 7.2 Hz), 2.14–2.05 (1H, m), 2.00–1.88 (1H, m),

1.68–1.55 (3H, m), 1.54–1.43 (2H, m), 1.22–0.99 (5H, m),

0.94 (3H, d, J = 6.8 Hz), 0.90 (3H, d, J = 6.8 Hz); 13C

NMR (100 MHz, DMSO-d6): d; 172.6 (CO), 161.4 (CO),

141.2 (quat.), 136.4 (quat.), 126.6 (CH), 122.4 (CH), 121.8

(quat.), 121.6 (CH), 110.7 (CH), 56.8 (CH), 54.6 (CH2),

38.4 (CH), 31.3 (CH), 30.02 (CH2), 29.99 (CH2), 25.8

(CH2), 25.11 (CH2), 25.08 (CH2), 19.4 (CH3), 18.0 (CH3);

LRMS (?ESI): m/z 379.16 ([M?Na]?, 100 %); HRMS

(?ESI): m/z [M?H]? calculated 357.2291, found

357.2286; IR (diamond cell, thin film): 3388 (bs), 3190

(bs), 2926 (m), 2851 (w), 1650 (s), 1528 (s), 1491 (m),

1176 (m), 778 (w), 749 (m).

(S)-N-(1-Amino-3-methyl-1-oxobutan-2-yl)-1-(4-

fluorobenzyl)-1H-indazole-3-carboxamide (AB-

FUBINACA, 4)

Subjecting 22 (75 mg, 0.28 mmol) to general procedure D

gave, following purification by flash chromatography

(hexane/ethyl acetate 50:50), 4 (84 mg, 81 %) as a white

solid. Rf 0.15 (hexane/ethyl acetate 50:50); m.p.

163.0–165.5 �C; 1H NMR (400 MHz, DMSO-d6): d 8.18

(1H, d, J = 8.4 Hz), 7.77 (1H, t, J = 9.4 Hz), 7.66 (1H, br

s), 7.46 (1H, ddd, J = 8.4, 6.8, 0.8 Hz), 7.34–7.27 (3H, m),

7.22 (1H, br s), 7.18–7.15 (2H, m), 5.78 (2H, s), 4.42 (1H,

dd, J = 9.2, 6.4 Hz), 2.15–2.06 (1H, m), 0.95 (3H, d,

J = 6.8 Hz), 0.90 (3H, d, J = 6.8 Hz); 13C NMR

(100 MHz, DMSO-d6): d 172.6 (CO), 161.6 (d, CF,

J = 243.8 Hz), 161.3 (CO), 140.6 (quat.), 137.1 (quat.),

133.0 (d, quat., J = 3.0 Hz), 129.5 (d, CH, J = 8.4 Hz),

127.0 (CH), 122.7 (CH), 122.3 (quat.), 121.8 (CH), 115.5

(d, CH, J = 21.6 Hz), 110.6 (quat.), 56.9 (CH), 51.6

(CH2), 31.2 (CH), 19.4 (CH3), 18.0 (CH3); LRMS (?ESI):

m/z 391.10 ([M?Na]?, 100 %); HRMS (?ESI): m/z cal-

culated [M?Na]? 391.1546, found 391.1541; IR (diamond

cell, thin film): 3337 (bs), 3231 (bs), 2966 (w), 1683 (m),

1651 (s), 1510 (s), 1491 (s), 1470 (m), 1225 (m), 748 (m).

(S)-N-(1-Amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-

indazole-3-carboxamide (AB-PINACA, 5)

Subjecting 23 (50 mg, 0.22 mmol) to general procedure D

gave, following purification by flash chromatography

(hexane/ethyl acetate 70:30), 5 (63 mg, 87 %) as a white

solid. Rf 0.55 (hexane/ethyl acetate 40:60); m.p.

