Skip to main content
Log in

Humulus lupulus L. extract and its active constituent xanthohumol attenuate oxidative stress and nerve injury induced by iron overload via activating AKT/GSK3β and Nrf2/NQO1 pathways

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Hops, the dried female clusters from Humulus lupulus L., have traditionally been used as folk medicines for treating insomnia, neuralgia, and menopausal disorders. However, its pharmacological action on iron overload induced nerve damage has not been investigated. This study aims to evaluate the protective effects of hops extract (HLE) and its active constituent xanthohumol (XAN) on nerve injury induced by iron overload in vivo and in vitro, and to explore its underlying mechanism. The results showed that HLE and XAN significantly improved the memory impairment of iron overload mice, mainly manifested as shortened latency time, increased crossing platform times and spontaneous alternation ratio, and increased the expression of related proteins. Additionally, HLE and XAN significantly increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities, and remarkably decreased malondialdehyde (MDA) level in hippocampus. Also, HLE and XAN apparently reduced reactive oxygen species (ROS) content of PC12 cells induced by iron dextran (ID), and improved the oxidative stress level. Moreover, HLE and XAN significantly upregulated the expression of nuclear factor E2-related factor (Nrf2), NAD(P)H quinone oxidoreductase (NQO1), heme oxygenase-1 (HO-1), SOD, phosphorylated AKT (p-AKT), and phosphorylated GSK3β (p-GSK3β) both in hippocampus and PC12 cells. These findings demonstrated the protective effect of HLE and XAN against iron-induced memory impairment, which is attributed to its antioxidant profile by activation of AKT/GSK3β and Nrf2/NQO1 pathways. Also, it was suggested that hops could be a potential candidate for iron overload-related neurological diseases treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

HLE:

Hops extract

XAN:

Xanthohumol

ID:

Iron dextran

MWM:

Morris water maze

BDNF:

Brain-derived neurotrophic factor

ERK:

Extracellular regulated protein kinases

CREB:

cAMP-response element binding protein

AKT:

Protein kinase B

GSK-3β :

Glycogen synthase kinase-3β

Nrf2:

Nuclear factor E2-related factor

SOD:

Superoxide dismutase

GSH-PX:

Glutathione peroxidase

MDA:

Malondialdehyde

NQO1:

NAD(P)H:quinone oxidoreductase 1

HO-1:

Heme oxygenase-1

Aβ :

Amyloid β-protein

ROS:

Reactive oxygen species

H-A:

Huperzine-A

PRRSV:

Porcine reproductive and respiratory syndrome virus

SAMP8:

Senescence-accelerated prone mice

BCA:

Bicinchoninic acid

LDH:

Lactate dehydrogenase

SDS-PAGE:

Sodium dodecylsulfate polyacrylamide gel electrophoresis

PVDF:

Polyvinylidine difluoride

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

ECL:

Enhanced chemiluminescence

References

  1. Liu Y, Nguyen M, Robert A, Meunier B (2019) Metal ions in Alzheimer’s disease: a key role or not? Acc Chem Res 52(7):2026–2035. https://doi.org/10.1021/acs.accounts.9b00248

    Article  CAS  Google Scholar 

  2. Arber CE, Li A, Houlden H, Wray S (2016) Review: Insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: unifying theories. Neuropathol Appl Neurobiol 42(3):220–241. https://doi.org/10.1111/nan.12242

    Article  CAS  Google Scholar 

  3. Wang XL, Wang WZ, Li L, Perry G, Lee HG, Zhu XW (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 1842(8):1240–1247. https://doi.org/10.1016/j.bbadis.2013.10.015

    Article  CAS  Google Scholar 

  4. Ayton S, Faux NG, Bush AI (2015) Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat Commun 6:6760. https://doi.org/10.1038/ncomms7760

