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Abstract
The 14-membered cycloisodityrosine is the core structure of RA-series antitumor bicyclic peptides obtained from Rubia 
plants (Rubiaceae). In this study, an efficient method for the synthesis of cycloisodityrosines from commercially available 
l-tyrosine derivatives was developed. Using synthetic cycloisodityrosines and cycloisodityrosines with modified structures, 
several RA-VII analogues were designed and synthesized to explore structure–activity relationships of the cycloisodityrosine 
moiety of the RA-series peptides, and newly isolated natural peptides were synthesized to establish their structures.
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Introduction

RA-VII (1) is a bicyclic hexapeptide isolated from the roots 
of rubiaceous plants Rubia cordifolia L. and Rubia argyi 
(H. Lév. & Vaniot) H. Hara ex Lauener & D.K. Ferguson 
(syn. Rubia akane Nakai), which are known as Rubiae radix 
[1, 2]. Two structurally related peptides, bouvardin (NSC 
259968) (2) and deoxybouvardin (RA-V) (3), were isolated 
from Bouvardia ternifolia (Cav.) Schltdl., a plant of the same 
family (Fig. 1) [3]. These peptides exhibit potent antitumor 
activity; peptide 1 underwent phase I clinical trials as an 
anticancer drug in Japan from the late 80s to the early 90s [4, 
5]. The antitumor activity of these peptides is believed to be 

due to the inhibition of protein synthesis through interaction 
with eukaryotic ribosomes [6–8]. Peptide 1 was also shown 
to cause conformational changes in F-actin, which stabilize 
actin filaments and induce G2 arrest [9], and peptide 3 was 
found to inhibit angiogenesis by downregulating ERK1/2 
phosphorylation in HUVEC and HMEC-1 endothelial cells 
[10].

These peptides have a structurally unique cycloisodity-
rosine unit in which the two phenyl rings of tyrosyl-tyrosine 
are connected by an ether linkage to form a 14-membered 
cyclophane macrocycle, and a few compounds of this type 
are known among natural products. In these peptides, the 
ether linkage is formed between the carbon atom at the ζ 
position of the N-terminal tyrosine and the carbon atom at 
the ε position of the C-terminal tyrosine of the cycloisodity-
rosine unit. We have synthesized various RA-VII analogues 
by the chemical transformation of natural RA-series pep-
tides, including RA-VII (1), deoxybouvardin (3), RA-III (4), 
and the methyl ester of RA-X (5), or by semi-synthesis using 
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the cycloisodityrosine obtained by the degradation of RA-
VII (1), and those analogues have been described in previ-
ous reviews [2, 11]. This paper provides a summary of our 
subsequent research studies of RA-VII analogue synthesis 
and natural RA-series peptide synthesis utilizing the totally 
synthetic cycloisodityrosines prepared by our method.

Synthesis of cycloisodityrosine

The 14-membered cycloisodityrosine is difficult to prepare 
due to its strained cyclophane structure and the presence of 
an easily epimerizable chiral center on the C-terminal tyros-
ine [12, 13]. We previously developed a method to obtain 
the 14-membered cycloisodityrosine by degradation of 
natural RA-VII (1) [14, 15]. This transformation proceeded 
efficiently, and several RA-VII analogues in which d-Ala-1, 
Ala-2, or Ala-4 of 1 was replaced by another amino acid 
residue were synthesized using this degradation product 
[15–18]. The cycloisodityrosine derived from the natural 
RA-series peptide inevitably has an N-methyl group at both 
tyrosine moieties, and conditions that can be used for the 
chemical modification of this cycloisodityrosine is limited 
due to its rather stereochemically labile nature, which makes 
the synthesis of analogues of 1 with a modified cycloisodi-
tyrosine structure difficult. To synthesize analogues with a 
structurally modified cycloisodityrosine, a total synthesis of 
the 14-membered cycloisodityrosine was sought.

