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Abstract 5-Nor stemmadenine alkaloids, isolated from the

genus Tabernaemontana, display a range of bioactivity.

16-Hydroxy-16,22-dihydroapparicine, the active compo-

nent of an extract from the Tabernaemontana sp. (di-

chotoma, elegans, and divaricate), exhibited potent

antimalarial activity, representing the first such report of

the antimalarial property of 5-nor stemmadenine alkaloids.

We, therefore, decided to attempt the total synthesis of the

compound to explore its antimalarial activity and investi-

gate structure and bioactivity relationships. As a result, we

completed the first total synthesis of 16-hydroxy-16,22-

dihydroapparicine, by combining a phosphine-mediated

cascade reaction, diastereoselective nucleophilic addition

of 2-acylindole or methylketone via a Felkin–Anh transi-

tion state, and chirality transferring intramolecular Michael

addition. We also clarified the absolute stereochemistries of

the compound. Furthermore, we evaluated the activity of

the synthetic compound, as well as that of some interme-

diates, all of which showed weak activity against chloro-

quine-resistant Plasmodium falciparum (K1 strain) malaria

parasites.

Keywords 5-Nor stemmadenine alkaloid � Antimalarial

agent � Pseudo-aminal type structure � Iminophosphorane

mediated cascade reaction � Chirality transfer

intramolecular Michael reaction � Diastereoselective
1,2-addition using indole nucleophile

Introduction

Naturally occurring chemicals represent a treasure trove of

compounds which hold promise as the seeds of discovery

for drugs and medicines and which may facilitate the elu-

cidation of structure and function investigations of bioac-

tivity [1]. Ōmura’s research group at the Kitasato Institute

is a global pioneer in the search for bioactive agents that

may be of use in developing drugs and medicines to fight to

infection and combat tropical diseases (such as the filari-

ases, malaria, trypanosomiasis, etc.), all originating from

microbial metabolites. At present, 483 new compounds

have been discovered, 26 of which have become useful,

widely used agents in human and animal health, including

the ground-breaking avermectins [2].

Malaria is one of the world’s worst health and socioe-

conomic problems, causing widespread death, disease,

disability, and economic loss. Infection arises when a

protozoal parasite of the Plasmodium genus is transmitted

to humans via the bites of blood-feeding mosquitoes.

Plasmodium falciparum parasites cause the most deadly

form of the disease, which can cause death in a few days,

especially if cerebral malaria develops. Generally, most

deaths occur in children under 5 years old, although deaths

have been reduced markedly by recent global initiatives to

tackle the disease [3–5]. Commonly used drugs to combat

malaria include quinine, chloroquine, mefloquine, halo-

fantrine, and sulfadoxine/pyrimethamine (Fig. 1). How-

ever, drug resistance in parasites has usually developed

quickly, rendering many of these drugs useless, preventing
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effective treatment and hindering disease elimination

efforts. In 1972, Professor Tu Youyou discovered artemi-

sinin to be the active ingredient in the plant Artemisia

annua, which was commonly used in China to treat fever.

Artemisinin derivatives became the most effective thera-

peutic drugs against malaria [6]. The World Health Orga-

nization (WHO) recommends artemisinin-based

combination therapies (ACTs) for malaria treatment [7], a

multidrug approach requiring the use of artemisinin toge-

ther with other drugs to help offset the pace of drug

resistance to artemisinin developing and spreading. ACTs

are already compromised because the safety of artemisinin

with regard to use during first trimester pregnancy is yet to

be established and, worse, resistance to artemisinin

derivatives developed almost immediately in locations

along the Thai–Cambodian border [8–11]. Therefore,

inexpensive and potent antimalarial drugs, especially those

that have different modes of action, are urgently required

on a probably continuing basis due to the ability of the

malaria parasites to quickly develop drug resistance.

Many of the therapies currently in development use

known antimalarial pharmacophores (e.g., aminoquinolines

and/or peroxides), which have been chemically modified to

overcome the failures of their predecessors [12]. Although

these compounds have been important in the treatment of

malaria, it would be highly advantageous to discover

chemotypes with novel action mechanisms [13]. However,

despite important advances in our understanding of the

Plasmodium genome, the identification and validation of

new drug targets have been challenging [14–16].