100–103 �C; 1H NMR (400 MHz, DMSO-d6): d 8.16 (1H,

d, J = 8.4 Hz), 7.77 (1H, d, J = 8.4 Hz), 7.69 (1H, d,

J = 9.2 Hz), 7.66 (1H, br s), 7.45 (1H, ddd, J = 8.4, 7.2,

1.2 Hz), 7.27 (1H, t, J = 7.4 Hz), 7.22 (1H, br s), 4.49

(2H, t, J = 7.0 Hz), 4.39 (1H, dd, J = 9.2, 6.0 Hz),

2.14–2.06 (1H, m), 1.86 (2H, quin., J = 7.2 Hz), 1.35–1.19

(4H, m), 0.95 (3H, d, J = 6.8 Hz), 0.90 (3H, d,
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J = 6.8 Hz), 0.82 (3H, t, J = 7.2 Hz); 13C NMR

(100 MHz, DMSO-d6): d 172.6 (CO), 161.3 (CO), 140.6

(quat.), 136.4 (quat.), 126.6 (CH), 122.4 (CH), 122.0

(quat.), 121.6 (CH), 110.4 (CH), 56.7 (CH), 48.7 (CH2),

31.3 (CH), 29.1 (CH2), 28.3 (CH2), 21.6 (CH2), 19.4

(CH3), 17.9 (CH3), 13.8 (CH3); LRMS (?ESI): m/z 353.13

([M?Na]?, 100 %); HRMS (?ESI): m/z calculated

[M?Na]? 353.1954, found 353.1948; IR (diamond cell,

thin film): 3390 (bs), 3198 (m), 2960 (m), 2931 (m), 1651

(s), 1530 (s), 1468 (m), 1182 (m), 750 (m).

(S)-N-(1-Amino-3-methyl-1-oxobutan-2-yl)-1-(5-

fluoropentyl)-1H-indazole-3-carboxamide (5F-AB-

PINACA, 6)

Subjecting 24 (75 mg, 0.30 mmol) to general procedure D

gave, following purification by flash chromatography

(hexane/ethyl acetate 60:40), 6 (70 mg, 67 %) as a white

solid. Rf 0.45 (hexane/ethyl acetate 40:60); m.p.

121–124 �C; 1H NMR (400 MHz, DMSO-d6): d 8.16 (1H,

d, J = 8.4 Hz), 7.79 (1H, dt, J = 8.4, 0.9 Hz), 7.69 (1H, d,

J = 9.2 Hz), 7.66 (1H, br s), 7.46 (1H, ddd, J = 8.4, 6.8,

1.2 Hz), 7.28 (1H, ddd, J = 8.2, 7.0, 0.8 Hz), 7.22 (1H, br

s), 4.52 (2H, t, J = 7.0 Hz), 4.42 (1H, dd, J = 9.2,

6.0 Hz), 4.39 (1H, dt, J = 47.6, 6.0 Hz), 2.14–2.06 (1H,

m), 1.91 (2H, quin., J = 7.6 Hz), 1.74–1.60 (2H, m),

1.39–1.31 (2H, m), 0.95 (3H, d, J = 6.8 Hz), 0.90 (3H, d,

J = 6.8 Hz); 13C NMR (100 MHz, DMSO-d6): d 172.7

(CO), 161.4 (CO), 140.6 (quat.), 136.4 (quat.), 126.7 (CH),

122.5 (CH), 122.0 (quat.), 121.7 (CH), 110.5 (quat.), 83.6

(d, CH2F, J = 161.8 Hz), 56.8 (CH), 48.6 (CH2), 31.3

(CH), 29.3 (d, CH2, J = 19.3 Hz), 29.0 (CH2), 22.0 (d,

CH2, J = 5.3 Hz), 19.4 (CH3), 17.9 (CH3);
19F NMR

(470 MHz, DMSO-d6): d -217.0 (1F, s, CH2F); LRMS

(?ESI): m/z 371.12 ([M?Na]?, 100 %); HRMS (?ESI):

m/z calculated [M?Na]? 371.1859, found 371.1855; IR

(diamond cell, thin film): 3393 (bs), 3195 (bs), 2963 (m),

2873 (w), 1650 (s), 1529 (s), 1491 (m), 1172 (m), 751 (s).

(S)-N-(1-Amino-3-methyl-1-oxobutan-2-yl)-2-

(cyclohexylmethyl)-2H-indazole-3-carboxamide (AB-

CHMINACA 2-regioisomer, 7)

Subjecting 25 (50 mg, 0.19 mmol) to general procedure D

gave, following purification by flash chromatography

(hexane/ethyl acetate 70:30), 7 (50 mg, 74 %) as a white

solid. Rf 0.60 (hexane/ethyl acetate 40:60); m.p.

