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Abstract

Web applications play a crucial role in modern businesses, offering various services and often exposing sensitive data that can
be enticing to attackers. As a result, there is a growing interest in finding innovative approaches for discovering vulnerabilities
in web applications. In the evolving landscape of web security, the realm of fuzz testing has garnered substantial attention for
its effectiveness in identifying vulnerabilities. However, existing literature has often underemphasized the nuances of web-
centric fuzzing methodologies. This article presents a comprehensive exploration of fuzzing techniques specifically tailored to
web applications, addressing the gap in the current research. Our work presents a holistic perspective on web-centric fuzzing,
introduces a modular architecture that improves fuzzing effectiveness, demonstrates the reusability of certain fuzzing steps,
and offers an open-source software package for the broader security community. By addressing these key contributions, we
aim to facilitate advancements in web application security, empower researchers to explore new fuzzing techniques, and

ultimately enhance the overall cybersecurity landscape.

Keywords Fuzzing - Web applications - Web penetration testing - Rule-based systems - Web security testing

1 Introduction

Web applications are the cornerstone of modern digital
interactions, facilitating e-commerce, social networking, and
information sharing. However, their widespread use also
makes them prime targets for malicious actors seeking to
exploit vulnerabilities. The rapid evolution of web technolo-
gies and the proliferation of complex web applications have
rendered the task of securing them increasingly challenging.
One potent weapon in the arsenal of cybersecurity profes-
sionals is fuzz testing, commonly known as fuzzing. Fuzzing
involves the automated injection of various inputs, often
malformed or unexpected, into a target system to uncover
vulnerabilities. While fuzzing has proven remarkably effec-
tive in identifying security weaknesses, its application to
web environments presents unique challenges that have been
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underrepresented in the existing literature. This article aims
to bridge this gap by presenting a comprehensive exploration
of fuzzing techniques tailored explicitly to web applications.
We delve into the intricacies of web-centric fuzzing, high-
lighting the idiosyncrasies that set it apart from traditional
fuzzing approaches. Our research investigates the complexi-
ties of web technologies, including input validation, session
management, and client-side interactions, shedding light on
the specific challenges faced by security practitioners in this
domain.

Furthermore, we introduce a modular architecture for
fuzzing that not only enhances vulnerability discovery but
also replicates the decision-making processes of security
experts. This architecture allows for the customization of
fuzzing strategies, enabling users to select and deploy spe-
cific modules according to their testing objectives. A Man
In The Middle Proxy module stores interactions performed
to analyze the target application. A Repeater module con-
verts the collected interactions into template-based requests
that can be used to initiate a fuzzing session. At the end of
the fuzzing session, an Analyzer module converts the fuzzing
results into a formal representation of the conditions observed
by a security expert and is used to verify the presence of a
vulnerability. We formalize these conditions by introducing
the “analyzer observations” concept and show that it is pos-
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sible to incorporate them into a knowledge base developed
using logic programming. To this purpose, we leverage the
declarative semantic of Prolog to implement a vulnerability
knowledge base that converts the analyzer observations into
input-handling vulnerabilities.

We demonstrate that our proposed architecture facilitates
the reuse of certain fuzzing steps, significantly streamlining
the security testing process. By reducing redundancy, our
approach conserves computational resources and accelerates
the identification of vulnerabilities.

To foster collaboration and innovation within the security
community, we provide an open-source implementation of
our software.! This open approach encourages researchers
to explore new techniques by modifying individual modules,
ultimately promoting advancements in web application secu-
rity.

In conclusion, our work addresses the unique challenges of
web-centric fuzzing, introduces an adaptable modular archi-
tecture, showcases the reusability of specific fuzzing steps,
and offers an open-source software package. Through these
contributions, we aim to enhance the security of web appli-
cations, empower researchers to innovate in the field of fuzz
testing, and fortify the cybersecurity landscape as a whole.

The remainder of this paper is organized into eight sec-
tions. Section?2 introduces the security testing process and
describes the input-handling vulnerabilities analyzed in this
work. To understand the inner details of the proposed solu-
tion, Sect.3 provides an introduction to Prolog and logic
programming. Section4 analyzes the state of the art with
respect to Fuzzing. In Sect. 5, we show the design and imple-
mentation of our rule-based fuzzer by delving into the details
of its main building modules. The proposed approach is eval-
uated in Sect. 6 by means of a comparative analysis with the
renowned Zed Attack Proxy open-source web application
scanner. In Sect.7, we discuss a few interesting optimiza-
tion strategies aimed at enhancing the performance of our
fuzzer. Section 8 summarizes the obtained results and gives
an insight into the prospective evolution of the proposed
work.

