Skip to main content

Advertisement

Log in

Antiatherosclerotic effects of corilagin via suppression of the LOX-1/MyD88/NF-κB signaling pathway in vivo and in vitro

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Corilagin, a natural polyphenol compound isolated from Phyllanthus urinaria L., exerts various pharmacological effects, such as antihyperglycemic, antitumor, and antioxidative stress properties, but the mechanisms underlying the antiatherosclerotic effects of corilagin have not been entirely elucidated. In the present study, we investigated the antiatherosclerotic effects of corilagin using a high-fat diet (HFD)-induced atherosclerotic rabbit model and ox-LDL-induced vascular smooth muscle cells (VSMCs) and explored the underlying molecular mechanisms. The serum lipid levels were measured through an enzymatic colorimetric assay. A histological analysis of rabbit aortas was performed after hematoxylin–eosin and oil red O staining. The proliferation of ox-LDL-induced VSMCs was detected using MTT assays, and the migration of cells was determined by wound scratch assays. In addition, the mRNA and protein expression levels of lectin-like ox-LDL receptor-1 (LOX-1), myeloid differentiation factor 88 (MyD88), nuclear factor-kappa B (NF-κB), monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor α (TNF-α) were detected by reverse transcription-polymerase chain reaction (RT–PCR) and Western blotting assays. Our results indicate that corilagin significantly reduced the serum levels of TC, TG and LDL-C, increased the HDL-C levels, decreased the intimal thickening in the thoracic aorta, and reduced the formation of foam cells in an HFD-induced rabbit atherosclerosis model. Moreover, corilagin suppressed the proliferation and migration of ox-LDL-induced VSMCs and reduced LOX-1, MyD88, NF-κB, MCP-1, and TNF-α mRNA and protein expression in vivo and in vitro. These data demonstrate that corilagin exerts antiatherosclerotic effects in vivo and in vitro and that the mechanisms may be closely associated with downregulation of the LOX-1/MyD88/NF-κB pathway.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kurkowska-Jastrzebska I, Karlinski MA, Blazejewska-Hyzorek B, Sarzynska-Dlugosz I, Filipiak KJ, Czlonkowska A (2016) Carotid intima media thickness and blood biomarkers of atherosclerosis in patients after stroke or myocardial infarction. Croat Med J 57:548–557. https://doi.org/10.3325/cmj.2016.57.548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sedding DG, Boyle EC, JaF D, Sluimer JC, Dutzmann J, Haverich A, Bauersachs J (2018) Vasa vasorum angiogenesis: key player in the initiation and progression of atherosclerosis and potential target for the treatment of cardiovascular disease. Front Immunol 9:706. https://doi.org/10.3389/fimmu.2018.00706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang C, Niimi M, Watanabe T, Wang Y, Liang J, Fan J (2018) Treatment of atherosclerosis by traditional Chinese medicine: questions and quandaries. Atherosclerosis 277:136–144. https://doi.org/10.1016/j.atherosclerosis.2018.08.039

    Article  CAS  PubMed  Google Scholar 

  4. Li X, Zhang Y, Wang Y, Xu J, Xin P, Meng Y, Wang Q, Kuang H (2017) The mechanisms of traditional Chinese medicine underlying the prevention and treatment of Parkinson’s disease. Front Pharmacol 8:634. https://doi.org/10.3389/fphar.2017.00634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang M, Wu Y, Yu Y, Fu Y, Yan H, Wang X, Li T, Peng W, Luo D (2019) Rutaecarpine prevented ox-LDL-induced VSMCs dysfunction through inhibiting overexpression of connexin 43. Eur J Pharmacol 853:84–92. https://doi.org/10.1016/j.ejphar.2019.03.028

    Article  CAS  PubMed  Google Scholar 

  6. Suzuki T, Chiang HJ, Yanaura S, Yoshida T, Kuroiwa Y (1986) Studies on the mechanism of interaction between methamphetamine and quinine in rats. J Pharmacobiodyn 9:234–238. https://doi.org/10.1248/bpb1978.9.234