16-Hydroxy-16,22-dihydroapparicine (1), a known

5-nor stemmadenine alkaloid, was identified at the Kitasato

Institute as a main component of a leaf’s MeOH extract

from the plant Tabernaemontana dichotoma, which dis-

played antimalarial properties. The potent antimalarial

activity of the complex leaf extract against chloroquine-

resistant Plasmodium falciparum (K1 strain) parasites

in vitro, and its moderate selectivity (against MRC-5 strain

human cells) are summarized in Table 1. Natural com-

pound 1 was originally isolated from a leaf of Tabernae-

montana dichotoma in 1984 by the Verpoorte group [17]

(Fig. 2). The relative structural determination of 1 was

based on detailed NMR study, yet the absolute stereo-

chemistry was not determined. As 1 has the potential to

contain antimalarial activity, we decided to attempt the

total synthesis of 1 to confirm its stereochemistry and

investigate its antimalarial effect.

In this review, the total synthesis, stereochemical

determination, and antimalarial activity of 16-hydroxy-

16,22-dihydroapparicine are discussed [18, 19].

Fig. 1 Therapeutic drugs for

malaria

Table 1 Antimalarial activity and cytotoxicity of Tabernaemontana dichotoma extract

IC50 (lg/mL)

Antimalarial activity Cytotoxicity Selectivity index (SI)

K1a FCR3b MRC-5 M/Kc M/Fd

Tabernaemontana dichotoma MeOH extract 0.59 0.35 [25.0 [42.4 [71.4

Artemisinin 0.006 0.006 45.2 7528 7528

a Chloroquine-resistant strain
b Chloroquine-sensitive strain
c MRC-5/K1
d MRC-5/FCR3
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Naturally occurring compound 1 has the same frame-

work as Apparicine (2), the first 5-nor stemmadenine

alkaloid discovered, which was isolated from Aspi-

dosperma dasycarpon more than 45 years ago [20, 21]

(Fig. 3). There are currently 22 known 5-nor stemmadenine

alkaloid compounds [22–32], with the compounds

exhibiting a wide range of biological activity, including

being antimicrobial [33–35] and antibacterial (antituber-

culoid) [32], as well as displaying opioid properties [36].

Consequently, these alkaloids are of considerable interest.

The main structural feature of the alkaloids is the strained

1-azabicyclo[4.2.2]decane skeleton, including a single

carbon connection, between the indole 3-position and ali-

phatic nitrogen moiety, which is a defining characteristic of

these compounds. The relative stereochemistry of 2–5 has

also been reported for conolidine (6), the completed

asymmetric total synthesis being accomplished by Mical-

izio’s group [37].

Proposed biosynthesis

The special architecture involved, embodying a 1-azabi-

cyclo[4.2.2]decane, is probably the result of the C-5 tryp-

tamine atom being excised from the alkaloid stemmadenine

by a retro-Mannich reaction. Some in vitro transformations

of stemmadenine-type to 5-nor stemmadenine-type alka-

loids have provided further support for this biogenetic

model, which the following summarizes.

Kutney and co-workers reported the biosynthesis of the

1-azabicyclo[4.2.2]decane structure in the 5-nor stem-

madenine alkaloids 50 years ago, using incorporated

radioisotope experiments on the plant Aspidosperma pyri-

collum. Later, Lim and co-workers [38] reported partial

synthesis of the pseudo-aminal type indole alkaloids, such

as apparicine (2), using Potier’s expected biomimetic

oxidative transformation from pericine (7) (Scheme 1).

