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Abstract
Processed aconite root (PA), the tuberous root of Aconitum carmichaelii prepared by autoclaving, is a crude drug used in 
Japanese traditional Kampo medicine and traditional Chinese medicine for the symptoms of kidney deficiency, that is related 
to the muscle atrophy in modern medicine. The objective of the present study is to evaluate the effectiveness of PA on mus-
cle atrophy and to find its active ingredients using dexamethasone-induced muscle ring finger protein-1 (MuRF1) mRNA 
expression in murine myoblast C2C12 cells. Dexamethasone-induced MuRF1 expression was significantly suppressed by 
methanol-soluble part of boiling water extract of PA in a concentration-dependent manner with its  IC50 value of 1.5 mg/ml. 
By the activity-guided fractionations of PA extract using the partition between organic solvents and its aqueous solution, 
the activity of PA did not transfer into the fraction containing aconitine-type diterpenoid alkaloids but into BuOH layer. 
Then, we found higenamine and salsolinol as the active ingredients in PA. Higenamine and salsolinol significantly sup-
pressed dexamethasone-induced MuRF1 expression, and their  IC50 values were 0.49 and 50 µM, respectively. The contents 
of higenamine and salsolinol in the decoctions of commercially available fourteen PA products are 0.12 and 14 µg/ml as 
the average values, and varied with the coefficient of variation (CV) values of 97 and 63%, respectively. Higenamine also 
significantly suppressed dexamethasone-induced mRNA expressions of muscle atrophy F-box protein (MAFbx)/atrogin1, 
casitas B-lineage lymphoma-b (Cbl-b), troponin, branched-chain amino acid aminotransferase 2 (BCAT2), and Bcl-2 binding 
and pro-apoptotic protein3 (Bnip3). Although the quality control of PA is regulated by the contents of diterpene alkaloids, 
salsolinol and higenamine can be used as the marker compounds to certificate the pharmacological activities of PA.
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Introduction

Sarcopenia and frailty, a syndrome of the loss of skeletal 
muscle mass and strength that occurs with aging, become a 
common medical and social topics in aging of the popula-
tion [1]. In Japanese traditional Kampo medicine and tradi-
tional Chinese medicine, the physical problems related to 
aging are considered as the deficiencies of kidney, which is 
imaginary organ to stock the so-called life energy, and it is 
considered that adults have been able to live by using this 
energy of kidney [2, 3]. Goshajinkigan is one of the Kampo 
formulas to supply the kidney energy to treat kidney deficien-
cies, and used to treat low back pain [4], diabetic complica-
tions [5], and chemotherapy-induced peripheral neuropathy 
[6]. In our previous animal or in vitro studies, the extract of 
goshajinkigan has the ability to reduce sarcopenia symp-
toms in senescence-accelerated mouse P8 [7], to ameliorate 
allodynia in chronic constriction injury model mice [8] and 
in streptozotocin-induced diabetic model mice [9], and to 
suppresses voltage-gated sodium channel Nav1.4 current in 
murine myoblast C2C12 cells [10] and Nav1.7 current in 
HEK293 cells expressing Nav1.7 [9].

It is revealed that a muscle-specific ubiquitin ligase is one 
of the causative genes of skeletal muscle atrophy, and that 
the enhancement of proteolysis mainly due to the increased 
activity of the ubiquitin/proteasome system is greatly 
involved [11]. Muscle ring finger protein-1 (MuRF1) and 
muscle atrophy F-box protein (MAFbx)/atrogin-1 are the 
specific ubiquitin ligases in skeletal and cardiac muscle, and 
their expressions are increased in muscle atrophy caused by 
sciatic nerve transection [12]. These are considered to be 
important factors responsible for muscular atrophy, because 
the excessive MAFbx/atrogin-1 expression produced atrophy 
in myotubes, whereas mice with the deficiencies of either 
MAFbx/atrogin-1 or MuRF1 gene were resistant to muscular 
atrophy [13].

Among crude drugs composed in goshajinkigan, pro-
cessed aconite root (PA), the tuberous root of Aconitum car-
michaelii prepared by autoclaving, has the effectiveness of to 
supply kidney energy [14]. PA is considered to be one of the 
active components of goshajinkigan for the prevention from 
chemotherapy-induced peripheral neuropathy and mechani-
cal hyperalgesia in diabetic mice, and its active ingredient 
containing in PA is neoline [9, 15, 16]. However, the preven-
tive effects on muscular atrophy have not been evaluated.