    Article  CAS  Google Scholar 

  5. Wang X, Zhang JF, Zhou L, Xu BH, Ren XH, He KW, Nie LL, Li X, Liu JJ, Yang XF, Yuan J (2019) Long-term iron exposure causes widespread molecular alterations associated with memory impairment in mice. Food Chem Toxicol 130:242–252. https://doi.org/10.1016/j.fct.2019.05.038

    Article  CAS  Google Scholar 

  6. Kalpouzos G, Garzon B, Sitnikov R, Heiland C, Salami A, Persson J, Bäckman L (2017) Higher striatal iron concentration is linked to frontostriatal underactivation and poorer memory in normal aging. Cereb Cortex 27(6):3427–3436. https://doi.org/10.1093/cercor/bhx045

    Article  Google Scholar 

  7. Ko YH, Kwon SH, Lee SY, Jang CG (2017) Liquiritigenin ameliorates memory and cognitive impairment through cholinergic and BDNF pathways in the mouse hippocampus. Arch Pharm Res 40(10):1209–1217. https://doi.org/10.1007/s12272-017-0954-6

    Article  CAS  Google Scholar 

  8. Guo X, Chen ZH, Wang HL, Liu ZC, Wang XP, Zhou BH, Yang C, Zhang XP, Xiao L, Shu C, Chen JX, Wang GH (2015) WSKY, a traditional Chinese decoction, rescues cognitive impairment associated with NMDA receptor antagonism by enhancing BDNF/ERK/CREB signaling. Mol Med Rep 11(4):2927–2934. https://doi.org/10.3892/mmr.2014.3086

    Article  CAS  Google Scholar 

  9. Jin Y, Sui HJ, Dong Y, Ding Q, Qu WH, Yu SX, Jin YX (2012) Atorvastatin enhances neurite outgrowth in cortical neurons in vitro via up-regulating the AKT/mTOR and AKT/GSK-3β signaling pathways. Acta Pharmacol Sin 33(7):861–872. https://doi.org/10.1038/aps.2012.59

    Article  CAS  Google Scholar 

  10. Ge XH, Shao L, Zhu GJ (2018) Oxymatrine attenuates brain hypoxic-ischemic injury from apoptosis and oxidative stress: role of p-AKT/GSK3beta/ HO-1/Nrf-2 signaling pathway. Metab Brain Dis 33(6):1869–1875. https://doi.org/10.1007/s11011-018-0293-4

    Article  CAS  Google Scholar 

  11. Li SW, Jiang X, Luo YH, Zhou BR, Shi M, Liu FY, Sha AL (2019) Sodium/calcium overload and Sirt1/Nrf2/OH-1 pathway are critical events in mercuric chloride-induced nephrotoxicity. Chemosphere 234:579–588. https://doi.org/10.1016/j.chemosphere.2019.06.095

    Article  CAS  Google Scholar 

  12. Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I, Johnson GV (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5:3496. https://doi.org/10.1038/ncomms4496

    Article  CAS  Google Scholar 

  13. Xia TS, Lin LY, Zhang QY, Jiang YP, Li CH, Liu XY, Qin LP, Xin HL (2021) Humulus lupulus L. extract prevents ovariectomy-induced osteoporosis in mice and regulates activities of osteoblasts and osteoclasts. Chin J Integr Med 27(1):31–38. https://doi.org/10.1007/s11655-019-2700-z

    Article  CAS  Google Scholar 

  14. Bolton JL, Dunlap TL, Hajirahimkhan A, Mbachu O, Chen SN, Chadwick L, Nikolic D, van Breemen RB, Pauli GF, Dietz BM (2019) The multiple biological targets of hops and bioactive compounds. Chem Res Toxicol 32(2):222–233. https://doi.org/10.1021/acs.chemrestox.8b00345

    Article  CAS  Google Scholar 

  15. Sasaoka N, Sakamoto M, Kanemori S, Kan M, Tsukano C, Takemoto Y, Kakizuka A (2014) Long-term oral administration of hop flower extracts mitigates Alzheimer phenotypes in mice. PLoS ONE 9(1):e87185. https://doi.org/10.1371/journal.pone.0087185