Synthesis studies

Due to their unique structure and potentially useful bio-

logical activity, the total synthesis of 5-nor stemmadenine

alkaloids has been reported by Bennasar et al. [39, 40],

Micalizio [37], and Takayama [41] (Scheme 2). In addi-

tion, synthetic work on the 1-azabicyclo[4.2.2]decane

skeleton core has been published by Joule [42, 43] and

Weinreb’s group [44] (Scheme 3). A recent report of the

total synthesis of (±)-apparicine (2) by Bennasar and co-

workers [39, 40] detailed an approach which utilized an

intramolecular Heck reaction. Micalizio and Takayama

[37, 41] reported the total syntheses of conolidine (6),

which could be derived from an iminium ion under

intramolecular Mannich reaction. In addition, Micalizio

and co-workers [37] clarified the absolute stereochemistry

of 6.

In 1977, Joule and co-workers [42, 43] reported the

synthesis of apparicine, detailing an approach to 2 which

utilizes an intramolecular Mannich cyclization to construct

the 1-azabicyclo[4.2.2]decane skeleton. Weinreb’s group

[44] reported the construction of a 4-cyclic compound 17

using nitrosoalkene and indole in 2014.

Our synthetic approach used a distinctive reaction based

on the hypothesis that the main structural feature of these

alkaloids is the strained 1-azabicyclo[4.2.2]decane skele-

ton, including a single carbon connection between the

indole 3-position and aliphatic nitrogen moiety, which is a

gramine-type (or vinamidine-type) moiety (Fig. 4). This

structure has a ‘‘push–pull’’ nature, which is stabilized by

electron-donating or electron-withdrawing groups. For

example, the aliphatic carbon–nitrogen bond of the gra-

mine type (or vinamidine type) is easily cleaved by retro-

Mannich reaction under acid [45], base [46–48], and

thermal [49] conditions, and with various reagents (e.g.,

trialkylphosphine [50–55], Lewis acid [56], phthalimide

[57], thiol [58, 59], and activated ester [60, 61]) to generate

the indolinium cation. We, therefore, anticipated that the

Fig. 2 Structure of (15S,16S)-

16-hydroxy-16,22-

dihydroapparicine (1)

Fig. 3 Structure of apparicine (2) and related compounds
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propendiamine moiety was an indicator of reactivity sim-

ilar to the aminal, leading us to suppose the framework as a

‘‘pseudo-aminal type structure’’.

To complete the total synthesis of (15S*,16S*)-16-hy-

droxy-16,22-dihydroapparicine (1), we designed a novel

phosphineimine-mediated cascade reaction, without any

isolated unstable intermediate (Scheme 4). The cascade

reaction sequence was: (1) Staudinger reaction of an azide

21 with triphenylphosphine to generate phosphineimine

intermediate 20 [62]; (2) intramolecular N-allylation of

phosphineimine transformed into aminophosphinium 19

[63–65]; (3) aza-Wittig reaction of 19 with formaldehyde;

and (4) intramolecular Mannich reaction; nucleophilic

attack might be performed from the indole 3-position to

iminium cation 18. We needed to solve two challenging

issues. Firstly, the N-allylation of the phosphineimine

group; phosphineimine has relatively high nucleophilicity,

while the leaving group involves sufficient electrophilicity.

Scheme 1 Biomimetic transformation

Scheme 2 Reported total synthesis of apparicine and conolidine
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Secondly, the formation of iminium cation using the

aminophosphonium salt; there was no reported generation

of iminium cation using the aminophosphonium salt and

aldehyde via the aza-Wittig reaction. We found a solitary

instance of the aminophosphonium salt with excess DMF

to generating formamidinium salt [66]. However, the

potential reactivity of the aminophosphonium salt has

never been investigated. If we could overcome these

challenges, an aminophosphonium salt (such as 19) could

become a useful reactant for the aza-Wittig reaction. The

key precursor 21 could be prepared from diastereoselective

methylation of 2-acylindole 22 with completion of the

Scheme 3 Reported synthetic study of the 1-azabicyclo[4.2.2]decane skeleton

Fig. 4 Gramines (vinamidines)

as versatile pseudo-aminal type

compounds

Scheme 4 Designed novel phosphineimine-mediated cascade reaction
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C-16 stereochemistry outcome of the Felkin–Anh transition

state [67–71] (Scheme 5). Compound 22 could be con-

structed with the indole nucleophile and azidoaldehyde 23.