In this study, we evaluated the effectiveness of PA extract 
on dexamethasone-induced MuRF1 expression in C2C12 
cells in vitro and found the active ingredients contained in 
processed aconite root.

Materials and methods

Materials

Processed aconite root (lot: F2F0243) was purchased from 
Uchida Wakanyaku (Tokyo, Japan). Processed aconite root 
(10 g) was boiled in 200 ml of water for 30 min. After filtrat-
ing and freeze-drying, methanol was added into the lyophi-
lized powder, and centrifuged (3 ×  103 rpm, 15 min), and 
the parts dissolved in methanol were taken to evaluate the 
activity. All the samples were dried up, and dissolved in 
DMSO. Extraction rates from the weight of each crude drug 
to methanol-soluble part were 13%.

Isolation of salsolinol from PA extract

Processed aconite root (lot: F2F0243, Uchida; 1.0 kg) was 
boiled in 8 l of deionized water for 30 min. After filtering 
by gaze, the residue was further boiled, and this operation 
was repeated twice. After freeze drying the whole boiling 
water extract (373 g yielded), the powder was extracted 
with methanol for three times. After removal of the solvent 
under the reduced pressure, the resulting extract (124 g) was 
dissolved in 800 mL of acidified water at pH 3 with HCl 
and extracted with EtOAc (800 ml × 3). After adjusting the 
pH of water layer to 10 by adding  NH3 solution, the water 
layer was extracted with EtOAc (800 ml × 3). After adjust-
ing the pH of water layer was adjusted to 7 by adding HCl, 
the remained water layer was extracted with water saturated 
n-BuOH (800 ml × 3). The resulting extracts were concen-
trated under the reduced pressure to give acidic EtOAc 
(acidic layer, 4.0 g), alkaline EtOAc (alkaline layer, 4.2 g), 
n-BuOH (BuOH layer, 10 g), and water (water layer, 96 g) 
fractions. The BuOH layer (9.9 g) was subjected to silica gel 
(BW-200, Fuji Silysia, Fuji, Japan; 200 g) column chroma-
tography and eluted with mobile phase using each 600 ml of 
 CHCl3/MeOH mixture 10:1, 5:1, 3:1, 2:1, 1:1, 1:10, and 0:1, 
stepwise. At last silica gel column was washed by  CHCl3/
MeOH/H2O 6:4:1. The eluate was monitored by TLC (TLC 
Silica gel 60 F254; Merck, Kenilworth, NJ, USA) and com-
bined to fraction (Fr.) 1 (0.39 g), Fr. 2 (1.1 g), Fr. 3 (1.1 g), 
Fr. 4 (1.1 g), Fr. 5 2.1 g), Fr. 6 (2.4 g), Fr. 7 (0.62 g), Fr. 8 
(0.10 g), and Fr.9 (0.27 g). Fraction 3 (14 mg) was separated 
using preparative HPLC (column, Cosmosil  5C18-AR-II (10 
i.d. × 250 mm), Nacalai Tesque, Kyoto, Japan; mobile phase, 
5% acetonitrile (0–5 min), 5–100% acetonitrile (5–35 min), 
4 ml/min), and from the peak eluted at 13.3 min, salsolinol 
(2.4 mg) was obtained and identified using NMR and MS 
spectrometry [17].
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Cell culture

C2C12 myoblasts were purchased from Bioresources 
Center (Tsukuba, Japan) and maintained and prolifer-
ated at 37 °C with 5%  CO2 in Dulbecco's modified eagle 
medium (DMEM, Sigma-Aldrich, St. Louis, MO, USA), 
supplemented with 10% fetal bovine serum (FBS, Sigma), 
100 U/ml penicillin, and 0.1 mg/ml streptomycin (Nacalai 
Tesque, Kyoto, Japan). At a confluence of 80%, C2C12 myo-
blasts were transferred to next generation by 0.25% trypsin 
(Sigma)/0.02%EDTA⋅2Na.