2 Vulnerabilities in web applications

There is some debate in the literature about the “boundaries”
between web security testing and web application penetration
testing. Some authors define security testing as the appli-
cation of automatic approaches to discover vulnerabilities
instead of manual methods called penetration tests [1]. A
recent study [2] provides a systematic mapping of security
testing approaches in the literature by extending the scope
to penetration testing methodologies, such as OWASP [3].

! https://github.com/NS-unina/Rule-Based- Fuzzer.
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According to the semantics proposed by the study, even
security testing processes can use automatic, manual, and
semi-automatic techniques.

In the business world, the distinction between security
testing and penetration testing lies in their respective execu-
tion stages. Security testing is employed throughout various
phases of the development process, ensuring that security
measures are incorporated from the early stages. On the other
hand, penetration testing is specifically conducted in the pro-
duction phase, allowing for testing in a real environment with
real-world configurations. Throughout the rest of this paper,
we will use the term Web Application Penetration Testing
(WAPT) to refer to an “opaque-box semi-automatic security
testing methodology”. This approach combines both auto-
mated and manual techniques to comprehensively identify
vulnerabilities in web applications.

In this section, we describe a Web application pen-
etration testing process by also briefly illustrating three
input-handling vulnerabilities studied in this work, namely,
SQL injection, path traversal, and cross-site scripting.

2.1 Web application penetration testing process

Web Application Penetration Testing (WAPT) is an “opaque-
box” process that enables companies to discover vulnerabili-
ties in web applications by simulating hacker activities. Here,
the “opaque-box” refers to the tester having very little prior
knowledge about the target system. The process is composed
of two main phases, as described in the following:

1. The penetration tester attempts to create a “footprint” of
the web application. This includes:

e Gathering its visible content by exploring public
resources as well as discovering information that
seems to be hidden.

e Analyzing the application and identifying its core
functions, especially those for which the web appli-
cation was designed. The purpose is to have a map
of all the possible Data Entry Points that the applica-
tion exposes, which are the main potential flaws that
a hacker recognizes in the target application.

2. In the second phase, the penetration tester knows which
path to take and whether to focus on the way the applica-
tion handles inputs or on probable flaws in its inner logic.
To have a comprehensive understanding of all possible
application “holes” it is, however, important to explore
each of the following areas:

e Focusing on the application logic means studying the
client-side controls to find a way to bypass them.

e The stage that involves analyzing how the application
handles access to private functionality might be the
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one to focus on immediately because authentication
and session management techniques usually suffer
from a number of design and implementation flaws.

e Input Handling attacking techniques are definitely
the most widely deployed since important categories
of vulnerabilities are triggered by unexpected user
input. The application can be probed by fuzzing the
parameters passed in a request. See the next section
for insights on this topic.

e The website can represent an entry point that allows
the attacker to have a complete understanding of the
target network infrastructure. Defects and oversights
within an application’s architecture can often enable
the tester to escalate an attack, moving from one com-
ponent to another to eventually compromise the entire
application.

2.2 SQL injection

An SQL injection (SQLi) vulnerability allows a malicious
user to manipulate the queries issued by a web application
to a back-end database. Exploiting the vulnerability exposes
sensitive data that cannot be retrieved when the application is
used in an ordinary way. In many cases, a malicious user can
modify or delete data, thus causing permanent changes to the
application and altering its behavior. In some extreme situa-
tions, an attacker can also escalate privileges and compromise
the underlying server or other back-end infrastructures.

Union attack

When SQL query results are returned as part of appli-
cation responses, a malicious user can retrieve data from
database tables. This technique makes use of an operator
called UNION. The UNION operator allows the joining of
several data types through two SELECT statements. Itis used
to perform an additional SQL query that will show illegiti-
mate data.

Blind SQL

Blind SQL is a type of SQL Injection attack that injects either
true or false conditions into the underlying database to verify
the presence of a vulnerability through the observation of
differences in the application’s responses. The attack is often
used when the web application is vulnerable to SQL injection.
Still, it only displays generic error messages, and it is not
possible to confirm the vulnerability by simply observing
the response content. Blind vulnerabilities can be used to
access unauthorized data through challenging exploitation
techniques.

2.3 Path traversal

Path Traversal (PT) is a web application vulnerability that
allows attackers to access files and directories outside the
web application’s root directory. The attack is performed by
injecting payloads that allow access to files through directory
traversal sequences using special characters (e.g., “../”) or by
injecting absolute file paths. By exploiting this vulnerability,
itis possible to access arbitrary files and directories in the file
system of the server, including application source code and
critical system configuration files. This attack is also known
as “point-blank”, “directory traversal”, “directory climbing”,
and “backtracking” [4].