203–204 �C; 1H NMR (400 MHz, DMSO-d6): d 8.36 (1H,

d, J = 8.8 Hz), 7.81 (1H, d, J = 8.8 Hz), 7.69 (1H, d,

J = 8.8 Hz), 7.51 (1H, br s), 7.34–7.30 (1H, m), 7.23–7.20

(1H, m), 7.18 (1H, br s), 4.59 (1H, dd, J = 12.8, 7.2 Hz),

4.49 (1H, dd, J = 12.8, 7.2 Hz), 4.39 (1H, dd, J = 8.8,

6.8 Hz), 2.19–2.10 (1H, m), 1.96–1.85 (1H, m), 1.66–1.54

(3H, m), 1.49–1.45 (2H, m), 1.18–1.07 (3H, m), 1.03–0.92

(2H, overlapping), 0.99 (3H, d, J = 6.8 Hz), 0.97 (3H, d,

J = 6.8 Hz); 13C NMR (100 MHz, DMSO-d6): d 172.6

(CO), 159.8 (CO), 146.4 (quat.), 129.1 (quat.), 125.8 (CH),

122.8 (CH), 120.4 (quat.), 120.2 (CH), 117.4 (CH), 58.4

(CH), 57.3 (CH2), 30.2 (CH), 30.01 (CH), 29.99 (CH2),

25.8 (CH2), 25.2 (CH2), 19.5 (CH3), 18.3 (CH3); LRMS

(?ESI): m/z 379.16 ([M?Na]?, 100 %); HRMS (?ESI):

m/z calculated [M?Na]? 379.2110, found 379.2105; IR

(diamond cell, thin film): 3345 (bs), 3275 (bs), 3159 (bs),

2956 (w), 2925 (m), 2854 (w), 1679 (s), 1649 (s), 1624 (s),

532 (m).

(S)-N-(1-Amino-3-methyl-1-oxobutan-2-yl)-2-(4-

fluorobenzyl)-2H-indazole-3-carboxamide (AB-

FUBINACA 2-regioisomer, 8)

Subjecting 26 (50 mg, 0.19 mmol) to general procedure D

gave, following purification by flash chromatography

(hexane/ethyl acetate 70:30), 8 (55 mg, 79 %) as a white

solid. Rf 0.55 (hexane/ethyl acetate 40:60); m.p.

264–266 �C; 1H NMR (500 MHz, DMSO-d6): d 8.38 (1H,

d, J = 8.5 Hz), 7.81 (1H, d, J = 8.5 Hz), 7.70 (1H, d,

J = 8.5 Hz), 7.56 (1H, br s), 7.35–7.32 (3H, m), 7.23 (1H,

ddd, J = 8.3, 6.8, 0.5 Hz), 7.19 (1H, br s), 7.14–7.09 (2H,

m), 5.90–5.82 (2H, m), 4.37 (1H, dd, J = 9.0, 7.0 Hz),

2.15–2.08 (1H, m), 0.95 (3H, d, J = 6.8 Hz), 0.91 (3H, d,

J = 6.8 Hz); 13C NMR (125 MHz, DMSO-d6): d 172.9

(CO), 161.9 (d, CF, J = 244.0 Hz, quat.), 159.8 (CO),

147.0 (quat.), 133.2 (d, J = 3.0 Hz, quat.), 130.3 (d, CH,

J = 8.4 Hz, CH), 128.8 (quat.), 126.4 (CH), 123.4 (CH),

120.7 (quat.), 120.5 (CH), 117.7 (CH), 115.4 (d, CH,

J = 21.5 Hz, CH), 58.7 (CH), 54.4 (CH2), 30.3 (CH), 19.6

(CH3), 18.4 (CH3);
19F NMR (470 MHz, DMSO-d6): d

-114.5 (s); LRMS (?ESI): m/z 391.09 ([M?Na]?,

100 %); HRMS (?ESI): m/z calculated [M?Na]?

391.1546, found 391.1541; IR (diamond cell, thin film):

3350 (bs), 3257 (bs), 2960 (w), 2926 (w), 2854 (w), 1673

(s), 1636 (s), 1618 (s), 1536 (m), 1110 (w), 755 (w).

(S)-N-(1-Amino-3-methyl-1-oxobutan-2-yl)-2-pentyl-2H-

indazole-3-carboxamide (AB-PINACA 2-regioisomer, 9)

Subjecting 27 (50 mg, 0.22 mmol) to general procedure D

gave, following purification by flash chromatography

(hexane/ethyl acetate 70:30), 9 (40 mg, 55 %) as a white

solid. Rf 0.30 (hexane/ethyl acetate 50:50); m.p.