Plasmid transfection and differentiation in C2C12 
cells

C2C12 cells (4.0 ×  106 cells) were planted into 10 cm dish 
and maintained for one night. pGL3-MuRF1 was constructed 
in our previous study [18], and pCMVβ-gal was from Prof. 
Jeffrey L. Wrana [19]. After the medium was exchanged 
into FBS-free one, these genes were transfected into the 
cells using Hily  Max® (Dojindo, Tokyo, Japan) and Opti-
MEM® (Thermo Fisher Scientific, Waltham, MA, USA) 
according to the manufacturer’s instruction, and the cells 
were maintained for 8 h. Then, the cells were harvested with 
0.25% trypsin/0.02%EDTA⋅2Na, transplanted into 24-well 
plate (4.0 ×  104 cells/well), and maintained for overnight. 
Then, the medium was exchanged into DMEM containing 
2% horse serum (Sigma), 100 U/ml penicillin, and 0.1 mg/
ml streptomycin (differentiation medium to induce myotube 
formation), and the cells were incubated for 72 h.

Luciferase assay for MuRF1 induction

The MuRF1-transfected differentiated cells were incubated 
with the medium containing dexamethasone (Sigma) (1 µM) 
with/without the extract of PA, ( ±)-salsolinol hydrochloride 
(Cayman Chemical, Ann Arbor, MI, USA), and higenamine 
(Chengdu Must Bio-Technology, Chengdu, China) for 24 h. 
There are no standard drugs to use sarcopenia in clinics; the 
positive control cannot be used in this experiment. After 
washing cell surfaces by phosphate-buffered saline, the cells 
were lysed with 80 µl/well of lysis buffer [20 mM dithi-
othreitol, 2 mM EDTA, 10% glycerol, 1% Triton X-100 in 
phosphate buffer (0.2 M. pH 7.5)] by shaking the plates for 
30 min at room temperature. the lysates (25 µl) were trans-
ferred into 96-well white plate and reacted with 50 µl of the 
luciferase assay regent (20 mM tricine (Sigma), 0.05% mag-
nesium carbonate basic (Nacalai), 2.5 mM  MgSO4, 10 µM 
EDTA, 0.53 mM ATP Mg (Sigma), 33 mM dithiothreitol, 
270 µM coenzyme A trilithium salt from yeast (Fujifilm 
Wako Pure Chemicals, Osaka, Japan), and 0.45 mM luciferin 
K (Fujifilm) in 0.1 M phosphate buffer (pH 8.0). And then, 
the luminescence signals of all wells were measured using a 

microplate reader (Wallac 1420 Workstation, PerkinElmer, 
Waltham, MASS, USA). Otherwise, the lysate (10 µl) was 
transferred to 96-well plate and reacted with 80 µl of the 
ONPG regent (1.1 mM  MgCl2, 3.2 µM O-nitrophenyl-β-
d-galactopyranoside (Fujifilm), 0.71 mM 2-mercaptoetha-
nol in 0.1 M phosphate buffer, pH 7.5) for 30 min at room 
temperature. The absorbance at 405 nm of all wells were 
measured by a plate reader. By calculating the amount of 
the level of luminescence signals divide by the level of 
absorbance at 405 nm, the luciferase activity was obtained. 
Data are expressed as the percent of the activity of control 
group in graphs. The percent of the inhibition in each data 
were calculated by the following formula: (the luciferase 
activity − the average value of normal group)/[(the aver-
age value of control group) − (the average value of normal 
group)] × 100, and the half-maximal inhibitory concentration 
 (IC50) was calculated from the least square regression line 
made from 3 points that crossed at 50% of the percent of the 
inhibition value and the logarithmic concentration values.

MTT assay

Differentiated C2C12 myoblasts (1 ×  104/well) were plated 
in a 96-well plate, treated with the medium containing 
dexamethasone with/without the sample, and incubated for 
24 h. After the surface of the cells was rinsed with PBS, the 
medium containing MTT (Nacalai, 50 µg in 100 µl) was 
added to the cells, and further incubated for 4 h. After the 
cells were rinsed with PBS, DMSO (100 µl) was added to 
each well to dissolve the resulting formazan, and the absorb-
ance at 570 nm was measured.