2.4 Cross-site scripting

A Cross-site scripting (XSS) vulnerability may occur when
a web application does not validate a client-side code in the
input sent through an attribute of an HTTP request. When
the input is received and bounced back to the browser as
part of the response, the client-side code is executed. Typi-
cally, attackers exploit such a vulnerability to send malicious
URLSs containing malicious client-side code to a target user.
Since the target user could already be authenticated in the
vulnerable web application context, the injected malicious
code might potentially read their cookies, session token, or
other sensitive information. Cross-site scripting vulnerabil-
ities can indeed be either reflected or stored. As already
anticipated, with reflected cross-site scripting, the web appli-
cation bounces back the injected payload in the content of
the HTTP response. The vulnerability is usually found in
search pages, error messages, and whenever the web applica-
tion needs to send back information obtained in the received
request. With stored XSS, instead, the injected code is stored
in the web application itself. When the users visit a specific
page of the vulnerable application, the maliciously stored
content is retrieved, and the code is executed, thus poten-
tially impacting all the users of the application.

3 Prolog and first-order logic programming

Our rule-based sniper discovers vulnerabilities by leveraging
a vulnerability knowledge base written in Prolog. In this sec-
tion, we give a high-level overview of logic, with particular
reference to first-order programming logic. Logic program-
ming was invented in 1974 by Kowalski [5]. He proved that
first-order logic can be considered a useful and practical
programming language with theoretical foundations. This is
due to the Horn clauses studied by the logician Alfred Horn
(1951) [6]. Horn clauses are the basis of logic programming
as they help implement the so-called “linear resolution with
selection” function (SL-resolution) [7]. SL-resolution starts
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with a query and resolves subsequently with rules and facts
until a negation of the query is proved.

Prolog was designed as a programming language and
has been extensively used in several research areas, such as
molecular biology, design of VLSI (Very Large Scale Inte-
gration) systems, legislation, and options trading [8]. It can
be used in every domain that can be represented as facts and
rules. The language allows us to have a logical representation
of the context and to easily generate a program able to solve a
problem. Prolog differs from Logic Programming in several
aspects. It can be considered a specialization or refinement
of a program in Horn Clause Logic, where the selection rule
and the search strategy are fixed [9]. A quick introduction to
the Prolog syntax can be found in Matuszek’s course [10].

3.1 Logic programming and security

Logic programming finds extensive utility within the secu-
rity domain. Notably, in network security, logic programming
serves as a valuable tool for evaluating the security level
of communication protocols [11, 12]. Furthermore, Barker
and Steve (2000) [13] have adeptly employed logic pro-
gramming in the formulation of Role-Based Access Control
(RBAC) security models. Zech et al. (2013) [ 14] have demon-
strated the potential of logic programming in automating the
risk analysis process, thereby enhancing penetration testing
endeavors with critical risk insights. Moreover, within the
realm of software testing, logic programming emerges as a
prevalent approach for generating test cases, as evidenced by
numerous studies [15-17].

In another paper published in 2019 [18], Zech et al. expand
the realm of test-case generation into the domain of security.
The authors showcase the adeptness of a knowledge-based
system in uncovering vulnerabilities within web applications.
Their approach involves the introduction of a security prob-
lem concept, which serves to model the System Under Test
(SUT) using a Domain Specific Language. The concept of
a security risk profile is then introduced to identify the most
critical vulnerability to which the SUT is susceptible. To
achieve this, they devise an expert system encompassing both
the security risk model and a grammar-based test data gen-
erator. To substantiate their findings, the authors engineer
a state machine that can effectively identify SQL injec-
tion (SQLi) and Cross-Site Scripting (XSS) vulnerabilities.
Their innovative formulation of the SUT using Specifica-
tion and Description Language (SDL) proves intriguing,
displaying several points of intersection with our own work.
Their framework establishes a correlation between the most
salient vulnerability based on security risks and the attack
payloads directed at the system. Our approach follows a
similar strategy, albeit with notable distinctions. We employ
a knowledge-based system to facilitate the oracle module
within the fuzzing process. In contrast, the cited authors
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employ the knowledge base to map threats to the test-
data generation procedure. Additionally, our approach takes
a semi-automatic route to generate template-based HTTP
requests for use in the fuzzing process. This varies from their
approach of utilizing a web spider, which can be susceptible
to issues like forbidden errors for authenticated pages and
missing links generated dynamically before the HTML page
rendering phase.