224–226 �C; 1H NMR (400 MHz, DMSO-d6): d 8.30 (1H,

d, J = 8.8 Hz), 7.80 (1H, dt, J = 8.4, 1.0 Hz), 7.69 (1H,

dt, J = 8.4, 1.0 Hz), 7.56 (1H, br s), 7.32 (1H, ddd,

J = 8.4, 6.8, 1.2 Hz), 7.22 (1H, ddd, J = 8.4, 6.8, 1.2 Hz),

7.17 (1H, br s), 4.72–4.57 (2H, m), 4.39 (1H, dd, J = 8.8,

6.9 Hz), 2.18–2.10 (1H, m), 1.84 (2H, quin., J = 7.4 Hz),
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1.29–1.16 (4H, m), 0.98 (3H, d, J = 6.8 Hz), 0.96 (3H, d,

J = 6.8 Hz), 0.81 (3H, t, J = 7.4 Hz); 13C NMR

(100 MHz, DMSO-d6): d 172.9 (CO), 159.9 (CO), 146.6

(quat.), 128.8 (quat.), 126.0 (CH), 123.1 (CH), 120.5

(quat.), 120.3 (CH), 117.6 (CH), 58.6 (CH), 51.9 (CH2),

30.4 (CH), 30.1 (CH2), 28.3 (CH2), 21.8 (CH2), 19.6

(CH3), 18.4 (CH3), 13.9 (CH3); LRMS (?ESI): m/z 353.15

([M?Na]?, 100 %); HRMS (?ESI): m/z calculated

[M?Na]? 353.1954, found 353.1948; IR (diamond cell,

thin film): 3369 (bs), 3269 (bs), 3205 (bs), 2958 (w), 2932

(w), 2859 (w), 1672 (s), 1619 (s), 1528 (m), 756 (w).

(S)-N-(1-Amino-3-methyl-1-oxobutan-2-yl)-2-(5-

fluoropentyl)-2H-indazole-3-carboxamide (5F-AB-

PINACA 2-regioisomer, 10)

Subjecting 28 (50 mg, 0.20 mmol) to general procedure D

gave, following purification by flash chromatography

(hexane/ethyl acetate 65:35), 10 (57 mg, 82 %) as a white

solid. Rf 0.50 (hexane/ethyl acetate 40:60); m.p.

213–214 �C; 1H NMR (500 MHz, DMSO-d6): d 8.32 (1H,

d, J = 8.8 Hz), 7.82 (1H, d, J = 8.5 Hz), 7.70 (1H, d,

J = 8.8 Hz), 7.55 (1H, br s), 7.34–7.31 (1H, m), 7.24–7.21

(1H, m), 7.18 (1H, br s), 4.74–4.62 (2H, m), 4.40 (1H, dd,

J = 8.8, 6.9 Hz), 4.39 (2H, dt, J = 47.5, 6.1 Hz), 2.14

(1H, sept., J = 6.8 Hz), 1.90 (2H, quin., J = 7.6 Hz),

1.68–1.58 (2H, m), 1.33–1.27 (2H, m), 1.00 (3H, d,

J = 6.8 Hz), 0.97 (3H, d, J = 6.8 Hz); 13C NMR

(125 MHz, CDCl3): d 172.6 (CO), 159.7 (CO), 146.5

(quat.), 128.7 (quat.), 125.8 (CH), 122.9 (CH), 120.4

(quat.), 120.2 (CH), 117.5 (quat.), 83.5 (d, J = 162.2 Hz,

CH2F), 58.4 (CH), 51.6 (CH2), 30.3 (CH), 29.9 (CH2), 29.3

(d, J = 18.9 Hz, CH2), 21.8 (d, J = 5.0 Hz, CH2), 19.5

(CH3), 18.3 (CH3);
19F NMR (470 MHz, DMSO-d6): d

-216.9 (s); LRMS (?ESI): m/z 371.14 ([M?Na], 100 %);

HRMS (?ESI): m/z calculated [M?Na]? 371.1859, found

371.1854; IR (diamond cell, thin film): 3368 (bs), 3267

(bs), 3204 (bs), 2959 (w), 2869 (w), 1672 (s), 1631 (s),

1530 (m), 758 (w).

Ultraviolet absorption spectroscopy

UV absorption spectroscopy was performed using a Cary

60 UV–Vis Spectrophotometer (Agilent Technologies,

Santa Clara, CA, USA). UV absorbances of solutions of 3–

10 in methanol (0.001 % w/v) in quartz cuvettes were

recorded over 200–800 nm.