Quantitative real‑time polymerase chain reaction

Differentiated C2C12 cells were planted into 24-well plate 
(4.0 ×  106 cells/well) and incubated with the medium con-
taining higenamine with or without dexamethasone (1 µM) 
for 24 h. After washing cell surfaces by phosphate-buffered 
saline, total RNA was extracted using RNA iso plus (Takara 
Bio, Shiga, Japan), and reverse transcribed to first-strand 
cDNA using PrimesScriptTM™ Master Mix (Takara Bio) 
according to the manufacture’s instruction. Quantitative real 
time PCR was performed in StepOne Real-time PCR system 
using twofold diluted Power SYBR Green PCR Master Mix 
(Applied Biosystems, Foster City, CA, USA). The primer 
sequences used are shown in Table 1. Relative quantification 
of target gene was calculated using the −  2ΔΔCt method. Data 
are expressed as fold changes of the target gene/glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) compared with 
those of the control.
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Measurement of the concentrations of higenamine 
and salsolinol in the decoctions of PA commercial 
products

Samples of commercial PA products (PA1, PA2, and PA3 
of Japanese Pharmacopoeia XVIII Edition grade and the 
dried tuberous root of A. carmichaelii or A. japonicum, pre-
pared by the processing described above, were purchased 
from Uchida Wakanyaku, Sanwa Shoyaku (Tokyo, Japan), 
Tsumura (Tokyo, Japan), Matsuura Yakugyo (Nagoya, 
Japan), and Tochimoto Tenkaido (Osaka, Japan). Table 2 
presents the sample lists with the names of the distributers 
and lot numbers. Unprocessed aconite root, the dried tuber-
ous root of A. carmichaelii, was purchased from Tochimoto 
Tenkaido (lot number, Lot. 32009004). Some samples were 
supplied as small pieces by cutting the whole crude drug 
into 2–4 mm blocks. The samples (about 30 g) were pow-
dered using a mill, and passed through a sieve (300 µm). The 
powdered samples (25 mg) were mixed with 0.50 ml of ion-
exchanged water and heated at 100 °C for 30 min. Following 
the centrifugation (1.2 ×  104×g, 5 min), the supernatant was 
kept at − 20 °C until analysis. A 15 µl aliquot of the super-
natant was mixed with 135 µl of 1% formic acid and 30 µl 
of methyllycaconitine (Santa Cruz Biotechnology, Dallas, 
TX, USA, 34 µg/ml) in 1% formic acid for use as an internal 
standard. Following centrifugation (1.2 ×  104×g, 10 min), 
the supernatant was transferred into a glass vial for LC–MS/
MS system (Waters Quattro Premier XE, Milford, MA, 
USA) with an electrospray ionization source in the positive 
ion mode and multiple reaction monitoring. HPLC separa-
tion was performed under the following conditions: column, 
Waters Acquity UPLC HSS C18 1.8 µm, 2.1 × 100 mm; 
mobile phase, linear gradient elution system, 0.05% AcOH 
in  H2O (solvent A): 0.05% AcOH in acetonitrile (solvent B) 
(A/B) = 99/1–80/20 for 0–1 min; 80/20–50/50 for 1–2 min; 
50/50–15/85 for 2–3.5 min; 15/85–99/1 for 3.5–3.6 min; 

99/1 for 3.6–6.5 min at a flow rate of 0.2 ml/min. The injec-
tion volume of the sample was 10 µl. Both quadrupoles were 
maintained at the unit resolution and the transitions (pre-
cursor to daughter) monitored were 179.9 → 162.9 m/z for 
salsolinol (retention time, 2.4 min), 272.0 → 106.8 m/z for 
higenamine (2.9 min), and 683.4 → 108.4 m/z for methylly-
caconitine (3.4 min). Linear regressions of the concentration 

Table 1  List of oligonucleotide primer pairs used in RT-qPCR

MuRF1 muscle ring finger protein-1, MAFbx muscle atrophy F-box protein, Cbl-b casitas B-lineage lymphoma-b branched-chain, MyHC myosin 
heavy chain, IGI1 insulin-like growth factor-1, Bnip3 Bcl-2 binding and pro-apoptotic protein 3, BCAT2 branched-chain amino acid aminotrans-
ferase 2, GAPDH glyceraldehyde-3-phosphate dehydrogenase

Gene Forward Reverse Product 
size (bp)