In the synthesis of cycloisodityrosines, the formation of 
the diphenyl ether linkage is a crucial step. Harsh conditions 

often used for the diphenyl ether formation have resulted 
in the epimerization of the C-terminal tyrosine. Several 
methods are available for the synthesis of 14-membered 
cycloisodityrosines (Fig. 2). The first total synthesis of the 
cycloisodityrosine of RA-VII was accomplished by Inoue 
and co-workers, who used an intramolecular phenolic oxida-
tive coupling reaction for the diphenyl ether synthesis. They 
treated protected dipeptide with N-terminal 3,5-dichloro-
N-methyl-l-tyrosine and C-terminal 3,5-dibromo-N-me-
thyl-l-tyrosine 6 with thallium(III) nitrate to obtain cyclic 
intermediate 7 albeit in low yield, and then reduced 7 to 
generate cycloisodityrosine 8 [19]. The second approach to 
the synthesis of cycloisodityrosine is based on an intramo-
lecular Ullmann reaction. Boger and Yohannes synthesized 
cycloisodityrosine through the Ullmann reaction of protected 
dipeptide with N-terminal 4-iodo-N-methyl-l-phenylalanine 

Fig. 1  Structures of RA-series peptides and bouvardins

Fig. 2  Methods for the synthesis of cycloisodityrosines
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and C-terminal 3-hydroxy-N,O-dimethyl-l-tyrosine 9 
[20]. Although this reaction proceeded in moderate yield, 
obtained cycloisodityrosine 10 was proven later to possess 
an undesirable unnatural configuration [12]. Epimerization 
at the α-carbon of the C-terminal tyrosine occurred on the 
cyclized product under the reaction conditions employed. 
The third approach consists of an intramolecular nucleo-
philic aromatic substitution reaction for the formation of a 
diphenyl ether bond, which was originally devised by Zhu 
et al. [21]. Treatment of protected dipeptide with N-termi-
nal N-methyl-l-tyrosine and C-terminal 3-fluoro-4-nitro-
l-phenylalanine 11 with sodium hydride afforded cyclized 
intermediate 12, and subsequent conversion of its nitro 
group into a hydroxy group gave cycloisodityrosine 13 [22]. 
Although the pivotal diphenyl ether bond formation step of 
this sequence proceeded effectively, the preparation of the 
dipeptide substrate for this reaction required the asymmetric 
synthesis of a chiral unnatural amino acid.

We developed a short synthetic route to a cycloisodity-
rosine from commercially available l-tyrosine derivatives. 
Chan et al. [23] reported a coupling reaction between phenol 
and aryl boronic acid under very mild conditions to form 
diphenyl ether compounds, and Evans et al. [24] reported 
an arylation of the tyrosine hydroxy group using this 
method. We applied this phenol/aryl boronic acid coupling 
in an intramolecular fashion to construct the 14-membered 
cycloisodityrosine ring, as illustrated by the conversion of 
dipeptide 14 into 15. When dipeptide 14, which is obtained 
by the coupling reaction of Boc-l-tyrosine and 3-boryl-
4-methoxy-l-tyrosine methyl ester (Boc-deprotected 17) 
prepared from commercially available 3-iodo-l-tyrosine 
(16), was treated with 1 equiv of copper(II) acetate and 5 
equiv of pyridine in dichloromethane at the concentration 
of 0.025 M, cycloisodityrosine 15 was produced in 29% 
yield. Optimization of the reaction conditions revealed that 
this reaction best proceeds with 4-(dimethylamino)pyridine 
(DMAP) instead of pyridine, at the substrate concentration 
of 0.013 M in an acceptable yield of 56% (Fig. 3; Table 1). 
This method was also effective for the synthesis of isomeric 
cycloisodityrosine 19, which was produced in 35% yield 
from dipeptide 18, by employing the same conditions used 
for the formation of 15 [25]. This isomeric cycloisodity-
rosine structure was seen in the structure of RP-66453, a 
secondary metabolite from Streptomyces sp. [26], and also 
in the structure of allo-RA-V (20) described later.

Synthesis of RA‑VII analogues

Using the cycloisodityrosines synthesized by this method, 
three RA-VII analogues with modified tyrosine side chains 
were designed and synthesized to explore the effects of the 

aromatic ring of the tyrosine side chains on the cytotoxic 
activity.