To construct the C-15 stereocenter, we envisaged a

remote stereocontrolled Michael reaction [72] of the a,b-
unsaturated carboxamide 25 with the crotonic acid

derivative.

Synthesis of the azidoaldehyde 23 began from com-

mercially available cis-butenediol, to afford (-)-25 [73]

(Scheme 6). With the Michael accepter in hand, we

attempted the remote stereocontrolled Michael reaction of

(-)-25, with only minor success, (-)-25 appearing with no

stereoselection and in low yield, along with c-adduct as an
undesired product. Subsequently, olefin isomerization

afforded the unsaturated E-olefin 24 as a 1:1 diastere-

omixture (at C-15). Then, eight steps functionalization

provided the azidoaldehyde (±)-23 in 38 % overall yield.

With the azidoaldehyde (±)-23 and the N-phenylsul-

fonyl indole 27 [74–81] in hand, we examined the nucle-

ophilic addition, the hydroxyindole (±)-28 being provided

in 85 % yield as a single diastereomer (Scheme 7). Fol-

lowing the oxidation of (±)-28 to obtain the (±)-ketoin-

dole, the N-phenylsulfonyl and pivaloyl groups were

subsequently removed under basic solvolysis to provide the

hydroxyketoindole (±)-22 in 87 % yield. Diastereoselec-

tive methylation of (±)-22 converted it to dihydroxyindole

(±)-29 as a single diastereomer in excellent yield. The

planar structure of (±)-29 was confirmed by HMQC and

HMBC studies. We expected the stereoselectivity outcome

to be the Felkin–Anh transition state and so sought a

suitable leaving group on the allyl alcohol. We eventually

discovered a 3-nitropyridyl group [82, 83] as an efficient

leaving group, allowing conversion of the 3-nitropy-

ridinylation of (±)-29 into the cascade reaction precursor

Scheme 5 Retrosynthetic analysis of key intermediate

Scheme 6 Synthesis of azidoaldehyde (23)

J Nat Med (2016) 70:302–317 307

123



(±)-21 in 93 % yield, using the process reported by

Ballesteros and co-workers [84, 85]. We then attempted

construction of the 1-azabicyclo[4.2.2]decane skeleton,

including the pseudo-aminal moiety. The cascade reaction

precursor (±)-21, with PPh3 at 60 �C, generated

iminophosphorane, the reaction mixture subsequently

being acidified using AcOH for activation of the 3-ni-

tropyridyl group. Finally, formaldehyde and PPTS were

added to the reaction mixture to convert the iminophos-

phonium cation, followed by a Mannich reaction to furnish

(±)-1 in 88 % yield. The relative stereochemistry was

confirmed by ROESY correlations (Fig. 5).

Structure determination

However, the spectral data of synthetic (±)-1 did not agree

with that of naturally occurring 1 [17]. In particular,

analysis of synthetic (±)-1, showed a ROESY relationship

between H-18 or H-19 and 16-Me. Consequently, the rel-

ative stereochemistry of synthetic (±)-1 was determined to

be a 15S*,16S*-configuration. Data of synthetic (±)-

(15S*,16S*)-1 were then compared with naturally occur-

ring compound (Table 2), with 1H and 13C NMR indicating

differences of chemical shift (differences of all positions

are shown in the experiment section). In 1H NMR, 16-Me

and H-6a,b signals were registered more than 0.20 ppm

and, furthermore, the 13C signals of the piperidine ring

were greatly shifted from those seen in natural occurring 1.

Therefore, we expected that the 16-Me group in naturally

Scheme 7 Synthesis of proposed hydroxyapparicine (1)

Fig. 5 ROESY observations of synthetic (±)-(15S*,16S*)-1

308 J Nat Med (2016) 70:302–317
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occurring 1 was on the opposite face for the tri-substituted

exo-cyclic olefin. Accordingly, the relative stereochemistry

was anticipated to be the 15S*,16R*-configuration.