MuRF1 ACG AGA AGA AGA GCG AGC TGCT TCC CTG TAC TGG AGG ATC AGA 91
MAFbx/atrogin-1 ACC CAT GCA GGA CTC CCA GAC TTA AGC CAC ACC CCT CTT GCT TTTG 87
Cbl-b AAG TGG CCA AGT TCC ATT GC TGC GAA CCA TCG GAA GAT GA 111
Troponin AGG CTA TGT CTG GCA TGG AA GAG TGT CAT ACA GCA AGC CA 92
MyHC ACC TTC AGC TCT GAG TTT GC ACG CTT CTG GAG CTT AAG GA 111
IGF1 TCC TTC TCA AGC CTG AGG TT GGT TAG CAA TGC CCA GTT GA 98
Bnip3 CTG CAC TTC AGC AAT GGC AA ATG CTG GGC ATC CAA CAG TA 93
BCAT2 TGG CTC AAC ATG GAC AGG AT TCA ATG AGC TGG CGG ATA CA 98
GAPDH CAA GAT TGT CAG CAA TGC ATCC CCT TCC ACA ATG CCA AAG TTG 87

Table 2  Concentrations of salsolinol and higenamine in the decoc-
tions of commercially available processed aconite root (PA) or unpro-
cessed aconite root (uzu)

PA1, PA2, and PA3 were defined in processed aconite root (PA) sec-
tion in Japanese Pharmacopoeia 18th Edition [22]. Each dried sample 
was powdered by mill, and each powder (25 mg) was decocted with 
0.50 ml water for 30 min, then, centrifuged (15,000 rpm for 5 min), 
and the supernatant was analyzed using LC–MS/MS. "n.d." for 
higenamine means less than 0.0017 µg/ml. Each data (µg/ml) is the 
mean ± SD for 3 batches of the decoction in each lot. CV, coefficient 
of variation

Vendor Lot # Salsolinol Higenamine

PA1 Uchida 262114 20 ± 5 0.18 ± 0.11
PA1 Uchida C4S0243 13 ± 2 0.046 ± 0.017
PA1 Uchida D8K0243 23 ± 11 0.077 ± 0.022
PA1 Uchida D8K0S19 27 ± 11 0.059 ± 0.005
PA1 Uchida E850243 25 ± 15 0.24 ± 0.08
PA1 Uchida F2F0243 15 ± 1 0.10 ± 0.02
PA1 Sanwa – 16 ± 5 0.15 ± 0.00
PA1 Tsumura K04331 18 ± 2 0.40 ± 0.06
PA1 Matsuura H6L1 19 ± 8 0.26 ± 0.02
PA2 Uchida E9H0519 3.5 ± 0.7 0.014 ± 0.003
PA2 Tochimoto 180804 5.2 ± 2.0 0.023 ± 0.006
PA2 Tochimoto 31415001 4.8 ± 2.4 0.022 ± 0.003
PA3 Uchida E7S0514 0.24 ± 0.19 n.d.
Uzu Tochimoto 180804 4.9 ± 1.0 0.011 ± 0.005

Mean ± SD 14 ± 9 0.12 ± 0.12
CV (%) 63% 97%
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ranges of salsolinol and higenamine were calibrated by the 
peak area ratio of these compounds to methyllycaconitine 
using the least-squares method (r2 > 0.99).

Statistical analysis

One-way analysis of variance (ANOVA) followed by Bon-
ferroni's multiple test was used to compared multiple data. 
Data are expressed as mean ± standard error (SE), and 
P < 0.05 considered significant. All analyses were conducted 
using Mac Statistic Analysis Ver 3.0 (Esumi, Tokyo, Japan).

Results

Dexamethasone-induced MuRF1 promoter expression in 
differentiated C2C12 cells at 1 µM was significantly sup-
pressed by methanol-soluble part of the boiling water extract 
of PA in a concentration-dependent manner with its  IC50 
value of 1.5 mg/ml (Fig. 1). By MTT assay, no cytotoxicity 
was observed by the concentration of 2.0 mg/ml (data not 
shown).

