Skip to main content

Advertisement

Log in

Eurycoma longifolia alkaloid components ameliorate hyperuricemic nephropathy via regulating serum uric acid level and relieving inflammatory reaction

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Hyperuricemia is an independent risk factor for chronic kidney disease. We have previously showed the uric-acid-lowering effect of Eurycoma longifolia Jack, yet the renal protective effect and mechanism of E. longifolia remain obscure. The mouse model of hyperuricemic nephropathy was induced by adenine combined with potassium oxonate in male C57BL/6 J mice. E. Longifolia alkaloid components could reduce the level of serum uric acid by regulating the expression of hepatic phosphoribosyl pyrophosphate synthase (PRPS), hypoxanthine-guanine phosphoribosyl transferase (HPRT), and renal urate transporter organic anion transporter 1 (OAT1) and ATP-binding box subfamily G member 2 (ABCG2) in HN mice. Additionally, E. Longifolia alkaloid components alleviated renal injury and function caused by hyperuricemia, which was characterized by improving renal histopathology, reducing urea nitrogen and creatinine levels. E. Longifolia alkaloid components treatment could reduce the secretion of pro-inflammatory factors by inhibiting the activation of NF-κB and NLRP3 inflammatory signaling pathways, including tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-1 β (IL-1β), and regulated activated normal T cell expression and secretion proteins (RANTES). Meanwhile, E. longifolia alkaloid components improved renal fibrosis, inhibited the transformation of calcium-dependent cell adhesion molecule E (E-cadherin) to α-smooth muscle actin (α-SMA) transformation, and decreased collagen 1 expression in HN mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABCG2:

ATP-binding cassette super family G number 2

BUN:

Blood urea nitrogen

cDNA:

Complemental deoxyribonucleic acid

Cur:

Clearance of uric acid

ELISA:

Enzyme-linked immunosorbent assay

E-cadherin:

Calcium-dependent cell adhesion molecule

EMT:

Epithelial-to-mesenchymal transition

ECM:

Extracellular matrix

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GLUT9:

Glucose transporter 9

GMP:

Guanosine monophosphate

H&E:

Hematoxylin–eosin staining

HPRT:

Hypoxanthine-guanine phosphoribosyl transferase

IL-1β:

Interleukin-1β

Masson:

Masson-trichrome staining

MCP-1:

Monocyte chemoattractant protein-1

NF-κB:

Nuclear factor-kappa B

NLRP3:

Nod-like receptor pyrin domain-containing protein 3

OAT1:

Organic anion transporter 1

PAS:

Periodic acid Schiff reaction

PBS:

Phosphate buffered saline

qRT-PCR:

Real-time quantitative polymerase chain reaction

PRPS:

Phosphoribosyl pyrophosphate synthetase

RANTES:

Chemokine (C–C motif) ligand 5

TNF-α:

Tumor necrosis factor-α

UPLC:

Ultra-performance liquid chromatography

URAT1:

Urate-anion transporter

α-SMA:

1α-Smooth muscle actin

References

  1. Weiner DE, Tighiouart H, Elsayed EF, Griffith JL, Salem DN, Levey AS (2008) Uric acid and incident kidney disease in the community. J Am Soc Nephrol 19:1204–1211. https://doi.org/10.1681/ASN.2007101075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Obermayr RP, Temml C, Gutjahr G, Knechtelsdorfer M, Oberbauer R, Klauser-Braun R (2008) Elevated uric acid increases the risk for kidney disease. J Am Soc Nephrol 19:2407–2413. https://doi.org/10.1681/ASN.2008010080

    Article  PubMed  PubMed Central  Google Scholar 

  3. Juraschek SP, Kovell LC, Miller ER, Gelber AC (2013) Dose-response association of uncontrolled blood pressure and cardiovascular disease risk factors with hyperuricemia and gout. PLoS ONE. https://doi.org/10.1371/journal.pone.0056546

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mazzali M, Hughes J, Kim YG et al (2001) Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 38:1101–1106. https://doi.org/10.1161/hy1101.092839

    Article  CAS  PubMed  Google Scholar 

  5. Ryu ES, Kim MJ, Shin HS et al (2013) Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. Am J Physiol Renal Physiol 304:F471-480. https://doi.org/10.1152/ajprenal.00560.2012