To confirm this consideration, we set about the synthesis

of 15S*,16R*-isomer. The disputed stereocenter was pre-

pared from ketoindole and methyl anion via the Felkin–

Anh transition state. Therefore, the R-configuration could

be constructed with methylketone (±)-30 and indole

nucleophile. We search and optimized nucleophilic addi-

tion using indole nucleophile. As a result, we found (t-

butyldimethylsilyloxy)methyl (TBSOM) group [86–91]

protected iodoindole as a suitable compound (Scheme 8).

Hence, nucleophilic addition of 31 with (±)-30 was con-

verted into (±)-32 in 97 % yield as a single diastereomer.

The planar structure of (±)-32 was confirmed by 2D NMR

study. Subsequently, global deprotection of (±)-32

obtained (±)-33 in excellent yields. Following the same

reaction sequence as the synthesis of (±)-(15S*,16S*)-1

produced (±)-(15S*,16R*)-1. Characterization data

provided for synthetic (±)-(15S*,16R*)-1 were fully con-

sistent with the data for the naturally occurring compound

reported by Verpoorte and co-workers [17] (Table 3). In

addition, an NOE relationship was observed between

H-14a and H-22 (i.e., 16-Me) (Fig. 6).

To clarify the cascade reaction mechanism, we

attempted the experiment outlined in Scheme 9. At first, to

provide the corresponding primary amine, a Staudinger

reaction of (±)-34 with PPh3 was carried out under reflux

condition to obtain the piperidine-indole (±)-37, without

acidic activation of the 3-nitropyridinyl group. ESI mass-

monitoring of the first reaction allowed phosphineimine 35

to be easily generated from (±)-34 and PPh3 without

transformation into primary amine via solvolysis. In a time-

dependent change, phosphineimine smoothly converted to

the aminophosphonium cation 36. Though the 3-nitropy-

ridinyl group was a low electrophile, it was unnecessary for

acidic activation. We inferred that the 1,3-allylic strain [92]

was a key component, occurring via the tri-substituted

Table 2 Comparison of the NMR data of synthetic (±)-(15S*,16S*)-16-hydroxy-16,22-dihydroapparicine (1) with those reported for the natural

product

Position 1HNMR 13CNMR

Synthetic (±)-(15S*,16S*)-1a Reported 1b Ddc Synthetic (±)-(15S*,16S*)-1a Reported 1b Ddc

dH (int., mult, J in Hz) dH (int., mult, J in Hz) dC dC

NH 8.30 (br s) 9.10 (br s) -0.80 – – –

2 – – – 136.1 138.1 -2.0

3 3.04 (ddd, 14.0, 12.0, 7.0) 2.89–2.95 (m) – 46.8 48.4 -1.6

2.85 (dd, 14.0, 7.0) –

6 4.25 (d, 18.0) 3.95 (d, 17.5) 0.3 53.4 50.4 3

4.58 (d, 18.0) 4.73 (d, 17.5) -0.15

7 – – – 109.4 107.3 2.1

8 – – – 127.9 129.9 -2.0

9 7.44 (d, 7.0) 7.46 (br d, 8.0) -0.02 118.5 118.5 0

10 7.08 (ddd, 8.0, 7.0, 1.0) 7.18 (ddd, 8.0, 7.5, 1.0) -0.10 119.2 119.2 0

11 7.20 (ddd, 8.0, 7.0, 1.0) 7.08 (ddd, 8.0, 7.5, 1.0) 0.12 122.6 122.3 -0.3

12 7.32 (ddd, 7.0, 2.0, 1.0) 7.33 (br d, 8.0) -0.01 110.4 110.3 -0.1

13 – – – 135.3 135.2 0.1

14 1.87 (dddd, 14.0, 12.0, 7.0, 1.0) 2.01–2.22 (m) - 25.0 23.4 1.6

2.22 (dddd, 14.0, 11.0, 7.0, 2.0)