Bis(cycloisodityrosine) analogue

Using the cycloisodityrosines prepared by this method, we 
first synthesized the bis(cycloisodityrosine) analogue of RA-
VII (1). Of the three tyrosines at residues 3, 5, and 6 in pep-
tide 1, Tyr-5 and Tyr-6 constitute the cycloisodityrosine unit 
by forming a linkage between the ζ-oxygen atom of Tyr-5 
and the ε-carbon atom of Tyr-6. Due to the planar amide 
bond and the 1,3-disubstituted and 1,4-disubstituted phenyl 
rings included in the 14-membered ring of the cycloisodity-
rosine unit, the rotation of the side chains of those residues 
is restricted. The remaining side chain at Tyr-3 rotates about 

Fig. 3  Synthesis of cycloisodityrosines 15 and 19 

Table 1  Cyclization of dipeptide 14 

1 equiv of Cu(OAc)2, 5 equiv of amine, and powdered 4 Å molecular 
sieves in  CH2Cl2 for 48 h at rt

Entry Amine Conc (M) Yield (%)

1 Pyridine 0.025 29
2 Triethylamine 0.025 5
3 N,N-Diisopropylethylamine 0.025 4
4 3,5-Dichloropyridine 0.025 6
5 2,2′-Dipyridyl 0.025 4
6 1,10-Phenanthroline 0.025 12
7 4-Picoline 0.025 36
8 4-(Dimethylamino)pyridine 0.025 45
9 4-(Dimethylamino)pyridine 0.013 56
10 4-(Dimethylamino)pyridine 0.0063 55
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the  Cα–Cβ (χ1) and  Cβ–Cγ (χ2) bonds. As the substituent at 
the ζ position of Tyr-3 is known to be greatly related to 
the activity [27], the χ1 and χ2 angles of Tyr-3, defining the 
spatial orientation of the Tyr-3 phenyl ring, appear to play a 
critical role in the cytotoxicity. To obtain information on the 
effect of the side-chain conformation of Tyr-3 on the activ-
ity, we designed an analogue having a restricted Tyr-3 side-
chain rotation, which was realized by replacing the Ala-2 
and Tyr-3 residues of 1 by a cycloisodityrosine unit, yielding 
bis(cycloisodityrosine) analogue 21 (Fig. 4). In the synthe-
sis of analogue 21, two tripeptide segments corresponding 
to d-Ala-1–Tyr-2–Tyr-3 and Ala-4–Tyr-5–Tyr-6 were each 
prepared from cycloisodityrosine 15. The coupling reaction 
of these two segments and the subsequent macrocyclization 
of the resultant linear hexapeptide gave analogue 21 (Fig. 5). 
The similarity in the three-dimensional structural features 
of RA-VII (1) and 21 was highlighted by superimposing the 
crystal structure of 21 over that of RA-II (22), whose confor-
mational property is known to be identical to that of RA-VII 
(1) (Fig. 6). The spatial positions of the phenyl rings of the 
three tyrosines and the peptide backbone conformation at 
residues 2–6 of peptides 21 and 22 are almost superimpos-
able, indicating that analogue 21 may effectively mimic one 
of the lowest energy conformations in RA-VII including the 
side chain of Tyr-3.

Analogue 21 was 5000-fold less cytotoxic than RA-VII 
towards P-388 leukaemia cells. This result apparently does 
not agree with our hypothesis that the side-chain conforma-
tion at Tyr-3 of peptide 1, as shown in the crystal structure 
of 22, is a major factor that determines the cytotoxic activity 
of the compounds of this series. The bulky phenoxy tether 
connecting the β-carbon atom of Ala-2 and the ε-carbon 
atom of Tyr-3 in analogue 21, however, may be hampering 
its necessary close access to the relevant binding site, result-
ing in the low cytotoxicity. Synthesis of other analogues and 

Fig. 4  Structural design of analogue 21 in which the side-chain ori-
entation of Tyr-3 residue was restricted by an additional cycloisodity-
rosine structure

Fig. 5  Synthesis of bis(cycloisodityrosine) analogue 21 

Fig. 6  a Crystal structure of analogue 21 and b overlay of the crystal 
structures of RA-II (22) (blue) and analogue 21 (red)
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their analyses may offer further information to solve this 
problem [28].