Gas chromatography–mass spectrometry

All SCs were analyzed by gas chromatography–mass

spectrometry (GC–MS) using a ThermoQuest Trace gas

chromatograph with Finnigan Polaris Q ion trap mass

spectrometer (ThermoQuest, Madison, CT, USA) in posi-

tive ion electron ionization (EI) mode and a Phenomenex

ZB Wax column (30 m 9 0.25 mm internal diameter,

0.25 lm film thickness; Phenomenex, Torrance, CA, USA)

with helium gas as carrier at 1.3 mL/min. The conditions

were: electron energy, 70 eV; injector temperature,

200 �C; injection, splitless mode; injection volume, 1 lL;
oven temperature program, 80 �C (1.2 min hold), increase

at a rate of 50 �C/min to 190 �C (15 min-hold) and then

increase rate of 10 �C/min to 310 �C (10 min-hold);

transfer line temperature, 280 �C; scan range, m/z 46–650

(3 min solvent delay).

In vitro pharmacological assessment of 3–10

Mouse AtT-20 neuroblastoma cells stably transfected with

human CB1 or human CB2 have been previously described

[54] and were cultured in Dulbecco’s modified Eagle’s

medium (DMEM) containing 10 % fetal bovine serum

(FBS), 100 U penicillin/streptomycin, and 300 lg/mL

G418. Cells were passaged at 80 % confluency as required.

Cells for assays were grown in 75 cm2 flasks and used at

90 % confluence. The day before, the assay cells were

detached from the flask with trypsin/EDTA (Sigma-

Aldrich) and resuspended in 10 mL of Leibovitz’s L-15

media supplemented with 1 % FBS, 100 U penicillin/

streptomycin and 15 mM glucose (membrane potential

assay and Ca5 calcium assay). The cells were plated in

volume of 90 lL in black-walled, clear-bottomed 96-well

microplates (Corning, Oneonta, NY, USA) which had been

precoated with poly-L-lysine (Sigma-Aldrich). Cells were

incubated overnight at 37 �C in ambient CO2.

Membrane potential was measured using a FLIPR

membrane potential assay kit (blue) from Molecular

Devices (Sunnyvale, CA, USA), as described previously

[55]. The dye was reconstituted with assay buffer of

composition (mM): NaCl 145, HEPES 22, Na2HPO4 0.338,

NaHCO3 4.17, KH2PO4 0.441, MgSO4 0.407, MgCl2
0.493, CaCl2 1.26, glucose 5.56, and bovine serum albumin

(0.1 mg/mL, pH 7.4, osmolarity 315 ± 5). Prior to the

assay, cells were loaded with 90 lL/well of the dye solu-

tion without removal of the L-15, giving an initial assay

volume of 180 lL/well. Plates were then incubated at

37 �C at ambient CO2 for 60 min. Fluorescence was

measured using a FlexStation 3 (Molecular Devices)

microplate reader with cells excited at a wavelength of

530 nm and emission measured at 565 nm. Baseline

readings were taken every 2 s for at least 2 min, at which

time either drug or vehicle was added in a volume of 20

lL. The background fluorescence of cells without dye or

dye without cells was negligible. Changes in fluorescence

were expressed as a percentage of baseline fluorescence

after subtraction of the changes produced by vehicle
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addition, which was less than 2 % for drugs dissolved in

assay buffer or DMSO. The final concentration of DMSO

was always 0.1 %.

Data were analyzed with PRISM (GraphPad Software

Inc., San Diego, CA), using four-parameter nonlinear

regression to fit concentration–response curves. In all

plates, a maximally effective concentration (1 lM) of CP

55,940 (Cayman Chemical, Ann Arbor, MI, USA) was

added to allow for normalization between assays.

Results and discussion

The synthesis of 3–10 started with indazole-3-carboxylic

acid (11), which was subjected to Fischer esterification to

give the corresponding methyl ester (12). Alkylation of 12

with the appropriate bromoalkane, in the presence of

potassium tert-butoxide in THF at ambient temperature or

potassium carbonate in acetonitrile at reflux, produced a

mixture of major 1-alkyl (13–16) and minor 2-alkyl (17–

20) regioisomeric intermediates. Although 1-alkylated

products 13–16 always predominated, regardless of choice

of base, solvent, and temperature, the overall yield of

minor 2-alkylated intermediates 17–20 was greater using

potassium carbonate than potassium tert-butoxide.