15 3.35 (d, 7.0) 3.32 (dd, 3.5, 12.0) 0.02 44.0 43.2 0.8

16 – – – 76.2 74.5 1.7

18 1.75 (d, 8.6) 1.75 (ddd, 6.9, 2.5, 1.0) 0 13.7 13.8 -0.1

19 5.59 (br dq, 7.0, 1.0) 5.69 (q, 6.9) –0.10 122.0 124.9 -2.9

20 – – – 136.1 134.5 1.6

21 3.79 (br d, 16.0) 3.66 (br d, 17.0) 0.13 55.1 53.2 1.9

3.64 (br dq, 16.0, 2.0) 3.58 (br d, 17.0) 0.06

22 1.56 (s) 1.73 (s) –0.17 30.1 30.2 -0.1

a Measured in CDCl3 (
1H: 500 MHz, 13C: 125 MHz)

b Measured in CDCl3 (
1H: 300 MHz, 13C: 75 MHz)

c Dd (dSyn - dNat)
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Scheme 8 Total synthesis of (±)-(15S*,16R*)-1

Table 3 Comparison of the NMR data of synthetic (±)-(15S*,16R*)-16-hydroxy-16,22-dihydroapparicine; (±)-(15S*,16R*)-1 with those

reported for the natural product

Position Synthetic (±)-(15S*,16R*)-1a Reported 1b Ddc Synthetic (±)-(15S*,16R*)-1a Reported 1b Dd c

dH (int., mult, J in Hz) dH (int., mult, J in Hz) dC dC

NH 8.42 (br s) 9.10 (br s) -0.68 – – –

2 – – – 138.2 138.1 0.1

3 2.89–2.98 (m) 2.89–2.95 (m) 0 48.4 48.4 0

6 4.77 (d, 17.2) 4.73 (d, 17.5) 0.04 50.3 50.4 -0.1

3.96 (d, 17.2) 3.95 (d, 17.5) 0.01

7 – – – 106.9 107.3 -0.4

8 – – – 128.6 129.9 -1.3

9 7.47 (d, 8.0) 7.46 (br d, 8.0) 0.01 118.5 118.5 0

10 7.18 (dd, 7.5, 7.5) 7.18 (ddd, 8.0, 7.5, 1.0) 0 119.2 119.2 0

11 7.08 (dd, 7.5, 7.5) 7.08 (ddd, 8.0, 7.5, 1.0) 0 122.4 122.3 0.1

12 7.31 (d, 8.0) 7.33 (br d, 8.0) -0.02 110.4 110.3 0.1

13 – – – 135.2 135.2 0

14 2.17 (m) 2.01–2.22 (m) – 23.2 23.4 0.2

2.02 (m) –

15 3.31 (dd, 3.2, 11.7) 3.32 (dd, 3.5, 12.0) -0.01 43.1 43.2 -0.1

16 – – – 74.5 74.5 0

18 1.75 (d, 8.6) 1.75 (ddd, 6.9, 2.5, 1.0) 0 13.8 13.8 0

19 5.67 (q, 6.9) 5.69 (q, 6.9) -0.02 125.2 124.9 0.3

20 – – – 134.1 134.5 -0.4

21 3.70 (d, 17.2) 3.66 (br d, 17.0) 0.04 53.1 53.2 0.1

3.52 (d, 16.6) 3.58 (br d, 17.0) -0.06

22 1.74 (s) 1.73 (s) 0.01 30.1 30.2 -0.1

a Measured in CDCl3 (
1H: 500 MHz, 13C: 125 MHz)

b Measured in CDCl3 (
1H: 300 MHz, 13C: 75 MHz)

c Dd (dSyn - dNat)
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olefin. Therefore, the 3-nitropyridinyl group was located

within close proximity of the phosphineimine group. Sub-

sequent intramolecular Mannich reaction of piperidine-

indole (±)-37 provided (±)-(15S*,16R*)-1 in 43 % yield,

using formaldehyde and PPTS. We subsequently expected

that the aza-Wittig reaction of 36 with formaldehyde could

assist in generating the iminium cation precursor 38 in a

cascade reaction.

Asymmetric total synthesis of 16-hydroxy-16,22-
dihydroapparicine

We achieved the total synthesis of racemic 16-hydroxy-

16,22-dihydroapparicine (1) and determined the true rela-

tive stereochemistry of the naturally occurring compound.

