Skip to main content
Log in

Constituents of Morus alba var. multicaulis leaf improve lipid metabolism by activating the AMPK signaling pathway in HepG2 cells

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

One new compound, 3Z-1-O-β-d-glucopyranosyl-3-hexene-1,5-diol (1), together with 26 known isolates (227) were obtained from the leaf of Morus alba var. multicaulis. Among the known compounds, 7, 11, 12, 14, 15, 18, 19, 23, and 24 were firstly obtained from the Morus genus; 25, 8, 10, 13, and 20 were firstly isolated from M. alba. var. multlcaulis. Meanwhile, the NMR data of 20 and 23 have been reported here for the first time. Moreover, compounds 111, 13, 21, and 2327 showed inhibitory effects on triglyceride (TG) accumulation in HepG2 cells. In mechanism, compound 1 could activate the phosphorylation of AMP-activated protein kinase α (AMPKα) to accelerate the β-oxidation of fatty acids via promoting the phosphorylation of acetyl-CoA carboxylase 1 and up-regulating carnitine palmitoyl-transferase 1A. Besides, compound 1 exerted lipolysis effect by activating hormone-sensitive lipase. In brief, compound 1 might play a role by up-regulating phosphorylation of AMPKα, enhancing the fatty acid β-oxidation and lipolysis.

Graphical abstract

27 compounds were obtained from the leaf of Morus alba var. multicaulis. Among them, 18 showed inhibitory effects on TG accumulation in HepG2 cells. Moreover, the new compound, 3Z-1-O-β-d-glucopyranosyl-3-hexene-1,5-diol (1), was found to play a role by up-regulating phosphorylation of AMPKα, enhancing the fatty acids β-oxidation and lipolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hao M, Huang P, Ruan J, Sun F, Han L, Liu M, Zhang Y, Wang T (2021) Bioactive flavonoids and stilbenes from the leaf of Morus alba var. multicaulis. Fitoterapia 154:105018

    Article  CAS  Google Scholar 

  2. He X, Fang J, Ruan Y, Wang X, Sun Y, Wu N, Zhao Z, Chang Y, Ning N, Guo H, Huang L (2018) Structures, bioactivities and future prospective of polysaccharides from Morus alba (white mulberry): a review. Food Chem 245:899–910

    Article  CAS  Google Scholar 

  3. Yan J, Ruan J, Huang P, Sun F, Zheng D, Zhang Y, Wang T (2020) The structure-activity relationship review of the main bioactive constituents of Morus genus plants. J Nat Med 74:331–340

    Article  CAS  Google Scholar 

  4. Dai L, Si J, Liu Y, Zhang Z (2012) Chemical constituents from leaves of Phellodendron amurense Rupr. Tianran Chanwu Yanjiu Yu Kaifa 24:900–902

    CAS  Google Scholar 

  5. Xu J, Zhang Y, Chen K, Tan N, Liu Y (2012) A new monoterpenoid glucoside from the twigs of Chamaecyparis obtusa var. breviramea f. crippsii. Yaoxue Xuebao 47:1179–1182

    CAS  Google Scholar 

  6. Yu F, Fu J, Liang J (2012) Chemical constituents of Sarcandra glabra. Shengwu Jishu Shijie 10:5–6

    Google Scholar 

  7. Kim AR, Ko HJ, Chowdhury MA, Chang YS, Woo ER (2015) Chemical constituents on the aerial parts of Artemisia selengensis and their IL-6 inhibitory activity. Arch Pharm Res 38:1059–1065

    Article  CAS  Google Scholar 

  8. Liu L, Yin Z, Zhang L, Zhang X, Pan Y, Ye W (2005) Secondary metabolites of Morus alba leaves. Canye Kexue 31:413–417

    CAS  Google Scholar 

  9. Nan Z, Zhao M, Jiang Y, Tu P (2015) Lignans from stems of Cistanche deserticola cultured in Tarim desert. Zhongguo Zhongyao Zazhi 40:463–468

    CAS  PubMed  Google Scholar 

  10. Dou DQ, Hu XY, Zhao YR, Kang TG, Liu FY, Kuang HX, Smith DC (2009) Studies on the anti-psoriasis constituents of Oplopanax elatus Nakai. Nat Prod Res 23:334–342