Next, we tried to isolate the active ingredients by activ-
ity-guided fractionation. We obtained acidic layer, alkaline 
layer, BuOH layer, and water layer from PA as described in 
“Materials and methods”. Then, we evaluated the suppres-
sive activities of them on dexamethasone-induced MuRF1 

promoter expression and found that the activity was trans-
ferred into BuOH layer (data not shown). The BuOH layer 
was subjected to silica gel column chromatography, and the 
activity was transferred into Fr. 3 (data not shown). By pre-
parative HPLC using ODS column, we isolated and iden-
tified salsolinol from Fr. 3 (Fig. 2A). Among the related 
compounds to salsolinol in other the constituents of PA, we 
obtained commercial reagent of higenamine [20]. Using 
commercial reagents, higenamine and salsolinol exhibited 
concentration-dependent suppressions on dexamethasone-
induced MuRF1 promoter expression in differentiated 
C2C12 cells, and the  IC50 values of higenamine and sal-
solinol were 0.49 and 50 µM, respectively (Fig. 2B, C).

We measured the contents of higenamine and salsolinol 
in the decoctions of commercially available thirteen kinds of 
PA products and one kind of unprocessed aconite root (Japa-
nese name, uzu) product, and the data are shown in Table 2. 
The PA decoction used in the experiments mentioned above 
contained 0.10 and 15 µg/ml of higenamine and salsolinol, 
respectively. Their contents in fourteen products were varied 
and the coefficient of variation (CV) values were 97% and 
63%, respectively.

We evaluated the suppressive effects of higenamine on 
MuRF1 mRNA expression. Although higenamine did not 
exhibit any inhibitions on MuRF1 mRNA expressions in 
normal condition of differentiated C2C12 cells, these com-
pounds significantly suppressed dexamethasone-induced 
MuRF1 mRNA expressions (Fig. 3A). Higenamine also 
significantly suppressed dexamethasone-induced mRNA 
expressions of MAFbx/atrogin1 and casitas B-lineage lym-
phoma-b (Cbl-b), which are belonging to muscle-specific 
ubiquitin ligase similar to MuRF1, troponin which is inte-
gral to muscle contraction in skeletal and cardiac muscle, 
branched-chain amino acid aminotransferase 2 (BCAT2) 
that attenuates muscle protein degradation, and Bcl-2 bind-
ing and pro-apoptotic protein3 (Bnip3) that is the marker of 
autophagy. The suppression on Cbl-b and Bnip3 exhibited 
concentration-dependent manners (Fig. 3B–F). Dexametha-
sone significantly suppressed mRNA expressions on myo-
sin heavy chain (MyHC) and insulin-like growth factor-1 
(IGF1), but higenamine at 3.0 and 9.0 µM did not exhibited 
significant effect on theses suppressions (data not shown). 
Higenamine at 3.0 and 9.0 µM did not exhibit any effects on 
the mRNA expressions of these target genes in C2C12 cells 
without dexamethasone treatment.

Discussion

The root of Aconitum carmichaelii is a well-known crude 
drug to relieve pain related to cold symptoms [14]. Its raw 
root contains toxic diterpene alkaloids, such as aconitine 
and mesaconitine,  LD50 values of which are 0.5–1.8 g/kg 
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Fig. 1  Effect of processed aconite root (PA) extract on dexametha-
sone-induced MuRF1 promoter expression in differentiated C2C12 
cells. Differentiated C2C12 cells were transfected with pGL3-MuRF1 
and pCMVβ-gal plasmids, and treated with or without dexametha-
sone (1 µM) and the methanol-soluble part of boiling water extract of 
PA for 24 h. Control group was treated with dexamethasone without 
the extract. Cell lysates from cells were used in luciferase assay. Data 
are mean ± SD (n = 5). *P < 0.05 and ***P < 0.001 compared with 
control group by Bonferroni's multiple tests.
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for oral administration in mice [21]; therefore, various pro-
cessing methods to reduce the toxicity of the root of Aconi-
tum carmichaelii have been developed, and the eighteenth 
edition of the Japanese Pharmacopoeia (JPXVIII) registers 
the dried material of the autoclaved root of A. carmichaelii 
as the item name processed aconite root (PA) [22]. Highly 
toxic diterpene alkaloids are degraded into less toxic dit-
erpene alkaloids (e.g., benzoylmesaconine) by heating or 
autoclaving [21], and the toxicity of benzoylmesaconine is 
about one-eight hundredth of mesaconitine [23]. Then, PA is 

considered to be a safe and effective herbal agent to relieve 
pain. Although the analgesic activity of benzoylmesaco-
nine in tail pinch test using mice was much less than that of 
mesaconitine about one-thousandth [24], neoline remained 
in PA after the heat processing of A. carmichaelii raw root 
to exhibit the effectiveness for neuropathic pain [15, 16].