In the next stage, we established the absolute stereo-

chemistry of 1. In order to accomplish asymmetric totalFig. 6 NOE observations of synthetic (?)-(15S*,16R*)-1

Scheme 10 Asymmetric synthetic plan of (15S,16R)-1

Scheme 9 Stepwise synthesis of (±)-(15S*,16R*)-1

J Nat Med (2016) 70:302–317 311
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synthesis, we used the chiral methylketone 30

(Scheme 10), which could be supplied from azidobutyro-

lactone 39, including the appropriate functional groups. If

39 formed acetylbutyrolactone 40, its acetyl and ester

moiety could be transformed into E-ethylidene and azido

groups, respectively. Acetylbutyrolactone 40 was, there-

fore, our key intermediate, with synthetic manners for

related compounds having already been reported by

Smith’s group and others [93–96]. We expected that 40

would involve a C-15 stereocenter being constructed by the

intramolecular chirality transferring Michael reaction. We

expected to perform via 5-exo-cyclization in the ketoester

41, which should be stereo-specifically constructed by the

Baldwin rule [97] and Thorpe–Ingold effect [98, 99].

Synthesis of the optically pure tri-substituted 40 began

from commercially available (-)-(R)-methyl lactate 42,

which, after with four steps of preparation, provided the

ketoester (?)-41 in excellent yield (Scheme 11). With the

optically pure (?)-41 in hand, we attempted the

intramolecular chirality transferring Michael reaction

[100–104]. Through extensive optimization, we found a

suitable condition to provide (?)-40 in 91 % yield as a

single diastereomer, and assignment of the relative stere-

ochemistry was derived from the coupling constants and

Scheme 11 Asymmetric synthesis of methylketone (?)-30

Scheme 12 End game of the total synthesis of (?)-(15S, 16R)-1

312 J Nat Med (2016) 70:302–317
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NOE correlation between a and c protons. The key factor

of the intramolecular chirality transferring Michael reac-

tion was the solvent’s effect; polar solvent was stabilized to

the anticipated transition state. The acetyl group of (?)-40

converted into the ethylidene moiety along with the sepa-

rable Z-isomer. The tri-substituted olefin moiety was

determined to be of E-configuration by NOE correlation.

The configuration of the C-3 stereocenter of (-)-43 was

determined after simple modification; hydrogenation of

(-)-43 obtained a single diastereomer, and the stereo-

chemistry was confirmed to be S-configuration by NOE and

ROESY correlation. Compound (-)-43 was transformed

into primary alcohol 44 by stepwise preparation; at first,

selective hydrolysis of the ethyl ester group under basic

condition generated carboxylic acid, followed by the cor-

responding acid anhydride. The furnished carboxylic

anhydride was immediately reduced to the desired (-)-44

in 82 % yield over the two steps [105, 106]. Subsequently,

four steps functionalization provided the chiral methylke-

tone (?)-30 in excellent yield without racemization. The

optical purity of the (?)-30 (97 %ee) was confirmed by

chiral HPLC analysis. The R-isomer of (-)-30 was pre-

pared in the same asymmetric synthetic manner from (-)-

(S)-methyl lactate.

Finally, (?)-32 was exposed to the same procedure

using (±)-(15S*,16R*)-16-hydroxy-16,22-dihydroap-

paricine 1 (Scheme 12). The cascade reaction precursor

(-)-36 underwent the same cascade reaction condition as

that for the synthesis of (±)-(15S*,16S*)-1, (±)-

(15S*,16R*)-1 to give (?)-(15S,16R)-1. Characterization

data proved that synthetic (?)-(15S,16R)-1 was fully con-

sistent with the data for the natural compound, as reported

Table 4 Antimalarial activity of synthetic 1 and some intermediate compounds

IC50 (lg/mL)

Antimalarial activity Cytotoxicity Selectivity index (SI)