4 Fuzzing: state of the art

Fuzzing, also known as fuzz testing, is an automated software
testing technique designed to uncover irregularities in a target
application by feeding it with invalid, unexpected, or random
input data. Throughout the execution of fuzzing, the target
application is closely monitored to unveil software errors
that might indicate the presence of a security vulnerability.
Although the notion of employing random data to trigger
anomalies may appear simplistic, it has yielded impressive
outcomes by identifying errors in various software applica-
tions.

Over the past two decades, fuzzing has demonstrated
its exceptional efficacy in unearthing vulnerabilities that
often go unnoticed by static software analysis and manual
code reviews. This technique has seamlessly integrated into
software development practices and is now considered an
indispensable component for assuring software security.

In the literature, fuzzing techniques are categorized into
three distinct types: opaque-box, grey-box, and clear-box.
The classification hinges on the extent of information avail-
able about the System Under Test (SUT) before the fuzzer’s
execution.

Opaque-box fuzzing techniques operate without access to
any internal information about the target system, such as its
source code or system documentation. These methods solely
rely on input and output data. Often referred to as data-driven
or input/output-driven testing, this approach keeps the intri-
cacies of the system hidden. The testing process revolves
around observing the outcomes of the system and pinpointing
deviations from specified behavior. Complex fuzzers employ
generative or mutational input strategies for this purpose [19].

Conversely, clear-box fuzzing techniques differ from
opaque-box methods. In a clear-box approach, the tester
can tap into supplementary information like source code
or design specifications, offering insights into the system’s
behavior. With this knowledge, it’s feasible to enhance the
coverage of the system during testing, thereby boosting its
overall effectiveness.

A grey-box fuzzer occupies a middle ground, adopting a
“lightweight” approach to gather insights about the System
Under Test (SUT). It gathers data through statistical anal-
ysis, sourced either from a static evaluation of the system
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or dynamic data extracted, for example, from a debug-
ger (McNally et al. [20]). This information might not be
exact, but it enables faster execution and exploration of input
possibilities. Grey-box techniques initiate mutational input
exploration with a seed input. When intriguing pathways are
activated, the mutated input is scrutinized, prompting fur-
ther mutations to explore the remaining input spectrum. The
objective is to enhance behavioral coverage and unearth vul-
nerabilities in the system based on information gleaned from
the fuzzer [21].

Our work aligns with the opaque-box fuzzing category.
It pertains to emulating the actions of a security expert who
manually sets up the fuzzing attack. This method becomes
essential when access to the source code is unavailable. Con-
sequently, adopting an opaque-box approach offers a viable
chance of detecting vulnerabilities without any prior famil-
iarity with the application under examination. This not only
enhances the efficiency of vulnerability detection but also
diminishes the time needed for a manual security assessment.

4.1 A generic fuzzing algorithm
Valentin J.M. Man et al. (2019) [22] introduced a versa-

tile fuzzing algorithm capable of accommodating the various
types of fuzzing methods described above.

Algorithm 1: Generic Algorithm of a fuzzer

Data: C, 7;,i:

Result: B // finite set of bugs
1B<«0¢
2 C <« preprocess(C)
3 while tj4pseq < tiimir A continue(C) do
4 conf <— schedule(C, tejapsed, tiimir)s
5 tcs < inputget(conf);

// Opyg is embedded in a fuzzer

6 B’, execinfos < inputeval (conf,tcs, Obug);
7 C <« confUpdate(C,conf,execinfos);
8 B« BUB
9 end
10 return B

The algorithm accepts a set of fuzz configurations C and
a timeout parameter f;;,,;; as input, producing a set of vul-
nerabilities B as output. It is structured into two phases:
a pre-processing phase, which is executed at the start of
a fuzzing campaign, and a subsequent fuzzing process.
Notably, some fuzzers may not implement all the functions
within the fuzzing process.

The pre-processing step involves working with a set of
configurations and results in a modified set of configurations
tailored to the requirements of the specific fuzzing algorithm
being used. During each iteration, the chosen configura-
tion file is updated using the schedule function, considering

both the time that has passed and the preconfigured time
limit. This stage tackles a challenge known as Exploration
vs Exploitation [23], which revolves around the allocation
of computational resources. It entails finding the right equi-
librium between exploring new configurations to maximize
fuzzer performance and refining the existing configuration to
approach the optimal solution.

Subsequently, the scheduling function endeavors to
enhance system coverage and optimize performance, poten-
tially altering the set of selected configurations. Following the
scheduling phase, the next step is to determine the test input.
The inputgen function defines, mutates, or generates a series
of test cases to be executed against the program. It assesses
whether these executions result in security policy violations.
Vulnerability detection is achieved by consulting an oracle.
Finally, the configuration parameters are adjusted based on
the discovered vulnerabilities, using the information acquired
during the current iteration through the conf U pdate func-
tion. The algorithm concludes once the specified number of
iterations is completed.