Saponification of esters 13–20 gave the corresponding

acids 21–28, which were coupled to L-valinamide using

PyBOP and DIPEA to furnish 1H-indazoles 3–6 and their

2H-regioisomers 7–10 (Fig. 2).

The alkylation of methyl 1H-indazole-3-carboxylate

(12) proceeded regioselectively to favour the formation of

1-substituted 1H-indazole intermediates as major products,

entirely consistent with the known reactivity of indazoles

towards nucleophilic substitution [56–58]. To quantify the

regioselectivity of each alkylation method, the isolated

yields of the regioisomeric products obtained following

alkylation of 12 under each set of conditions for two rep-

resentative bromoalkanes were determined are shown in

Table 1. All reactions were performed in parallel, on the

same scale, using identical reagents. Alkylation of 12 with

4-fluorobenzyl bromide or 1-bromopentane using potas-

sium tert-butoxide as the base produced 14 and 15,

respectively, as the major products with excellent regios-

electivity for the 1-position (49:1 and 12.3:1, respectively).

The corresponding 2-alkylated regiosiomers (18 and 19,

respectively) were obtained as minor products in\10 %

yield. While use of potassium carbonate as a base also

furnished 14 and 15 as the major products, regioselectivity

was reduced and appreciable quantities of 18 and 19 were

obtained. The latter set of conditions (general procedure B)

required flash chromatography to separate regiosiomeric

intermediates of similar polarity and retention time; so it is

unlikely that this method is used on an industrial scale to

produce this class of SCs. In contrast, general procedure A

proceeded with high regioselectivity, and it is feasible that

incomplete purification of the crude product from this

reaction allows 2-alkyl-2H-indazole intermediate to be

carried through the synthesis, resulting in the production of

regioisomeric SCs.

All SCs were analyzed using GC–MS, and total ion

current chromatograms (TICs) and EI mass spectra for (S)-

N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-alkyl-1H-inda-

zole-3-carboxamides (3–6) and the corresponding 2-alkyl-

2H-indazole regioisomers (7–10) are shown in Figs. 3 and

4, respectively.

All 1-alkyl regioisomers failed to show molecular ion

peaks, but similar fragmentation patterns were evident in

each case. For AB-CHMINACA, AB-FUBINACA, AB-

PINACA, and 5F-AB-PINACA, the most prominent frag-

ment ions could be attributed to cleavage of the terminal

carboxamide subunit of the pendant L-valinamide group

(m/z 312, 324, 286, and 304 respectively), as well as C–N

scission of the indazole-3-carboxamide bond (m/z 241, 253,

215, and 233). 5F-AB-PINACA also showed a peak at m/z

213, consistent with a protonated species arising from

defluorination of fragment m/z 233.

In the cases of AB-CHMINACA, AB-PINACA, and 5F-

AB-PINACA, a common fragment of 145 mass units was

observed, likely due to the protonated species arising from

indazole-3-carboxamide bond scission and loss of the

Table 1 Regioisomeric ratios for alkylation of methyl 1H-indazole-3-carboxylate (12) in the presence of different bases

Conditiona Base Alkylating reagent Products (yields)b 1-Alkyl isomer selectivityc

A Potassium tert-butoxide 4-Fluorobenzyl bromide 14 (570 mg, 71 %) 18 (12 mg, 1.5 %) 47.5

A Potassium tert-butoxide 1-Bromopentane 15 (585 mg, 84 %) 19 (48 mg, 6.9 %) 12.2

B K2CO3 4-Fluorobenzyl bromide 14 (469 mg, 58 %) 18 (225 mg, 28 %) 2.1

B K2CO3 1-Bromopentane 15 (488 mg, 70 %) 19 (175 mg, 25 %) 2.8

a Denotes general procedure A or B for alkylation of 12 as described in full in the experimental procedures
b Isolated yield of each regioisomer following purification by flash chromatography
c Selectivity presented as ratio of 1-alkyl to 2-alkyl products
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Fig. 3 Gas chromatography–mass spectrometry (GC–MS) analyses showing total ion current chromatograms (TICs) (left) and electron

ionization (EI)-mass spectra (right) for a 3, b 4, c 5, and d 6. Proposed fragmentation ions are superimposed
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Fig. 4 GC–MS analyses showing TICs (left) and EI-mass spectra (right) for a 7, b 8, c 9, and d 10. Proposed fragmentation ions are

superimposed
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1-alkyl group. AB-FUBINACA was devoid of peak at m/z

145, but did feature the 4-fluorobenzyl fragmentation ion

(m/z 109).