    Article  CAS  PubMed  Google Scholar 

  7. Kattoor AJ, Kanuri SH, Mehta JL (2019) Role of Ox-LDL and LOX-1 in atherogenesis. Curr Med Chem 26:1693–1700. https://doi.org/10.2174/0929867325666180508100950

    Article  CAS  PubMed  Google Scholar 

  8. Chen T, Luo W, Wu G, Wu L, Huang S, Li J, Wang J, Hu X, Huang W, Liang G (2019) A novel MyD88 inhibitor LM9 prevents atherosclerosis by regulating inflammatory responses and oxidative stress in macrophages. Toxicol Appl Pharmacol 370:44–55. https://doi.org/10.1016/j.taap.2019.03.012

    Article  CAS  PubMed  Google Scholar 

  9. Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, Akira S, Rajavashisth TB, Arditi M (2004) Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci USA 101:10679–10684. https://doi.org/10.1073/pnas.0403249101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Naiki Y, Sorrentino R, Wong MH, Michelsen KS, Shimada K, Chen S, Yilmaz A, Slepenkin A, Schroder NW, Crother TR, Bulut Y, Doherty TM, Bradley M, Shaposhnik Z, Peterson EM, Tontonoz P, Shah PK, Arditi M (2008) TLR/MyD88 and liver X receptor alpha signaling pathways reciprocally control Chlamydia pneumoniae-induced acceleration of atherosclerosis. J Immunol 181:7176–7185. https://doi.org/10.4049/jimmunol.181.10.7176

    Article  CAS  PubMed  Google Scholar 

  11. Liang X, Xiu C, Liu M, Lin C, Chen H, Bao R, Yang S, Yu J (2019) Platelet-neutrophil interaction aggravates vascular inflammation and promotes the progression of atherosclerosis by activating the TLR4/NF-kappaB pathway. J Cell Biochem 120:5612–5619. https://doi.org/10.1002/jcb.27844

    Article  CAS  PubMed  Google Scholar 

  12. An J, Li Z, Dong Y, Ren J, Guo K (2016) Methicillin-resistant staphylococcus aureus infection exacerbates NSCLC cell metastasis by up-regulating TLR4/MyD88 pathway. Cell Mol Biol (Noisy-le-grand) 62:1–7

    CAS  Google Scholar 

  13. Nandini HS, Naik PR (2019) Action of corilagin on hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic rats. Chem Biol Interact 299:186–193. https://doi.org/10.1016/j.cbi.2018.12.012

    Article  CAS  PubMed  Google Scholar 

  14. Xu J, Zhang G, Tong Y, Yuan J, Li Y, Song G (2019) Corilagin induces apoptosis, autophagy and ROS generation in gastric cancer cells in vitro. Int J Mol Med 43:967–979. https://doi.org/10.3892/ijmm.2018.4031

    Article  CAS  PubMed  Google Scholar 

  15. Ding Y, Ren D, Xu H, Liu W, Liu T, Li L, Li J, Li Y, Wen A (2017) Antioxidant and pro-angiogenic effects of corilagin in rat cerebral ischemia via Nrf2 activation. Oncotarget 8:114816–114828. https://doi.org/10.18632/oncotarget.22023

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shen ZQ, Dong ZJ, Peng H, Liu JK (2003) Modulation of PAI-1 and tPA activity and thrombolytic effects of corilagin. Planta Med 69:1109–1112. https://doi.org/10.1055/s-2003-45191

    Article  CAS  PubMed  Google Scholar 

  17. Wu YX, Dong YW, Liu Y, Peng YG, Wang L, Sheng ZQ (2009) Effect of corilagin on thrombosis and its mechanisms. Chinese J New Drugs 18:1008–1011