    Article  CAS  Google Scholar 

  11. Wang C, Jia Z (1997) Lignan, phenylpropanoid and iridoid glycosides from Pedicularis torta. Phytochemistry 45:159–166

    Article  Google Scholar 

  12. Zhou M, Liu X, Li L, Shu J, Liang Y, Huang H (2017) Chemical constituents from rhizome of Smilax davidiana. Zhongcaoyao 48:5099–5104

    Google Scholar 

  13. Wang Z, Qiu Y (2012) Chemical constituents from Opuntia dillenii. Zhongcaoyao 43:1688–1690

    CAS  Google Scholar 

  14. Xiong L, Zhu C, Li Y, Tian Y, Lin S, Yuan S, Hu J, Hou Q, Chen N, Yang Y, Shi J (2011) Lignans and neolignans from sinocalamus affinis and their absolute configurations. J Nat Prod 74:1188–1200

    Article  CAS  Google Scholar 

  15. Lee SJ, Jang HJ, Kim Y, Oh HM, Lee S, Jung K, Kim YH, Lee WS, Lee SW, Rho MC (2016) Inhibitory effects of IL-6-induced STAT3 activation of bio-activecompounds derived from Salvia plebeia R.Br. Process Biochem 51:2222–2229

    Article  CAS  Google Scholar 

  16. Sano K, Sanada S, Ida Y, Shoji J (1991) Studies on the constituents of the bark of Kalopanax pictus Nakai. Chem Pharm Bull 39:865–870

    Article  CAS  Google Scholar 

  17. Straubinger M, Knapp H, Watanabe N, Oka N, Washio H, Winterhalter P (1999) Three novel eugenol glycosides from rose flowers, Rosa damascena Mill. Nat Prod Lett 13:5–10

    Article  CAS  Google Scholar 

  18. Kim JW, Kim TB, Yang H, Sung SH (2016) Phenolic compounds isolated from Opuntia ficus-indica fruits. Nat Prod Sci 22:117–121

    Article  CAS  Google Scholar 

  19. Kanho H, Yaoya S, Kawahara N, Nakane T, Takase Y, Masuda K, Kuroyanagi M (2005) Biotransformation of benzaldehyde-type and acetophenone-type derivatives by Pharbitis nil hairy roots. Chem Pharm Bull 53:361–365

    Article  CAS  Google Scholar 

  20. He D, Slebodnick C, Rakotondraibe LH (2017) Bioactive drimane sesquiterpenoids and aromatic glycosides from Cinnamosma fragrans. Bioorg Med Chem Lett 27:1754–1759

    Article  CAS  Google Scholar 

  21. Cui X, Liang Q, Kong L, Wu Q, Gu W, Duan J (2012) Chemical constituents of Scirpus yagara Ohwi. Zhongguo Yaoxue Zazhi 47:1987–1989

    CAS  Google Scholar 

  22. Li G, Chen F, Shen L, Shen S, Zhang J, Jin S (2013) Study on chemical constituents from roots and rhizomes of Acorus tatarinowii. Zhongcaoyao 44:808–811

    CAS  Google Scholar 

  23. Ren H, Dong L, Zhou Z, Xu Q, Tan J (2015) Chemical constituents from Sphagneticola trilobata. Zhongyaocai 38:1426–1429

    CAS  PubMed  Google Scholar 

  24. Otsuka H, Yu Q, Matsunami K (2010) Bumaldosides A, B and C from the leaves of Staphylea bumalda. Heterocycles 80:339–348

    Article  CAS  Google Scholar 

  25. Baumes R, Bayonove C, M’Bairaroua O, Tapiero C (1990) Synthesis and NMR spectral properties of grape monoterpenyl glycosides. Carbohyd Res 207:39–56

    Article  Google Scholar 

  26. Huang P, Shi W, Qu L, Zheng C, Wang T, Zhang Y (2018) Isolation and identification of compounds containing nitrogen atoms from Pugionium cornutum. Zhongguo Yaowu Huaxue Zazhi 28:318–322

    Google Scholar 

  27. Kamel MS, Ohtani K, Hasanain HA, Mohamed MH, Kasai R, Yamasaki K (2000) Monoterpene and pregnane glucosides from Solenostemma argel. Phytochemistry 53:937–940