    Article  CAS  Google Scholar 

  16. Yao J, Zhang BX, Ge CP, Peng SJ, Fang JG (2015) Xanthohumol, a polyphenol chalcone present in hops, activating Nrf2 enzymes to confer protection against oxidative damage in PC12 cells. J Agric Food Chem 63(5):1521–1531. https://doi.org/10.1021/jf505075n

    Article  CAS  Google Scholar 

  17. Olas B, Kolodziejczyk J, Wachowicz B, Jędrejek D, Stochmal A, Oleszek W (2011) The extract from hop cones (Humulus lupulus) as a modulator of oxidative stress in blood platelets. Platelets 22(5):345–352. https://doi.org/10.3109/09537104.2010.549597

    Article  CAS  Google Scholar 

  18. Liu XW, Song ZB, Bai J, Nauwynck H, Zhao YX, Jiang P (2019) Xanthohumol inhibits PRRSV proliferation and alleviates oxidative stress induced by PRRSV via the Nrf2-HMOX1 axis. Vet Res 50(1):61. https://doi.org/10.1186/s13567-019-0679-2

    Article  Google Scholar 

  19. Fernández-García C, Rancan L, Paredes SD, Montero C, de la Fuente M, Vara E, Tresguerres JAF (2019) Xanthohumol exerts protective effects in liver alterations associated with aging. Eur J Nutr 58(2):653–663. https://doi.org/10.1007/s00394-018-1657-6

    Article  CAS  Google Scholar 

  20. Jiao Y, Cao YZ, Lu XY, Wang JJ, Saitgareeva A, Kong XT, Song C, Li J, Tian K, Zhang SQ, Bai M, Li S, Zhang HX, Wang LH (2020) Xanthohumol protects neuron from cerebral ischemia injury in experimental stroke. Mol Biol Rep 47(4):2417–2425. https://doi.org/10.1007/s11033-019-05128-4

    Article  CAS  Google Scholar 

  21. Sun XL, Zhang JB, Guo YX, Xia TS, Xu LC, Rahmand K, Wang GP, Li XJ, Han T, Wang NN, Xin HL (2021) Xanthohumol ameliorates memory impairment and reduces the deposition of β-amyloid in APP/PS1 mice via regulating the mTOR/LC3II and Bax/Bcl-2 signaling pathways. J Pharm Pharmacol 73(9):1230–1239. https://doi.org/10.1093/jpp/rgab052

    Article  Google Scholar 

  22. Liu EJ, Xie AJ, Zhou QZ, Li MZ, Zhang SJ, Li SH, Wang WJ, Wang XC, Wang Q, Wang JZ (2017) GSK-3β deletion in dentate gyrus excitatory neuron impairs synaptic plasticity and memory. Sci Rep 7(1):5781. https://doi.org/10.1038/s41598-017-06173-4

    Article  CAS  Google Scholar 

  23. Wharton W, Baker LD, Gleason CE, Dowling M, Barnet JH, Johnson S, Carlsson C, Craft S, Asthana S (2011) Short-term hormone therapy with transdermal estradiol improves cognition for postmenopausal women with Alzheimer’s disease: results of a randomized controlled trial. J Alzheimers Dis 26(3):495–505. https://doi.org/10.3233/JAD-2011-110341

    Article  CAS  Google Scholar 

  24. Żołnierczyk AK, Mączka WK, Grabarczyk M, Wińska K, Woźniak E, Anioł M (2015) Isoxanthohumol-biologically active hop flavonoid. Fitoterapia 103:71–82. https://doi.org/10.1016/j.fitote.2015.03.007