Fluorinated analogues

Examination of the metabolites of RA-VII (1) in bile juice of 
rabbits to which 1 was administered intravascularly revealed 
that specific N-demethylation of Tyr-3, O-demethylation, 
and hydroxylation at the aromatic rings of Tyr-3 and Tyr-5 
occurred. Among them, the metabolites whose εa or εb posi-
tion of Tyr-5 was hydroxylated showed markedly reduced 
cytotoxic activity, and such hydroxylation of the aromatic 
ring is considered a bioinactivation process of peptide 1 
[29]. Therefore, we designed and synthesized RA-VII ana-
logues 23a and 23b, in which the εa- or the εb-hydrogen 
atom of Tyr-5 of RA-VII (1) was replaced by a fluorine 
atom to prevent metabolic hydroxylation at these positions 
(Fig. 7). Dipeptide substrate 25 for the cyclization was syn-
thesized by a coupling reaction of Boc-3-fluoro-l-tyrosine 
and 3-borono-N,O-dimethyl-l-tyrosine methyl ester 24 
obtained from 16. Treatment of 25 with copper(II) acetate 
and DMAP gave an inseparable mixture of atropisomers 
of fluorocycloisodityrosine, 26a and 26b, which were then 
N-methylated, deprotected, and coupled with tetrapeptide 27 
to give a mixture of linear hexapeptides 28a and 28b. Sub-
sequent macrocyclization of the mixture gave a mixture of 
23a and 23b, which could be separated by HPLC. Analogue 
23a displayed cytotoxicity that was as potent as that of RA-
VII (1) towards human promyelocytic leukaemia HL-60 and 
human colonic carcinoma HCT-116 cell lines, whereas 23b 
was 5.6-fold and 11-fold less cytotoxic, respectively, than 
1. The replacement of a hydrogen atom by a fluorine atom 
imposes only subtle steric changes, whereas the electron-
withdrawing nature of fluorine atom reduces the π-electron 
density of the phenyl ring through inductive effects. Thus, 
the results also indicated that the π-electron density of the 
Tyr-5 phenyl ring is not related to the cytotoxic activity [30].

Aza‑cycloisodityrosine analogue

In the RA-series peptides, the cycloisodityrosine moiety 
is considered essential for the expression of the cytotoxic 
activity. This moiety not only affects the conformation of 
the 18-membered macrocycle of the peptides [31, 32], but 
also appears to participate in the expression of the activity 
[33, 34]. Thus, we sought to investigate the effect of the 
electron density of the phenyl rings of the cycloisodityros-
ine moiety on the cytotoxic activity. The electron density 
of an aromatic compound is often modulated by introduc-
ing an electron-donating or an electron-withdrawing group 
on the aromatic ring. A survey of a limited number of RA 
analogues having a substituent on the aromatic rings of the 
cycloisodityrosine moiety revealed that the introduction of 

a hydroxy group at the εa or εb position of Tyr-5, as men-
tioned in the previous section, or at the δa or εa position 
of Tyr-6 reduces the cytotoxic activity of RA-VII (1) [35]. 
Although such modification increases the electron density 
of the phenyl ring to which the hydroxy group is attached, 
it is not clear whether the reduction of the cytotoxic activ-
ity is due to changes in the electron density of the phenyl 
rings, the steric bulkiness of the introduced hydroxy group, 
and/or the polarity of the hydroxy group. It is also known 
that in RA-VII (1), the introduction of a hydroxy group at 
either the εa or εb position of the Tyr-5 residue affects the 
orientation of the cycloisodityrosine phenyl ring by forming 
a hydrogen bond between the hydroxy proton and the methyl 
ether oxygen of Tyr-6 [29]. Those conformational changes 
in the cycloisodityrosine moiety may be responsible for the 
reduced activity of those analogues. To obtain information 
on the effects of the electron density of the cycloisodity-
rosine phenyl rings in RA-VII on the cytotoxic activity, we 
designed RA-VII analogue 29, in which the diphenyl ether 
oxygen of the cycloisodityrosine moiety was replaced by an 
amine nitrogen. We considered that this modification would 

Fig. 7  Synthesis of fluorinated analogues 23a and 23b 
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increase the electron density of the phenyl rings of both 
Tyr-5 and Tyr-6 residues with minimal structural changes, 
as the steric demand between RA-VII (1) and analogue 29 is 
expected to be almost the same. Comparison of the energy-
minimized structure of analogue 29 obtained by the Monte 
Carlo conformational search with the X-ray crystal structure 
of RA-VII (1) indicated that their 3D structures were very 
similar and almost superimposable (Fig. 8).