    CAS  Google Scholar 

  18. Tao Y, Zhang L, Yang R, Yang Y, Jin H, Zhang X, Hu Q, He B, Shen Z, Chen P (2021) Corilagin ameliorates atherosclerosis by regulating MMP-1, -2, and -9 expression in vitro and in vivo. Eur J Pharmacol 906:174200. https://doi.org/10.1016/j.ejphar.2021.174200

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Wang Y, Chen Y, Wang Y, Zhang S, Liu P, Chen Z, Song P, Luo L, Luo Y, Dang Y, Zhao L (2020) Corilagin ameliorates atherosclerosis in peripheral artery disease via the toll-like receptor-4 signaling pathway in vitro and in vivo. Front Immunol 11:1611. https://doi.org/10.3389/fimmu.2020.01611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ulrich-Merzenich G, Zeitler H (2013) The lectin-like oxidized low-density lipoprotein receptor-1 as therapeutic target for atherosclerosis, inflammatory conditions and longevity. Expert Opin Ther Targets 17:905–919. https://doi.org/10.1517/14728222.2013.805748

    Article  CAS  PubMed  Google Scholar 

  21. Gupta RL, Bhatnagar VM, Seth S (1970) Some observations with rolitetracycline as a vasodilator. Indian J Med Res 58:83–86

    CAS  PubMed  Google Scholar 

  22. Chen Z, Pan X, Sheng Z, Yan G, Chen L, Ma G (2019) Baicalin suppresses the proliferation and migration of Ox-LDL-VSMCs in atherosclerosis through upregulating miR-126-5p. Biol Pharm Bull 42:1517–1523. https://doi.org/10.1248/bpb.b19-00196

    Article  CAS  PubMed  Google Scholar 

  23. Lechner K, Mckenzie AL, Krankel N, Von Schacky C, Worm N, Nixdorff U, Lechner B, Scherr J, Weingartner O, Krauss RM (2020) High-risk atherosclerosis and metabolic phenotype: the roles of ectopic adiposity, atherogenic dyslipidemia, and inflammation. Metab Syndr Relat Disord 18:176–185. https://doi.org/10.1089/met.2019.0115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oikonomidis N, Kavantzas N, Korou LM, Konstantopoulos P, Pergialiotis V, Misiakos E, Rizos I, Verikokos C, Perrea DN (2016) Pre-treatment with simvastatin prevents the induction of diet-induced atherosclerosis in a rabbit model. Biomed Rep 5:667–674. https://doi.org/10.3892/br.2016.780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang W, Chen Y, Bai L, Zhao S, Wang R, Liu B, Zhang Y, Fan J, Liu E (2018) Transcriptomic analysis of the liver of cholesterol-fed rabbits reveals altered hepatic lipid metabolism and inflammatory response. Sci Rep 8:6437. https://doi.org/10.1038/s41598-018-24813-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Korou LM, Agrogiannis G, Koros C, Kitraki E, Vlachos IS, Tzanetakou I, Karatzas T, Pergialiotis V, Dimitroulis D, Perrea DN (2014) Impact of N-acetylcysteine and sesame oil on lipid metabolism and hypothalamic-pituitary-adrenal axis homeostasis in middle-aged hypercholesterolemic mice. Sci Rep 4:6806. https://doi.org/10.1038/srep06806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yanni AE (2004) The laboratory rabbit: an animal model of atherosclerosis research. Lab Anim 38:246–256. https://doi.org/10.1258/002367704323133628

    Article  CAS  PubMed  Google Scholar 

  28. Potor L, Eva SK, Hegedus H, Petho D, Szabo Z, Szigeti ZM, Pocsi I, Trencsenyi G, Szikra D, Garai I, Gall T, Combi Z, Kappelmayer J, Balla G, Balla J (2020) The fungal iron chelator desferricoprogen inhibits atherosclerotic plaque formation. Int J Mol Sci 21:4746. https://doi.org/10.3390/ijms21134746