    Article  CAS  Google Scholar 

  25. Morimoto-Kobayashi Y, Ohara K, Takahashi C, Kitao S, Wang G, Taniguchi Y, Katayama M, Nagai K (2015) Matured hop bittering components induce thermogenesis in brown adipose tissue via sympathetic nerve activity. PLoS ONE 10(6):e0131042. https://doi.org/10.1371/journal.pone.0131042

    Article  CAS  Google Scholar 

  26. Zanoli P, Rivasi M, Zavatti M, Brusiani F, Baraldi M (2005) New insight in the neuropharmacological activity of Humulus lupulus L. J Ethnopharmacol 102(1):102–106. https://doi.org/10.1016/j.jep.2005.05.040

    Article  CAS  Google Scholar 

  27. Sun LN, Jin Y, Dong LM, Sumi R, Jahan R, Hu DH, Li Z (2015) Coccomyxa gloeobotrydiformis improves learning and memory in intrinsic aging rats. Int J Biol Sci 11(7):825–832. https://doi.org/10.7150/ijbs.10861

    Article  CAS  Google Scholar 

  28. Miyazaki S, Fujita Y, Oikawa H, Takekoshi H, Soya H, Ogata M, Fujikawa T (2020) Combination of syringaresinol-di-O-beta-D-glucoside and chlorogenic acid shows behavioral pharmacological anxiolytic activity and activation of hippocampal BDNF-TrkB signaling. Sci Rep 10(1):18177. https://doi.org/10.1038/s41598-020-74866-4

    Article  CAS  Google Scholar 

  29. Nakamura T, Okui T, Hasegawa K, Ryumon S, Ibaragi S, Ono K, Kunisada Y, Obata K, Masui M, Shimo T, Sasaki A (2020) High mobility group box 1 induces bone pain associated with bone invasion in a mouse model of advanced head and neck cancer. Oncol Rep 44(6):2547–2558. https://doi.org/10.3892/or.2020.7788

    Article  CAS  Google Scholar 

  30. Chen DY, Bambah-Mukku D, Pollonini G, Alberini CM (2012) Glucocorticoid receptors recruit the CaMKII alpha-BDNF-CREB pathways to mediate memory consolidation. Nat Neurosci 15(12):1707–1714. https://doi.org/10.1038/nn.3266

    Article  CAS  Google Scholar 

  31. Caracciolo L, Marosi M, Mazzitelli J, Latifi S, Sano Y, Galvan L, Kawaguchi R, Holley S, Levine MS, Coppola G, Portera-Cailliau C, Silva AJ, Carmichael ST (2018) CREB controls cortical circuit plasticity and functional recovery after stroke. Nat Commun 9(1):2250. https://doi.org/10.1038/s41467-018-04445-9

    Article  CAS  Google Scholar 

  32. Yao J, Wang XQ, Li YJ, Shan K, Yang H, Wang YN, Yao MD, Liu C, Li XM, Shen Y, Liu JY, Cheng H, Yuan J, Zhang YY, Jiang Q, Yan B (2016) Long non-coding RNA MALAT1 regulates retinal neurodegeneration through CREB signaling. EMBO. Mol Med 8(4):346–362. https://doi.org/10.15252/emmm.201505725

    Article  CAS  Google Scholar 

  33. Rexach JE, Clark PM, Mason DE, Neve RL, Peters EC, Hsieh-Wilson LC (2012) Dynamic O-GlcNAc modification regulates CREB-mediated gene expression and memory formation. Nat Chem Biol 8(3):253–261. https://doi.org/10.1038/nchembio.770

    Article  CAS  Google Scholar 

  34. Cabello-Verrugio C, Simon F, Trollet C, Santibañez JF (2017) Oxidative stress in disease and aging: mechanisms and therapies 2016. Oxid Med Cell Longev 2017:4310469. https://doi.org/10.1155/2017/4310469