4.2 Related works and fuzzing problems

One of the challenges in fuzzing is selecting the configuration
that best optimizes performance. Fuzzer designers must ana-
lyze the available information and make a choice that leads to
an ideal outcome, such as discovering the maximum number
of vulnerabilities in the shortest possible time. This challenge
is often framed as the Exploration vs Exploitation problem,
where the decision revolves around whether to explore new
configurations or maximize the performance of a chosen
configuration. Woo et al. (2013) [24] referred to this chal-
lenge as Fuzz Configuration Scheduling. Berry and Fristedt
(1985) [25] delved into the problem of searching for the opti-
mal configuration. They allocated a finite set of resources to
various configurations and aimed to maximize the achievable
gain. They found that a configuration minimizing the con-
sumption of temporal resources tended to discover a greater
number of vulnerabilities. Householder et al. (2012) [26]
took advantage of information from a mutational black-
box fuzzing execution to define an ideal configuration that
maximized vulnerability discovery. They achieved this by
modifying the CERT Basic Fuzzing Framework (BFF) algo-
rithm, resulting in an 85% increase in crashes.

Discovering vulnerabilities in a web application requires a
fuzzer to effectively differentiate between expected (normal)
behavior and unexpected (buggy) behavior. However, distin-
guishing a bug from a feature can be challenging, leading to
what is known as the Oracle Test Problem [27]. An oracle test
is employed to determine whether a test is successful or not,
involving a comparison of the system’s outputs, given a spe-
cific input, with the expected outputs during the application’s
normal execution.
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Table 1 Inspirational
contributions from relevant
works focused on software
testing and their impact on the
design of our solution

Work

Contribution

Impact on authors’ work

Berry and Fristedt (1985) [25]

Householder et al. (2012) [26]

Woo et al. (2013) [24]

Barr et al. (2015) [27]

Search for the optimal
configuration to maximize
performance by reducing
resource consumption

Adopt a mutational black-box
fuzzing approach to
maximize vulnerability
discovery

Define the “Fuzz Configuration
Scheduling” task as a
challenge to maximize
fuzzer’s performance

Provide a detailed survey of the
oracle problem in software
testing

We explore payload set
optimization strategies and
propose several optimization
criteria

We maximize vulnerability
discovery through
optimization criteria based on
security expertise. Our fuzzer
can nonetheless be easily
adapted with other
algorithms, such as
mutational ones

We define an initialization
phase to configure relevant
settings, such as the proxy,
payloads, and observations.
The fuzzer can be adapted to
maximize its performance

We define the vulnerability
discovery phase as an oracle
problem, wherein we design a

specific module to interact
with a knowledge base. This
module detects vulnerabilities
by analyzing anomalies
stimulated during the fuzzing
phase

Although these prior studies were focused on defining
fuzzing solutions for the software testing domain, they sig-
nificantly influenced the design of our rule-based fuzzer.
We incorporate an initial configuration exploration strategy
and a detection approach that combines an Oracle test with
an expert system. The Oracle test is designed to identify
discrepancies between valid interactions with the applica-
tion and those of an attacker. These differences serve as
observations used to query a vulnerability knowledge base
containing a set of rules derived from existing security exper-
tise. This knowledge base is constructed by inferring an
application’s behavior in the context of injection-type vulner-
abilities. Table 1 summarizes the contributions of the related
works mentioned above, which have significantly influenced
the design of our solution.

Other works deepen the research of fuzzing solutions
to discover vulnerabilities in web applications. Duchene et
al. (2014) [28] used a black-box fuzzer to detect Cross-
Site Scripting (XSS) vulnerabilities with the assistance of
an Oracle test. Their approach utilized a genetic algorithm
to generate fuzz inputs and then compared the Document
Object Model (DOM) obtained after a cross-site scripting
injection with established behavioral patterns. They repre-
sented the DOM injection as a taint tree. Similarly, Appelt
etal. (2014) [29] adopted a comparable approach to identify
SQL injection vulnerabilities. They employed a mutational
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approach that intercepted communications between the web
application and the underlying database to uncover these vul-
nerabilities.

Khalid et al. (2018) [30] employed a predictive white-
box fuzzer approach to detect vulnerabilities. In their work,
the authors analyzed the input validation and sanitization
processes within an application to predict the presence of vul-
nerabilities. This predictive method combines insights from
both static and dynamic code analysis, enhancing the accu-
racy of vulnerability prediction.