    Article  CAS  PubMed Central  Google Scholar 

  29. Goetz TG, Mamillapalli R, Sahin C, Majidi-Zolbin M, Ge G, Mani A, Taylor HS (2018) Addition of estradiol to cross-sex testosterone therapy reduces atherosclerosis plaque formation in female ApoE-/- mice. Endocrinology 159:754–762. https://doi.org/10.1210/en.2017-00884

    Article  CAS  PubMed  Google Scholar 

  30. Li HX, Han M, Bernier M, Zheng B, Sun SG, Su M, Zhang R, Fu JR, Wen JK (2010) Kruppel-like factor 4 promotes differentiation by transforming growth factor-beta receptor-mediated Smad and p38 MAPK signaling in vascular smooth muscle cells. J Biol Chem 285:17846–17856. https://doi.org/10.1074/jbc.M109.076992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou Y, Zhang MJ, Li BH, Chen L, Pi Y, Yin YW, Long CY, Wang X, Sun MJ, Chen X, Gao CY, Li JC, Zhang LL (2016) PPARgamma inhibits VSMC proliferation and migration via attenuating oxidative stress through upregulating UCP2. PLoS ONE 11:e0154720. https://doi.org/10.1371/journal.pone.0154720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun Y, Chen D, Cao L, Zhang R, Zhou J, Chen H, Li Y, Li M, Cao J, Wang Z (2013) MiR-490-3p modulates the proliferation of vascular smooth muscle cells induced by ox-LDL through targeting PAPP-A. Cardiovasc Res 100:272–279. https://doi.org/10.1093/cvr/cvt172

    Article  CAS  PubMed  Google Scholar 

  33. Basatemur GL, Jorgensen HF, Clarke MCH, Bennett MR, Mallat Z (2019) Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol 16:727–744. https://doi.org/10.1038/s41569-019-0227-9

    Article  PubMed  Google Scholar 

  34. Yan S, Wu T, Li N, Zhang L, Song J, Xu Y, Wang S, Ding L, Jin J, Liu Y, Lan T (2018) Protective effects of Chinese traditional medicine longhu rendan against atherosclerosis via negative regulation of LOX-1. Evid Based Complement Alternat Med 2018:4812639. https://doi.org/10.1155/2018/4812639

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tian K, Ogura S, Little PJ, Xu SW, Sawamura T (2019) Targeting LOX-1 in atherosclerosis and vasculopathy: current knowledge and future perspectives. Ann N Y Acad Sci 1443:34–53. https://doi.org/10.1111/nyas.13984

    Article  PubMed  Google Scholar 

  36. Geng H, Wang A, Rong G, Zhu B, Deng Y, Chen J, Zhong R (2010) The effects of ox-LDL in human atherosclerosis may be mediated in part via the toll-like receptor 4 pathway. Mol Cell Biochem 342:201–206. https://doi.org/10.1007/s11010-010-0484-8

    Article  CAS  PubMed  Google Scholar 

  37. Xie J, Zhu H, Guo L, Ruan Y, Wang L, Sun L, Zhou L, Wu W, Yun X, Shen A, Gu J (2010) Lectin-like oxidized low-density lipoprotein receptor-1 delivers heat shock protein 60-fused antigen into the MHC class I presentation pathway. J Immunol 185:2306–2313. https://doi.org/10.4049/jimmunol.0903214

    Article  CAS  PubMed  Google Scholar 

  38. Liu T, Wu XZ, Chen JW, Yang J, Shen ZQ, Liu G, Chai WY, Chen P (2020) Effects of corilagin on the expression of TLR4 in atherosclerotic plaques of rabbits and ox-LDL-injured HUVEc. J Kunming Med Univ 41:15–20

    CAS  Google Scholar 

  39. Zhu G, Cheng Z, Huang Y, Zheng W, Yang S, Lin C, Ye J (2020) MyD88 mediates colorectal cancer cell proliferation, migration and invasion via NFkappaB/AP1 signaling pathway. Int J Mol Med 45:131–140. https://doi.org/10.3892/ijmm.2019.4390