    Article  Google Scholar 

  35. Xu WZ, Li F, Xu ZK, Sun B, Cao JW, Liu YG (2012) Role of peroxiredoxin 2 in the protection against ferrous sulfate-induced oxidative and inflammatory injury in PC12 cells. Cell Mol Neurobiol 38(3):735–745. https://doi.org/10.1007/s10571-017-0540-y

    Article  CAS  Google Scholar 

  36. Huo TT, Jia YQ, Yin CL, Luo XT, Zhao JR, Wang ZQ, Lv PY (2019) Iron dysregulation in vascular dementia: focused on the AMPK/autophagy pathway. Brain Res Bull 153:305–313. https://doi.org/10.1016/j.brainresbull.2019.09.006

    Article  CAS  Google Scholar 

  37. Wang L, Yin YL, Liu XZ, Shen P, Zheng YG, Lan XR, Lu CB, Wang JZ (2020) Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Transl Neurodegener 9:10. https://doi.org/10.1186/s40035-020-00189-z

    Article  CAS  Google Scholar 

  38. Rana AK, Singh D (2018) Targeting glycogen synthase kinase-3 for oxidative stress and neuroinflammation: opportunities, challenges and future directions for cerebral stroke management. Neuropharmacology 139:124–136. https://doi.org/10.1016/j.neuropharm.2018.07.006

    Article  CAS  Google Scholar 

  39. Yao K, Zhao YF, Zu HB (2019) Melatonin receptor stimulation by agomelatine prevents Abeta-induced tau phosphorylation and oxidative damage in PC12 cells. Drug Des Devel Ther 13:387–396. https://doi.org/10.2147/DDDT.S182684

    Article  CAS  Google Scholar 

  40. Rival T, Page RM, Chandraratna DS, Sendall TJ, Ryder E, Liu B, Lewis H, Rosahl T, Hider R, Camargo LM, Shearman MS, Crowther DC, Lomas DA (2009) Fenton chemistry and oxidative stress mediate the toxicity of the beta-amyloid peptide in a Drosophila model of Alzheimer’s disease. Eur J Neurosci 29(7):1335–1347. https://doi.org/10.1111/j.1460-9568.2009.06701.x

    Article  Google Scholar 

  41. Song XH, Long DX (2020) Nrf2 and ferroptosis: a new research direction for neurodegenerative diseases. Front Neurosci 14:267. https://doi.org/10.3389/fnins.2020.00267

    Article  Google Scholar 

  42. Hur W, Gray NS (2011) Small molecule modulators of antioxidant response pathway. Curr Opin Chem Biol 15(1):162–173. https://doi.org/10.1016/j.cbpa.2010.12.009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82174079, 82004015), and Project of Science and Technology Commission of Shanghai Municipality (21S21902600).

Funding

National Natural Science Foundation of China, 82174079, Xin Hailiang, 82004015, Xia Tian-Shuang, Project of Science and Technology Commission of Shanghai Municipality, 21S21902600, Xin Hailiang.

Author information

Authors and Affiliations

Authors

Contributions

XH-L, SX-L, and XT-S designed the experiments; SX-L performed the experiments; SX-L and XT-S analyzed the data, wrote and revised the manuscript; JY-P helped to organize figures, WN-N contributed to the documents download, XL-C, HT and XH-L reviewed the manuscript.

Corresponding authors

Correspondence to Xu Ling-Chuan, Han Ting or Xin Hai-Liang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

HPLC profile of Humulus lupulus L. (9-xanthohumol, 13-cohumulone, 14-humulone, 15-adhumulone, 17-colupulone, 18-lupulone, 19-adlupulone)

figure a

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao-Lei, S., Tian-Shuang, X., Yi-Ping, J. et al. Humulus lupulus L. extract and its active constituent xanthohumol attenuate oxidative stress and nerve injury induced by iron overload via activating AKT/GSK3β and Nrf2/NQO1 pathways. J Nat Med 77, 12–27 (2023). https://doi.org/10.1007/s11418-022-01642-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-022-01642-1

Keywords

Navigation