Current research endeavors are focused on adapting artifi-
cial intelligence models to grey-box fuzzing for the detection
of cross-site scripting vulnerabilities [31, 32]. However, these
approaches are often tailored to specific programming lan-
guages and designed to identify a single type of vulnerability.
Additionally, the grey-box approach can be challenging to
implement, especially when the source code of the assessed
application is not available.

When selecting a web application scanner, it is critical to
thoroughly assess its features. Each scanner has its unique
characteristics and capabilities. Altulaihan et al. (2023) [33]
have delved into this area, offering recommendations for the
best scanners and proposing tool combinations to achieve
optimal performance. We have drawn inspiration from their
guidance in developing our fuzzer, which capitalizes on the
knowledge provided by security experts to enhance its capa-
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bilities. As stated in Sect. 8, there does not exist a formalized
and comprehensive test suite useful to obtain an objective per-
formance evaluation. Furthermore, the related works do not
publicly provide the source code, making a comparison chal-
lenging. However, it is helpful to summarize the strengths
and limitations of each approach compared to ours. Tables 2
and 3 show such a comparison. Related works typically
integrate white-box or grey-box approaches with innovative
algorithms or Al-based techniques to enhance the discov-
ery of specific classes of vulnerabilities. However, they often
struggle to cover various programming languages or vulner-
abilities comprehensively. In future endeavors, we aspire to
develop a formalized benchmark to replicate experiments and
facilitate a quantitative comparison with related works.

As evident from the tables, each work employs differ-
ent benchmarks and performance metrics. Hence, in Sect. 6,
we endeavor to compare our approach with a prominent
open-source scanner. Moving forward, we plan to address
this challenge by developing a comprehensive benchmark,
thereby enhancing the evaluation process. Section8 delves
into this issue, offering suggestions to refine the proposed
work.

In summary, our work employs a black-box, rule-based
methodology to detect input-handling vulnerabilities. We
have devised specific vulnerability rules targeting SQL injec-
tion, reflected XSS, and Path Traversal. The vulnerability
discovery process entails validating the integrity of data
retrieved from the application and subsequently consulting
the expert system to identify any breaches of security poli-
cies.

5 A rule-based fuzzer to discover input
handling vulnerabilities

The methodology described in Sect. 2 is designed to uncover
vulnerabilities in various areas, including authentication,
client-side functionality, and input handling. As demon-
strated in [35], fuzzing can effectively identify input handling
flaws in web applications. The process of discovering input-
handling vulnerabilities involves a series of sequential steps.
Initially, the tester identifies the entry points of the appli-
cation. Then, they inject malicious payloads to provoke
abnormal behaviors. Finally, they conduct further investiga-
tion to confirm the presence of a vulnerability. Fuzzing is a
valuable technique for generating anomalies that can reveal
the existence of flaws and vulnerabilities. However, selecting
appropriate input for fuzzing is a complex task, as the input
must be semantically correct to avoid rejection by the appli-
cation. In the context of web applications, input primarily
consists of HTTP requests. Nevertheless, a single web appli-
cation can expose multiple input pages, and each HTML page
may contain numerous parameters that can be subjected to

fuzzing. Security testers often manually instrument the input
by interacting with the tested web application and develop-
ing tools that replicate these interactions. In our platform, we
have two modules that address this challenge.

The Interceptor Module is responsible for capturing and
storing web interactions that occur during the initial inter-
action between the security tester and the target website.
This functionality enables the system to gain insights into
how to effectively engage with the target. Meanwhile, the
Repeater Module replaces the values of request parameters
with placeholders and generates a generic repeater file that
can be employed in the fuzzing phase. In the realm of web
application penetration testing, testers often lack comprehen-
sive knowledge of the inner workings of the target system.
Consequently, opaque-box fuzzing becomes the most suit-
able technique. Following the methodology for testing web
applications, testers devise malicious payloads aimed at
uncovering various types of vulnerabilities. For instance,
when seeking to identify an SQL Injection vulnerability,
testers create a list of payloads that have the potential to
trigger SQL errors. They then initiate the fuzzing process
using these payloads and examine the outcomes. If errors are
encountered, anomalies are scrutinized to validate the pres-
ence of a vulnerability. This final step can be systematically
modeled by employing a rule-based system that incorporates
the criteria established by security experts to confirm the exis-
tence of vulnerabilities.

As previously mentioned, our primary focus revolves
around three distinct types of injection vulnerabilities: Cross-
Site Scripting, SQL Injection, and Path Traversal. Neverthe-
less, it is important to note that our designed solution boasts
a high degree of customization and can be readily extended
to detect other categories of vulnerabilities. The vulnerabil-
ity discovery phase relies on expert knowledge that has been
formally represented in the form of a knowledge base. This
approach enhances the efficiency of detection. The knowl-
edge base contains information concerning the correlations
between anomalous responses from the target and potential
vulnerabilities, as discerned by experienced security testers.
Essentially, it operates on the same principles as an actual
security expert who launches attacks against a target and
assesses for vulnerabilities when anomalous behaviors stem-
ming from errors manifest.