    Article  CAS  PubMed  Google Scholar 

  40. Yan F, Guan J, Peng Y, Zheng X (2017) MyD88 NEDDylation negatively regulates MyD88-dependent NF-kappaB signaling through antagonizing its ubiquitination. Biochem Biophys Res Commun 482:632–637. https://doi.org/10.1016/j.bbrc.2016.11.084

    Article  CAS  PubMed  Google Scholar 

  41. Bjorkbacka H, Kunjathoor VV, Moore KJ, Koehn S, Ordija CM, Lee MA, Means T, Halmen K, Luster AD, Golenbock DT, Freeman MW (2004) Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med 10:416–421. https://doi.org/10.1038/nm1008

    Article  CAS  PubMed  Google Scholar 

  42. Bahrami A, Parsamanesh N, Atkin SL, Banach M, Sahebkar A (2018) Effect of statins on toll-like receptors: a new insight to pleiotropic effects. Pharmacol Res 135:230–238. https://doi.org/10.1016/j.phrs.2018.08.014

    Article  CAS  PubMed  Google Scholar 

  43. Koushki K, Shahbaz SK, Mashayekhi K, Sadeghi M, Zayeri ZD, Taba MY, Banach M, Al-Rasadi K, Johnston TP, Sahebkar A (2021) Anti-inflammatory action of statins in cardiovascular disease: the role of inflammasome and toll-like receptor pathways. Clin Rev Allergy Immunol 60:175–199. https://doi.org/10.1007/s12016-020-08791-9

    Article  CAS  PubMed  Google Scholar 

  44. Lecarpentier Y, Claes V, Duthoit G, Hebert JL (2014) Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction. Front Physiol 5:429. https://doi.org/10.3389/fphys.2014.00429

    Article  PubMed  PubMed Central  Google Scholar 

  45. Marz W, Koenig W (2003) HMG-CoA reductase inhibition: anti-inflammatory effects beyond lipid lowering? J Cardiovasc Risk 10:169–179. https://doi.org/10.1097/01.hjr.0000073686.78271.6d

    Article  PubMed  Google Scholar 

  46. Kvandova M, Majzunova M, Dovinova I (2016) The role of PPARgamma in cardiovascular diseases. Physiol Res 65:S343–S363. https://doi.org/10.33549/physiolres.933439

    Article  CAS  PubMed  Google Scholar 

  47. Lu C, Yin Y, Cui Y, Wang L, Bai Y, Li J, Huang T, Reziwanguli M, Miao L (2019) 1,25(OH)2D3 improves blood lipid metabolism, liver function, and atherosclerosis by constraining the TGF-beta/Smad signaling pathway in rats with hyperlipidemia. Cell Cycle 18:3111–3124. https://doi.org/10.1080/15384101.2019.1669389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81660613 and 81860665), by the Natural Science Foundation of Yunnan Province, China (Grant Nos. 2019FE001-191 and 202001AY070001-157), and by the Digitalization, Development and Application of Biotic Resources of Kunming Medical University (Grant No. 202002AA100007).

Author information

Authors and Affiliations

Authors

Contributions

PC and ZQS: conceptualization; BH and ZQS: methodology; BH, DYC, XCZ, RHY, and YY: validation; BH and DYC: writing—original draft preparation; PC and ZQS: writing—review and editing. All the authors have read and agreed to the submission of this manuscript.

Corresponding authors

Correspondence to Peng Chen or Zhiqiang Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 140 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Chen, D., Zhang, X. et al. Antiatherosclerotic effects of corilagin via suppression of the LOX-1/MyD88/NF-κB signaling pathway in vivo and in vitro. J Nat Med 76, 389–401 (2022). https://doi.org/10.1007/s11418-021-01594-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-021-01594-y

Keywords

Navigation