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Bao X (2013) Effects of uric acid on endothelial dysfunction in early chronic kidney disease and its mechanisms. Eur J Med Res 18:26. https://doi.org/10.1186/2047-783X-18-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yin W, Zhou QL, OuYang SX, Chen Y, Gong YT, Liang YM (2019) Uric acid regulates NLRP3/IL-1β signaling pathway and further induces vascular endothelial cells injury in early CKD through ROS activation and K+ efflux. BMC Nephrol. https://doi.org/10.1186/s12882-019-1506-8

    Article  PubMed  PubMed Central  Google Scholar 

  8. Maejima I, Takahashi A, Omori H et al (2013) Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J 32:2336–2347. https://doi.org/10.1038/emboj.2013.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou Y, Fang L, Jiang L et al (2012) Uric acid induces renal inflammation via activating tubular NF-κB signaling pathway. PLoS ONE. https://doi.org/10.1371/journal.pone.0039738

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen IH, Kuo MC, Hwang SJ, Chang JM, Chen HC (2005) Allopurinol-induced severe hypersensitivity with acute renal failure. Kaohsiung J Med Sci 21:228–232. https://doi.org/10.1016/S1607-551X(09)70192-5

    Article  PubMed  Google Scholar 

  11. Fujimori S, Ooyama K, Ooyama H, Moromizato H (2011) Efficacy of benzbromarone in hyperuricemic patients associated with chronic kidney disease. Nucleosides Nucleotides Nucleic Acids 30:1035–1038. https://doi.org/10.1080/15257770.2011.622732

    Article  CAS  PubMed  Google Scholar 

  12. Rehman SU, Choe K, Yoo HH (2016) Review on a traditional Herbal medicine, Eurycoma longifolia Jack (Tongkat Ali): Its traditional uses, chemistry. Evid-Based Pharm Toxicol Mol 21(3):331. https://doi.org/10.3390/molecules21030331

    Article  CAS  Google Scholar 

  13. Chua LS, Amin NA, Neo JC et al (2011) LC-MS/MS-based metabolites of Eurycoma longifolia (Tongkat Ali) in Malaysia (Perak and Pahang). J. Chromatogr B Analyt Technol Biomed Life Sci 879:3909–3919. https://doi.org/10.1016/j.jchromb.2011.11.002

    Article  CAS  Google Scholar 

  14. Thu HE, Mohamed IN, Hussain Z, Jayusman PA, Shuid AN (2017) Eurycoma longifolia as a potential adoptogen of male sexual health: A systematic review on clinical studies. Chin J Nat Med 15(1):71–80. https://doi.org/10.1016/S1875-5364(17)30010-9

    Article  PubMed  Google Scholar 

  15. Low BS, The CH, Yuen KH, Chan KL (2011) Physicochemical effects of the major quassinoids in a standardized Eurycoma longifolia extract (Fr 2) on the bioavailability and pharmacokinetic properties, and their implications for oral antimalarial activity. Nat Prod Commun 6:337–341. https://doi.org/10.1177/1934578X1100600307

    Article  CAS  PubMed  Google Scholar 

  16. Varghese C, Ambrose C, Jin S, Lim Y, Keisaban T (2013) Antioxidant and anti-inflammatory activity of Eurycoma longifolia Jack, A traditional medicinal plant in Malaysia. Int J Pharm Sci Nanotechnol 5:1875–1878. https://doi.org/10.37285/ijpsn.2012.5.4.7

    Article  Google Scholar 

  17. Lahrita L, Kato E, Kawabata J (2015) Uncovering potential of Indonesian medicinal plants on glucose uptake enhancement and lipid suppression in 3T3-L1 adipocytes. J Ethnopharmacol 168:229–236. https://doi.org/10.1016/j.jep.2015.03.082

    Article  PubMed  Google Scholar 

  18. Bao R, Liu M, Wang D et al (2019) Effect of Eurycoma longifolia stem extract on uric acid excretion in Hyperuricemia Mice. Front Pharmacol 10:1464. https://doi.org/10.3389/fphar.2019.01464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thu HE, Hussain Z, Mohamed IN, Shuid AN (2018) Eurycoma longifolia, a potential phytomedicine for the treatment of cancer: Evidence of p53-mediated apoptosis in cancerous cells. Curr Drug Targets 19(10):1109–1126. https://doi.org/10.2174/1389450118666170718151913