The fragmentation patterns for the corresponding

2-alkyl-2H-indazoles 7–10 were distinct from their 1-alkyl

regioisomers. Only in the case of AB-FUBINACA 2-iso-

mer, the molecular ion (m/z 368) and fragment corre-

sponding to cleavage of the terminal carboxamide group

(m/z 324) were observed. Again, common fragment m/z

145 arising from dealkylated indazole-3-acylium ion could

Fig. 5 Ultraviolet absorption

spectra of a 3, b 4, c 5, d 6, e 7,
f 8, g 9, and h 10
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be seen in the spectra of 7, 9, and 10. A fragment corre-

sponding to scission of the entire 3-substituent of indazoles

7, 9, and 10 (m/z 213, 187, and 205 respectively) was

present as the base peak in these spectra. Fragmentation of

the neighboring amide bond proximal to the indazole core

was seen for 8, 9, and 10 (m/z 253, 215, and 233 respec-

tively), but not for 7.

The UV–Vis absorption spectra of 3–10 are shown in

Fig. 5, and peak absorbances are similar for each 1-alkyl-

1H-indazoles and their regioisomers, indicating that ultra-

violet spectroscopy is not a suitable method for differen-

tiation of regiosiomeric indazole cannabinoids of this class.

The cannabinoid activities of indazole SCs 3–10 at CB1

and CB2 receptors are shown in Table 2. Murine AtT-20

neuroblastoma cells were stably transfected with human

CB1 or CB2 receptors, and activities of CP 55,940 and 3–10

were evaluated using FLIPR membrane potential assays

whereby endogenously expressed G protein-gated inwardly

rectifying K? channels (GIRKs) are activated by agonists

at the coexpressed CB1 or CB2 receptors [55, 59]. The

maximum effects of 3–10 were compared to the high

efficacy CB1/CB2 receptor agonist CP 55,940, which pro-

duced a maximal decrease in fluorescence, corresponding

to cellular hyperpolarization, of 14 ± 2 % in the AtT-20-

CB1 cells and 33 ± 2 % in the AtT-20-CB2 cells.

AB-CHMINACA, AB-FUBINACA, AB-PINACA, and

5F-AB-PINACA, and their 2-alkylated regiosiomers dis-

played distinct profiles at CB1 and CB2 receptors. The

1-alkyl isomers AB-CHMINACA, AB-FUBINACA, AB-

PINACA, and 5F-AB-PINACA showed potent activity at

CB1 receptors, with nanomolar EC50 values

(EC50 = 2.1–7.8 nM) exceeding that of CP 55,940 itself.

Moreover, 3–6 were highly efficacious CB1 agonists,

eliciting 132–151 % of the response achieved by 1 lM CP

55,940. The 3–6 showed slightly lower potency at CB2

receptors (1.5–3.2 times less), but were still potent, effi-

cacious agonists.

In contrast, the 2-regioisomers 7–10 were not potent at

stimulating CB1 and CB2 receptor coupling to GIRKs.

EC50 values could not be determined for 7 or 8 at either

receptor, and 9 and 10 showed only micromolar potency

for CB1 (EC50 = 4080 and 1930 nM, respectively) and

CB2 (EC50 = 4120 and 2980 nM, respectively).

Of the 2-alkyl-2H-indazoles, 7, 9, and 10, displayed a

maximum effect at CB1 receptors comparable to 1 lM CP

55,940 at the highest concentration tested, 30 lM. At

30 lM, 8 achieved only 61 % of the CP 55,940 hyperpo-

larization. At CB2 receptors, 30 lM of 9 elicited a response

equivalent to 1 lM CP 55,940, while 7, 8, and 10 at 30 lM
achieved only 25–47 % of the maximum.