In the following sections, we will delve into the algorithm,
the system architecture, and the interactions that transpire
throughout the vulnerability discovery process.

5.1 Initialization and fuzz-run phases

The Rule-Based fuzzer algorithm takes a set of configuration
files C as input:
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Table2 Benchmarks and performance metrics used in related works compared with our approach

Work

Used benchmark

Number of tests Perf.

Duchene et al. (2014) [28]

Appelt et al. (2014) [29]
Khalid et al. (2018) [30]

Liu et al. (2023) [31]

Song et al. (2023) [32]
Our approach

Three intentionally

32 (XSS) 100% TP 0% FN

vulnerable web
applications and four
known web applications

SugarCRM and HotelRS 33 ops, 108 params 15,4% exploited SQLi
Drupal, PhpMyAdmin, and 113 (SQL1i) Recall: 0,46 Precision: 0,53
Moodle
Karroum, WhiteRabbic, and 10,120 (XSS) Recall: 0,997
XSSed
WebGoat and Jeens—1.4.2 49 (XSS) 100% TP 0% FN
Wavsep 297 (SQLi, PT and XSS) See Tables 7 and 18

Table 3 Qualitative comparison with related works focused on web applications

Work

Strengths

Limitations

Duchene et al. (2014) [28]

Appelt et al. (2014) [29]

Khalid et al. (2018) [30]

Liu et al. (2023) [31]

Song et al. (2023) [32]

Our approach

Headless-browser to reduce false positives

Interesting evaluation approach that includes
WAF (Web Application Firewall) protection

Good vulnerability dataset for training the soft-
ware [34];

clear evaluation and comparison, achieved by

reproducing experiments conducted in other

existing studies

A complete dataset that also includes
real-world vulnerabilities; generic approach
based on JavaScript snippets, capable of
covering all types of server-side languages

Use of a headless-browser to reduce false
positives

Use of a headless-browser to reduce false pos-
itives;

covers multiple vulnerabilities;

covers multiple programming languages;

integration of security expertise optimizes

performance

Only cross-site scripting vulnerabilities
(though with suggestions for potential
extensions)

Only SQL injection vulnerabilities;
no performance metrics such as accuracy and
precision

Only SQL injection vulnerabilities;
only PHP-based web applications

Only cross-site scripting vulnerabilities based
on JavaScript

Only cross-site scripting vulnerabilities;
only Java-based web applications;

the evaluation can be improved by using a
larger dataset

The rule-based approach can be improved

through Al-based techniques (see Sect. 8);
the evaluation can be improved by designing
a novel web application vulnerability
benchmark

e Proxy configuration: a configuration file containing the

when we describe the functionality of the analyzer mod-

information needed to setup the MITM (Man In The Mid-
dle) proxy module, used to capture HTTP interactions
between the user and the target web application;
Payload configuration: a configuration file containing
information related to the attack strings used during
fuzzing to trigger errors in the target web application.
In our tests, we define SQLi, PT, and XSS payloads;
Observations configuration: a configuration file that
specifies the types of observations to be processed by the
vulnerability knowledge base. In subsequent sections, we
will provide a detailed explanation of these observations

@ Springer

ule in our platform;

e Relevant strings configuration: a configuration file con-
taining keywords that will be searched for inside the
content of an HTTP response. We will explain the role
of relevant strings further in the paper.

When the algorithm execution is completed, the system
outputs a set of vulnerabilities B.

The preprocess() function processes the information con-
tained in the configuration files to define the execution
environment. During this phase, the system is instrumented
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Algorithm 2: Rule-Based Fuzzer Algorithm

Data: Input: C; Output: B // finite set of bugs
1B« 0@
2 C <« preprocess(C)
3 conf < schedule(C);
4 while continue(C) do
5 tcs < inputgen(conf);
// Opyg is embedded in a fuzzer

6 execinfos < intruder(conf,tcs);

7 analyzeinfo < analyzer (conf,execinfos);
8 B’ < eval(analyzeinfo, Op,g);

9 B« BUB

10 end

11 return B

by configuring the proxy parameters, specifying the pay-
loads, and defining relevant strings. The schedule() function
defines the configuration to be used within the fuzz-run phase.
In our approach, the mentioned schedule function does not
make any optimal configuration choice in the configuration
space. It rather uses the same configuration as the one defined
in the preprocessing phase, essentially acting as an identity
function.