In the present study, we evaluated the effectiveness of 
PA related to another traditional knowledge of the effective-
ness to supply the kidney energy [14]. In traditional Kampo 
medicine and traditional Chinese medicine, the deficiency 

Fig. 2  Effect of higenamine and 
salsolinol on dexamethasone-
induced MuRF1 promoter 
expression in differentiated 
C2C12 cells. A Chemical 
structure of higenamine and 
salsolinol. B, C Differentiated 
C2C12 cells were transfected 
with pGL3-MuRF1 and 
pCMVβ-gal plasmid and treated 
with or without 1 µM dexameth-
asone and higenamine (B) or 
salsolinol (C) for 24 h. Control 
group was treated with dexa-
methasone without higenamine 
or salsolinol. Lysates from cells 
were used in luciferase assay. 
Data are mean ± SD (n = 3). 
*P < 0.05, **P < 0.01, and 
***P < 0.001 compared with 
control group by Bonferroni's 
multiple tests
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of kidney energy is related to aging, and several diseases 
associated with old age, such as frequent urination, lumbar 
pain, lethargy, blurred vision, sarcopenia, and frailty [3, 25]. 
Therefore, we explored the effectiveness of PA to prevent 
muscular atrophy and evaluated its suppressive effect on 
dexamethasone-induced MuRF1 expression in C2C12 cells 
in vitro. Then, we found that it was significantly suppressed 
by methanol-soluble part of boiled water extract of PA with 
its  IC50 value of 1.5 mg/ml. This titer was weaker than the 
effect of PA boiled water extract on oxaliplatin-induced 
reduction of neurite elongation in dorsal root ganglion neu-
rons (the effective concentration, 0.1 mg/ml) [15].

In the process of activity-guided fractionation of PA 
extract, we found that the active ingredients of the suppres-
sive effect on dexamethasone-induced MuRF1 expression 
did not transfer into the fraction containing aconitine-type 
diterpene alkaloids, the major pharmacologically active 
ingredients of PA [15, 16, 24]. Then, we finally found 
higenamine and salsolinol as the active constituents in PA 
in the fraction containing relatively hydrophilic and neutral 
compounds. Since higenamine and salsolinol are alkaloidal 
compounds but they have both phenolic hydroxyl groups and 
amine motif in their chemical structures, it can be reasonable 
to find these compounds in this fraction. Higenamine was 
isolated from the raw root of A. japonicum as the cardiac 
tonic principle [20], and salsolinol was isolated from the raw 
root of A. carmichaelii [17].

We measured the contents of higenamine and salsolinol in 
the decoctions of available PA or unprocessed aconite root 
products (uzu). When 25 mg of PA sample used in the first 
experiments was decocted in 0.5 ml of water, the decoction 
contained 0.10 and 15 µg/ml of higenamine and salsolinol, 
respectively. By these data, the contents of higenamine and 
salsolinol in PA sample were 0.00020 (w/w) % and 0.030 
(w/w) %, respectively. The  IC50 of the methanol-soluble part 
of boiling water extract of PA (1.5 mg/ml) can be converted 
to 12 mg/ml of PA by the ratio yielded, and this concen-
tration was further converted to 23 ng/ml (= 0.086 µM) of 
higenamine and 3.5 µg/ml (19 µM) of salsolinol. Using the 
 IC50 values of higenamine and salsolinol at 0.49 and 50 µM, 
respectively, it is considered that higenamine and salsolinol 
contributed the effectiveness of PA about 18% and 38%, 
respectively. The contents of salsolinol and higenamine were 
variated among the commercially available PA products. The 
contents of salsolinol and higenamine in PA3 product were 
the lowest among PA products analyzed, and those in PA2 
were tended to be lower than those in PA1. The processing 
method of PA3 was the treatment with calcium hydroxide 
after rinsing in salt solution, and that of PA2 was heating 
or autoclaving after rinsing in salt or rock salt solution 
[22]. Since salsolinol and higenamine are hydrophilic com-
pounds, they may easily be extracted and lost in the process 
of rinsing in salt solution. The contents of salsolinol and 

higenamine in uzu were similar to those of PA2 products 
of the same pharmaceutical company, suggesting that the 
contents of salsolinol and higenamine may not change by 
heat processing and may play as the active ingredients of 
PA after heat processing, like neoline [16].