The dramatic difference in potency and efficacy of the

1-alkyl-1H-indazoles 3–6 and 2-alkyl-2H-indazoles 7–10

at CB1 and CB2 receptors is shown in Fig. 6a, b respec-

tively. The non-linear regression fit of CP 55,940 is

included as a dashed line for comparison. The 1-alkyl

compounds 3–6 (white data points) were all more potent

Table 2 Functional activities of CP 55,940, and 3–10 at human CB1 and human CB2 receptors

Compound hCB1 hCB2 CB1

selectivitya

pEC50 ± SEM (EC50,

nM)

Max ± SEM (% CP

55,940)

pEC50 ± SEM (EC50,

nM)

Max ± SEM (% CP

55,940)

CP 55,940 7.93 ± 0.08 (12) – 7.78 ± 0.19 (17) – 1.4

3 (AB-CHMINACA) 8.11 ± 0.32 (7.8) 142 ± 18 7.68 ± 0.24 (21) 104 ± 11 2.7

4 (AB-FUBINACA) 8.67 ± 0.24 (2.1) 151 ± 14 8.17 ± 0.19 (6.7) 98 ± 10 3.2

5 (AB-PINACA) 8.19 ± 0.23 (6.5) 142 ± 15 8.01 ± 0.16 (9.9) 102 ± 9 1.5

6 (5F-AB-PINACA) 8.55 ± 0.15 (2.8) 132 ± 9 8.25 ± 0.16 (5.6) 98 ± 8 2.0

7 (AB-CHMINACA

2-isomer)

n.d. 101 ± 16 (at 30 lM) n.d. 45 ± 7 (at 30 lM) –

8 (AB-FUBINACA

2-isomer)

n.d. 61 ± 12 (at 30 lM) n.d. 25 ± 4 (at 30 lM) –

9 (AB-PINACA

2-isomer)

5.39 ± 0.42 (4080) 124 ± 38 (at 30 lM) 5.39 ± 0.27 (4120) 91 ± 18 (at 30 lM) 1.0

10 (5F-AB-PINACA

2-isomer)

5.72 ± 0.56 (1930) 98 ± 27 (at 30 lM) 5.53 ± 0.49 (2980) 47 ± 15 (at 30 lM) 1.5

hCB1 human CB1 receptor, hCB2 human CB2 receptor, pEC50 ± SEM negative logarithm of the EC50 ± standard error of the mean,

Max ± SEM the maximum drug effect as a percentage of that achieved by a maximally effective concentration of CP 55,940, EC50 concentration

giving 50 % of the maximum drug effect, n.d., not determined
a CB1 selectivity expressed as the ratio of CB2 EC50 to CB1 EC50
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and efficacious than CP 55,940 at CB1 receptors, while

2-alkyl regioisomers 7–10 (black data points) were sub-

stantially less potent, with three reaching efficacy compa-

rable to maximum CP 55,940 only at the highest

concentration tested (Fig. 6a). At CB2 receptors, 3–6

demonstrate potency and efficacy comparable to CP

55,940, but 7–10, with the exception of 9, show efficacy

approximately 20–40 % that of a maximally efficacious

concentration of CP 55,940 (Fig. 6b).

Conclusions

This study represents the first pharmacological characteri-

zation of the 2-alkyl-2H-indazole regioisomers of SC

designer drugs AB-CHMINACA, AB-FUBINACA, AB-

PINACA, and 5F-AB-PINACA. A general synthetic route

to both 1-alkyl-1H- and 2-alkyl-2H-indazole-3-carboxam-

ides was demonstrated, and may be of use to cannabinoid

researchers for the preparation of related analogues.

Additionally, characteristic differences in the fragmenta-

tion patterns of these regioisomers were described,

enabling their differentiation by GC–MS.

AB-CHMINACA, AB-FUBINACA, AB-PINACA,

5F-AB-PINACA, and the corresponding 2-alkyl-2H-

indazole regioisomers 7–10 were evaluated for their

activity at human CB1 and CB2 receptors in vitro using

FLIPR membrane potential assays. AB-CHMINACA,

AB-FUBINACA, AB-PINACA, and 5F-AB-PINACA

are potent, efficacious agonists of CB1 and CB2 recep-

tors, while the corresponding 2-alkyl-2H-indazole

regioisomers possessed only low potency as CB1/CB2

agonists. Having demonstrated the weak cannabimimetic

properties of the 2-alky-2H-indazole regioisomers of

AB-CHMINACA, AB-FUBINACA, AB-PINACA, and

5F-AB-PINACA, and the synthesis of both regioisomers

from a common precursor, it is possible that 2-alky-2H-

indazole-3-carboxamide SCs occur in recreational

products as synthesis byproducts of 1-alky-1H-indazole-

3-carboxamides rather than analogues produced delib-

erately as SCs in their own right.
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