The aza-cycloisodityrosine unit of 29 was prepared by 
a copper(II) acetate-mediated cyclization reaction of pro-
tected dipeptide with N-terminal 4-amino-l-phenylalanine 
and C-terminal 3-borono-N,O-dimethyl-l-tyrosine 30. Thus 
obtained aza-cycloisodityrosine 31 was then converted into 
analogue 29 using a similar synthetic pathway to that for the 
synthesis of analogues 23a,b.

Analogue 29 was found to be 7.2-fold and 5.2-fold less 
cytotoxic than RA-VII (1) towards HL-60 cells and HCT-
116 cells, respectively. These results indicated that as RA-
VII (1) and its more electron-rich aza-analogue 29 possess 
almost the same 3D structure, enhancement of the electron 
density of the phenyl rings in Tyr-5 and Tyr-6 may reduce 
the cytotoxic activity of this series of peptides [36].

Synthesis of natural compounds

The cycloisodityrosine in the natural RA-series peptides 
generally has an ether linkage between the carbon atom at 
the ζ position of the N-terminal tyrosine (Tyr-5) and the car-
bon atom at the ε position of the C-terminal tyrosine (Tyr-
6), and those two tyrosines are both N-methylated. How-
ever, new peptides whose cycloisodityrosine has different 
structural features from those of known RA-series peptides 
were isolated from the roots of Rubia cordifolia L., and their 
structures were established by the synthesis of them.

RA‑XXV and RA‑XXVI

RA-XXV (32) and RA-XXVI (33) are des-N-methyl con-
geners of RA-VII (1) and deoxybouvardin (3) at Tyr-5, 
respectively [37]. Their amino acid compositions and 
sequences were determined by interpretation of MS as well 
as 1D and 2D NMR data, and their relative structures were 
elucidated by X-ray diffraction analysis of RA-XXV (32) 
and RA-XXVI acetate (34). The absolute stereochemistry 
of RA-XXV (32) was established by the total synthesis of 
it, and that of RA-XXVI (33), by the chemical correlation 
with 32. Peptide 32 was synthesized by a route analogous 
to the synthesis of analogues 23a,b and 29 (Fig. 9). The 
cytotoxic activities of RA-XXV (32) and RA-XXVI (33) on 
HL-60 and HCT-116 cell lines were significant but weaker 
than those of the corresponding N-methyl congeners. RA-
XXV (32) was 7–19-fold less cytotoxic than RA-VII (1), and 
RA-XXVI (33) was 7–12-fold less cytotoxic than deoxy-
bouvardin (3). Comparison of the X-ray crystal structures 
of RA-VII (1), RA-XXV (32), and RA-XXVI acetate (34) 
revealed that the backbone structure of 34 bears a good 
resemblance to that of 1, whereas the backbone structure of 
32 does not. Investigation of their conformational features in 
solution showed that peptides 32 and 33 preferentially adopt 
a backbone conformation not seen in known natural peptides 
of this series, and the population of the active conformer 
is small. Thus, the N-methyl group at Tyr-5 is necessary 
for this series of peptides to take the active conformation 
preferentially.

Allo‑RA‑V, neo‑RA‑V, and O‑seco‑RA‑V

In typical RA-series peptides including RA-VII (1) and 
deoxybouvardin (3), an ether linkage is formed between the 
carbon atom at the ζ position of Tyr-5 and the carbon atom at 
the ε position of Tyr-6, whereas in allo-RA-V (20), the ether 
linkage is formed between the carbon atom at the ε posi-
tion of Tyr-5 and the carbon atom at the ζ position of Tyr-6 
to form a cycloisodityrosine structure. In neo-RA-V (35), 
those two tyrosines, Tyr-5 and Tyr-6 linked by a C–C bond 

Fig. 8  Synthesis of aza-cycloisodityrosine analogue 29 and superpo-
sition of the crystal structure of RA-VII (1, red) and the energy-mini-
mized structure of analogue 29 (blue)
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between their ε positions to form an unusual 12-membered 
cyclodityrosine structure. O-seco-RA-V (36) is a monocy-
clic peptide that has been reported as a synthetically known 
compound but was isolated from natural sources for the first 
time [34] (Fig. 10).