    Article  CAS  Google Scholar 

  28. Ruan J, Liu Y, Chao L, Wang T, Liu E, Zhang Y (2016) Isolation and identification of steroidal saponins from Dioscorea spongiosa II. Shenyang Yaoke Daxue Xuebao 33:438–443

    CAS  Google Scholar 

  29. Wang X, Fan W (2018) Research on the chemical constituents of Ixora chinensis. Yatai Chuantong Yiyao 14:55–57

    Google Scholar 

  30. Qiu Q, Zhen H, Huang X (2017) Study on chemical constituents of fruit of Gymnema sylvestre. Zhongyaocai 40:1858–1860

    Google Scholar 

  31. Zhou YJ, Xu N, Zhang XC, Zhu YY, Liu SW, Chang YN (2021) Chrysin improves glucose and lipid metabolism disorders by regulating the AMPK/PI3K/AKT signaling pathway in insulin-resistant HepG2 cells and HFD/STZ-induced C57BL/6J mice. J Agric Food Chem 69:5618–5627

    Article  CAS  Google Scholar 

  32. Li S, Xu Y, Guo W, Chen F, Zhang C, Tan HY, Wang N, Feng Y (2020) The impacts of herbal medicines and natural products on regulating the hepatic lipid metabolism. Front Pharmacol 11:351

    Article  CAS  Google Scholar 

  33. Liu ZL, Xie LZ, Zhu J, Li GQ, Grant SJ, Liu JP (2013) Herbal medicines for fatty liver diseases. Cochrane Database Syst Rev 8:CD009059

  34. von Loeffelholz C, Coldewey SM, Birkenfeld AL (2021) A narrative review on the role of AMPK on de novo lipogenesis in non-alcoholic fatty liver disease: evidence from human studies. Cells 10:1822

    Article  Google Scholar 

  35. Guo L, Kang JS, Park YH, Je BI, Lee YJ, Kang NJ, Park SY, Hwang DY, Choi YW (2020) S-petasin inhibits lipid accumulation in oleic acid-induced HepG2 cells through activation of the AMPK signaling pathway. Food Funct 11:5664–5673

    Article  CAS  Google Scholar 

  36. Hodson L, Gunn PJ (2019) The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state. Nat Rev Endocrinol 15:689–700

    Article  CAS  Google Scholar 

  37. Yang ZG, Matsuzaki K, Takamatsu S, Kitanaka S (2011) Inhibitory effects of constituents from Morus alba var. multicaulis on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells. Molecules 16:6010–6022

    Article  CAS  Google Scholar 

  38. Yoo A, Narayan VP, Hong EY, Whang WK, Park T (2017) Scopolin ameliorates high-fat diet induced hepatic steatosis in mice: potential involvement of SIRT1-mediated signaling cascades in the liver. Sci Rep 7:2251

    Article  Google Scholar 

  39. Eid HM, Thong F, Nachar A, Haddad PS (2017) Caffeic acid methyl and ethyl esters exert potential antidiabetic effects on glucose and lipid metabolism in cultured murine insulin-sensitive cells through mechanisms implicating activation of AMPK. Pharm Biol 55:2026–2034

    Article  CAS  Google Scholar 

  40. Chen Y, Zhang X, Liu J (2013) Effects of three plant sterols on activity of sterol regulatory element and adipogenesis of 3T3L-1. Anhui Nongye Kexue 41:5183–5185

    CAS  Google Scholar 

  41. Ho SS, Pal S (2005) Margarine phytosterols decrease the secretion of atherogenic lipoproteins from HepG2 liver and Caco2 intestinal cells. Atherosclerosis 182:29–36

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Programs for National Natural Science Foundation of China (82074118), Important Drug Development Fund, Ministry of Science and Technology of China (2018ZX09735002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Zhang or Tao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1195 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Hao, M., Gao, Q. et al. Constituents of Morus alba var. multicaulis leaf improve lipid metabolism by activating the AMPK signaling pathway in HepG2 cells. J Nat Med 76, 200–209 (2022). https://doi.org/10.1007/s11418-021-01581-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-021-01581-3

Keywords

Navigation