    Article  CAS  PubMed  Google Scholar 

  20. Zhang ZX, Wang ZD, Zhang Y, Zhang Y, Han LF, Tian F (2021) Preparation of a poly 2-thiopheneacetic acid) coating on magnetite nanoparticles with one single carbon layer (Fe3O4@1C NPs) for selective magnetic solid-phase extraction of canthin-6-one Alkaloids in Eurycoma longifolia. Chromatographia 84:1065–1075. https://doi.org/10.1007/s10337-021-04090-3

    Article  CAS  Google Scholar 

  21. Perez-Ruiz F, Calabozo M, Erauskin GG, Ruibal A, Herrero-Beites AM (2002) Renal underexcretion of uric acid is present in patients with apparent high urinary uric acid output. Arthritis Rheum 47:610–613. https://doi.org/10.1002/art.10792

    Article  CAS  PubMed  Google Scholar 

  22. Wen S, Wang D, Yu H et al (2020) The time-feature of uric acid excretion in hyperuricemia mice induced by potassium oxonate and adenine. Int J Mol Sci. https://doi.org/10.3390/ijms21155178

    Article  PubMed  PubMed Central  Google Scholar 

  23. Elfishawi MM, Zleik N, Kvrgic Z et al (2018) The rising incidence of gout and the increasing burden of comorbidities: a population-based study over 20 years. J Rheumatol 45:574–579. https://doi.org/10.3899/jrheum.170806

    Article  PubMed  Google Scholar 

  24. Tran TV, Malainer C, Schwaiger S et al (2014) NF-κB inhibitors from Eurycoma longifolia. J Nat Prod 77:483–488. https://doi.org/10.1021/np400701k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumagai T, Ota T, Tamura Y, Chang WX, Shibata S, Uchida S (2017) Time to target uric acid to retard CKD progression. Clin Exp Nephrol 21:182–192. https://doi.org/10.1007/s10157-016-1288-2

    Article  CAS  PubMed  Google Scholar 

  26. Feig DI, Rodriguez-Iturbe B, Nakagawa T, Johnson RJ (2006) Nephron number, uric acid, and renal microvascular disease in the pathogenesis of essential hypertension. Hypertension 48:25–26. https://doi.org/10.1161/01.HYP.0000223447.53155.d5

    Article  CAS  PubMed  Google Scholar 

  27. Ryu ES, Kim MJ, Shin HS et al (2013) Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. Am J Physiol Renal Physiol 304:471–480. https://doi.org/10.1152/ajprenal.00560.2012

    Article  CAS  Google Scholar 

  28. Kono H, Chen CJ, Ontiveros F, Rock KL (2010) Uric acid promotes an acute inflammatory response to sterile cell death in mice. J Clin Invest 120:1939–1949. https://doi.org/10.1172/JCI40124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou TB, Qin YH, Lei FY, Huang WF, Drummen GP (2014) Association of prohibitin-1 and 2 with oxidative stress in rats with renal interstitial fibrosis. Mol Biol Rep 41:3033–3043. https://doi.org/10.1007/s11033-014-3162-1

    Article  CAS  PubMed  Google Scholar 

  30. Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19:2282–2287. https://doi.org/10.1681/ASN.2008050513

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank HY Cao for her help in the experiment in this study.

Funding

This research was funded by Important Drug Development Fund, Ministry of Science and Technology of China (2018ZX09735-002), National Natural Science Foundation of China (81173524; 81673688), and The Scientific Research Project of Tianjin Municipal Education Commission (2019KJ085).

Author information

Authors and Affiliations

Authors

Contributions

LL, DW, YZ, and TW completed the experimental design. KL, ML, QC, and HC were responsible for conducting experiments and analyzing data. DW and TW were responsible for writing the manuscript. ML, YZ, and TW checked the manuscript. TW and DW provided the funding.

Corresponding authors

Correspondence to Yi Zhang or Tao Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Liu, L., Li, K. et al. Eurycoma longifolia alkaloid components ameliorate hyperuricemic nephropathy via regulating serum uric acid level and relieving inflammatory reaction. J Nat Med 77, 867–879 (2023). https://doi.org/10.1007/s11418-023-01729-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01729-3

Keywords

Navigation