Allo-RA-V (20) was synthesized by employing a simi-
lar synthetic pathway to that for the synthesis of analogues 
23a,b and RA-XXV (32). The cycloisodityrosine unit of 
allo-RA-V (20) was prepared by cyclization of modified 
tyrosyl-tyrosine 38 in which the boronic acid group existed 
at the N-terminal tyrosine (Fig. 11). The 12-membered 
cyclodityrosine unit of neo-RA-V (35) was synthesized 
through an intramolecular Suzuki–Miyaura cross-coupling 
reaction (Fig. 12). Allo-RA-V (20) was 790–1000-fold less 
cytotoxic than RA-VII (1) and 600–830-fold less cytotoxic 
than deoxybouvardin (3) towards HL-60 and HCT-116 cell 
lines, whereas neo-RA-V (35) and O-seco-RA-V (36) exhib-
ited almost no cytotoxicity towards those cell lines. Com-
parison of the 3D structures of highly active RA-VII (1) with 
less active allo-RA-V (20) and neo-RA-V (35) suggests that 
the orientation of the Tyr-5 and/or Tyr-6 phenyl rings plays 
a significant role in their biological activity (Fig. 12). The 

isolation of peptides 20, 35, and 36, along with compound 
3, and the comparison of their structures seem to indicate 
that peptide 36 may be the common precursor for bicyclic 
peptides 3, 20, and 35 in the plant.

Fig. 9  Synthesis of RA-XXV (32) and superposition of the crystal 
structures of RA-VII (1, red), RA-XXV (32, green), and RA-XXVI 
acetate (34, blue)

Fig. 10  Structures of allo-RA-V, neo-RA-V, and O-seco-RA-V

Fig. 11  Synthesis of allo-RA-V (20)
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RA‑dimer B

We have previously isolated RA-dimer A, a dimer of deoxy-
bouvardin (3), in which two deoxybouvardin molecules are 
connected between the phenolic oxygen atom of one deoxy-
bouvardin and the εa-carbon atom of the Tyr-6 residue of the 
other deoxybouvardin [38]. RA-dimer B (39), the second 
dimeric RA-series peptide, is composed of deoxybouvar-
din (3) and allo-RA-V (20), and those two cyclopeptides 
are connected between the phenolic oxygen atom of deoxy-
bouvardin and the εa-carbon atom of the Tyr-6 residue of 
allo-RA-V (20) (Fig. 13) [39]. The structure of RA-dimer B 
(39) was elucidated on the basis of spectroscopic data, and 
the synthesis of 39 confirmed the relative stereochemistry 
and established the absolute configuration of this peptide. 
Peptide 39 was synthesized by a coupling reaction of deoxy-
bouvardin (3) with the boronic acid derivative of allo-RA-V, 
41, and subsequent deprotection. Installation of the boronic 
acid functionality at the proper position of the allo-RA-V 
molecule was achieved by substitution of the pre-installed 
iodine atom by a boronic acid group as in the synthesis of 
boryl tyrosine 17. In the synthesis of 41, the intermediate 

iodocycloisodityrosine was obtained as a separable mixture 
of atropisomers 40a and 40b, and desired isomer 40a was 
then converted into boronic acid intermediate 41. Peptide 
39 was 54-fold and 95-fold less cytotoxic than RA-VII (1) 
towards HL-60 and HCT-116 cell lines, respectively.

Conclusion

We have developed an efficient method to prepare 14-mem-
bered cycloisodityrosines from commercially available 
l-tyrosine derivatives, and synthesized several RA-VII ana-
logues and new RA-series peptides with proposed struc-
tures. Such a totally synthetic approach will allow access to 

Fig. 12  Synthesis of neo-RA-V (35) and superposition of the crys-
tal structures of RA-VII (1, blue) and neo-RA-V (35, green), and the 
energy-minimized structure of allo-RA-V (20, red)

Fig. 13  Synthesis of RA-dimer B (39)
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RA-VII analogues not available from natural peptides, which 
will provide valuable information for the structure–activity 
relationship studies of RA-VII, being useful for the design 
of analogues, some of which may express more promising 
biological properties. The chemical syntheses of natural pep-
tides enabled us to establish the correct structures of them.
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