Since the titer of higenamine in the present activity was 
about 100-fold higher than that of salsolinol, the further 
pharmacological evaluations were focused on higenamine. 
Dexamethasone stimulates glucocorticoid receptor in skel-
etal muscle to activate Krüppel-like factor 15, that promotes 
the expressions of MuRF1, MAFbx/atrogin-1, and Cbl-b to 
induce ubiquitin–proteasome-dependent protein degrada-
tion and muscle atrophy, the expression of Bnip3 to induce 
autophagy, and the expression of BCAT2 to induce the feed-
back system and to suppress the function of glucocorticoid 
receptor [26]. Since higenamine did not exhibit any effects 
on the mRNA expressions of MuRF1, MAFbx/atrogin-1, 
Cbl-b, Bnip3, BCAT2, and troponin in normal condition of 
differentiated C2C12 cells, higenamine did not affect the 
homeostasis of C2C12 cells. However, higenamine sig-
nificantly suppressed their mRNA expressions stimulated 
by dexamethasone; therefore, higenamine has the protec-
tive effects against the violation of dexamethasone in dif-
ferentiated C2C12 cells. Although the molecular target of 
higenamine to protect dexamethasone-induced muscle atro-
phy is unknown, higenamine did not affect the signal trans-
duction from IGF1 receptor stimulation to myosin heavy 
chain expressions but that from glucocorticoid receptor 
stimulation into skeletal muscle atrophy in the catabolic 
processes, since higenamine did not counteract the suppres-
sion of MyHC and IGF1 mRNA suppressions induced by 
dexamethasone in differentiated C2C12 cells.

Higenamine is well-known β2-adrenoceptor agonist and 
is registered in the World Anti-Doping Agency (WADA) 
Prohibited Substances and Methods list [27]. Higenamine 
has vasodilating and anti-inflammatory effects on aorta [28, 
29], anti-aggregating activity on platelets [30], and anti-
apoptotic effects on hypoxia-induced brain injury [31, 32]. 
Higenamine protects the cardiac injury induced by ischemia/
reperfusion, collagen-induced arthritis, and the apoptosis 
gastric smooth muscle cells in diabetes via the activation 
of β2-adrenoceptor and phosphoinositide 3-kinase (PI3K)/
protein kinase B (AKT) signaling pathways [33–35]. On the 
other hand, trimetazidine, an anti-anginal agent, significantly 
counteracted dexamethasone-induced skeletal muscle atro-
phy and the phosphorylation of PI3K and AKT in C2C12 
cells, suggesting that dexamethasone would induce skeletal 
muscle atrophy by the suppression of PI3K/AKT signal-
ing pathways [36]. Considering the above results together, 
higenamine might suppressed dexamethasone-induced mus-
cle atrophy by activating β2-adrenoceptor and PI3K/AKT 
signaling pathways.
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When higenamine (50 mg/kg) was orally administered 
into rabbits, the maximum blood concentration was 2.9 µg/
ml appeared at 10 min after the administration [37]. When 

3 g of PA1 sample (Tsumura, K04331) was decocted in 
60 ml of water, about 24 µg of higenamine can be collected, 
and the dosage in human is calculated as 0.48 µg/kg. By this 
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dosage and the result of pharmacokinetic study in rabbits 
[37], the maximum blood concentration of higenamine by 
taking PA1 (3 g) in human can be calculated as 28 pg/ml. 
Since this estimated blood concentration of higenamine was 
much lower than its  IC50 value (0.10 µg/ml) in the present 
study, the contribution of higenamine as the active ingredi-
ents in PA to the prevention from muscular atrophy could 
be small in clinic, and further studies to find other active 
ingredients in PA were demanded.

The pharmacology of PA related to the effectiveness 
for the deficiency of kidney energy in traditional Japanese 
Kampo medicine and traditional Chinese medicine might 
be the protective effects on muscular atrophy, and we 
found higenamine and salsolinol as the active ingredients. 
Although the clinical contribution of these compounds to 
the prevention from muscular atrophy is not high, these 
compounds can be considered as the active ingredients of 
PA and be used as the marker compounds for the quality 
control of PA.
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