K1a FCR3b MRC-5 M/Kc M/Fd

Tabernaemontana leaf extract 0.59 0.35 [25.0 [42.4 [71.4

Synthetic (±)-(15S*,16S*)-1 [12.5 ND 33.3 [2.7 –

Synthetic (?)-(15S,16R)-1 9.00 8.37 51.2 5.7 6.1

Synthetic (-)-1 10.87 ND 75.2 6.9 –

(-)-(15S,16R)-32 [12.5 [12.5 ND – –

(-)-(15S,16R)-39 9.38 [12.5 54.0 5.8 \4.3

(-)-(15S,16R)-33 7.58 7.17 17.8 2.3 2.5

(-)-(15S,16R)-34 8.04 [12.5 [100.0 [12.4 8.0

(±)-(15S,16R)-37 8.98 [12.5 40.8 4.5 \3.3

Artemisinin 0.006 0.006 45.2 7528 7528

a Chloroquine-resistant strain
b Chloroquine-sensitive strain
c MRC-5/K1
d MRC-5/FCR3
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by Verpoorte and co-workers [17]. The optical rotation of

synthetic (?)-(15S,16R)-1, [a]D
26 ?112.2 (c 0.9, EtOH),

compared well with the values reported for the natural

sample, [a]D
20 ?129 (c 0.1, EtOH), and the optical rotation

of synthetic (-)-(15R,16S)-1, [a]D
26 -104.2 (c 0.1, EtOH),

was prepared in an asymmetric synthetic manner. In

addition, an NOE relationship was observed between

H-14a and H-22 (i.e., 16-Me). Therefore, the C-16 stere-

ochemistry was determined to be the R-configuration.

Biological activity

Naturally occurring and synthetic compounds were tested

for antimalarial activity against Plasmodium falciparum

parasites (chloroquine-resistant K1 strain and chloroquine-

susceptible FCR3 strain) and for cytotoxicity (against

human MCR-5 cells) [107–109], in comparison with the

first-line antimalarial artemisinin.

The in vitro antimalarial activities and cytotoxicities of

the naturally occurring and synthetic compounds are

summarized in Table 1. As shown in Table 4, Tabernae-

montana leaf extract (which includes (?)-(15S,16R)-16-

hydroxy-16,22-dihydroapparicine) showed activity against

both the chloroquine-resistant K1 strain and the chloro-

quine-sensitive FCR3 strains of Plasmodium falciparum

(approximately 78-fold less potent than artemisinin, and

with synthetic (±)-(15S*,16S*)-1 having no measurable

impact on chloroquine-susceptible parasites). Synthetic

(±)-(15S*,16S*)-1, (?)-(15S,16R)-1, (-)-1 displayed

moderate to weak antimalarial activity (in the range of 9.0

to[12.5 lg/mL), while synthetic (-)-1 and intermediaries

showed minimal impact (7.17 to [12.5 lg/mL). The

cytotoxicities against human cells of all synthetic com-

pounds were weak (IC50 of 17–75 lg/mL), on average

similar to that of artemisinin.

The IC50 value of synthetic (?)-(15S,16R)-1 proved to

be significantly lower than the leaf extract containing

naturally occurring (?)-(15S,16R)-16-hydroxy-16,22-

dihydroapparicine.

Conclusion

We achieved the first total synthesis of (?)-(15S,16R)-16-

hydroxy-16,22-dihydroapparicine (1) and the (-)-enan-

tiomer and determined the absolute stereochemistry of

naturally occurring 1. The synthesis involved a novel

cascade reaction for efficient construction of the 1-azabi-

cyclo[4.2.2]decane, including a pseudo-aminal moiety, via

a Staudinger reaction, N-allylation, aza-Wittig reaction,

and Mannich reaction. In addition, we developed a new

method using diastereoselective 1,2-addition of

methylketone, using N-TBSOM protecting the indole

nucleophile and intramolecular chirality transferring

Michael reaction with neighboring group participation. In

particular, intramolecular chirality transferring Michael

reaction proved to be a useful method for synthesis of the

chiral tri-substituted butyrolactone. We established an

effective enantioselective synthetic route for the production

of pseudo-aminal alkaloids.

Synthetic (?)-(15S,16R)-1 exhibited moderate/weak

antimalarial activity against chloroquine-resistant Plas-

modium falciparum parasites and there is a possibility that

the structurally unique compounds may be useful for the

development of novel antimalarial drug candidates.
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