The intrusion and vulnerability detection phases follow
the configuration phase. The inputgen() function generates
test cases using the previously defined payloads. In the con-
text of web applications, these test cases are HTTP requests
with malicious payloads inserted at specific points within the
request. The intrusion phase occurs during the execution of
the intruder () function, which processes the test cases and
attacks the target application using a “Sniper attack”, as will
be explained in more detail later in the paper. As a result
of the intruder phase, an output file containing information
about the results of the fuzzing attack is generated.

The detection phase involves evaluating the results to
identify vulnerabilities using the analyzer() and eval()
functions. The analyzer function compares the observations
obtained from a valid HTTP interaction with those generated
during the fuzzing of the web application. An oracle module
then checks these observations based on its knowledge base.
The Oracle test is a critical component in this phase as it
verifies the existence of specific conditions that indicate the
presence of a vulnerability. The oracle checks for vulnerabil-
ities by querying a knowledge base containing a set of rules
and assertions that formalize anomalous observations. The
eval() function retrieves information from the Oracle tests
and determines whether a security policy is being violated.
A policy violation occurs when the system concludes that the
observed anomalies are indeed indicative of a vulnerability.

Figure 1 presents a high-level overview of the Rule-Based
Fuzzer. As shown, the system consists of several indepen-
dent modules. This modular design enables security testers
to execute each fuzzing phase individually. Additionally, we

employed the system to configure the files using the process
outlined in Algorithm 3. Another advantage of this modular
approach is the ability to repeat experiments consistently.

For instance, it is possible to modify configuration files,
optimize the payload set, enhance the knowledge base, and
perform the fuzzing step without having to redo the previous
ones.

5.2 Proxy

The Proxy module intercepts and records HTTP interactions
generated during the user’s navigation. This acquisition is
accomplished using a man-in-the-middle proxy positioned
between the client and the server. As illustrated in Fig. 2, we
have implemented this proxy using Mitmproxy [36], an inter-
active proxy that supports SSL/TLS for HTTP/1, HTTP/2,
and WebSocket. The module is configured as a transpar-
ent proxy (see Fig. 3), also known as an intercepting proxy,
inline proxy, or forced proxy. In this mode, it intercepts com-
munications at the network layer (layer 3 of the ISO/OSI
stack) without requiring any client-side configuration [37].
This approach allows us to intercept HTTP session requests
without modifying them. The creation of a custom module
that incorporates transparent proxy functionality was nec-
essary to select the injection points of interest in an HTTP
request. Listing 1 presents a simple HTTP POST request,
which serves as a typical example of input for one additional
component of our architecture, namely the Repeater module.

POST /search.php?test=query HTTP/1.1

Host: testphp.vulnweb.com

Connection: keep-alive

Content-Length: 31

Cache-Control: max-age=0

Upgrade-Insecure-Requests: 1

Origin: http://testphp.vulnweb.com

Content-Type: application/x-www-form-
urlencoded

User-Agent: Mozilla/5.0

(Windows NT 10.0; Winé4; ...

Referer: http://testphp.vulnweb.com/search.

php?

test=query

Accept-Encoding: gzip, deflate

Accept-Language: it-IT,it;g=0.9,

en-US;g=0.8,en;qg=0.7

searchFor=injection&goButton=go

Listing 1: Post Request Example
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mitmproxy certificate

http://127.0.0.1:8080
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hitp://127.0.0.1:8080 ADD

|
INTERCEPTOR

I .

Fig.2 High-Level Architecture - Mitmproxy Interceptor

Web page

5.3 Repeater

Because the system operates as an opaque-box fuzzer, it can-
not automatically deduce the schema of executed requests.
The repeater module enhances Mitmproxy’s capabilities by
inspecting the sent HTTP requests and substituting place-
holders for injection points. An injection point might repre-
sent any pertinent attribute of an HTTP request, such as a
parameter or a header value. The outcome of the interceptor
module is a collection of HTTP requests with placeholders.

Definition 1 (Placeholder HTTP request) Let:

e HR the set of HTTP requests intercepted by the MITM
proxy component;

e [P a set of injection points of ~ir € HR defined in the
Proxy configuration file;

e placeholder symbol a fixed-size string, like, e.g.,
Splaceholders.

A Placeholder HTTP Request is the output of a function
that replaces all of the injection points with the placeholder
symbol:

Setup Placeholder (hr, IP), hr € HR

As highlighted in Fig. 4, the Repeater module outputs a
set of data in the following form:

idFuzz: session fuzzing identifier;

Request: a valid HTTP request;

Response: a valid HTTP response;

Placeholder HTTP request: a valid HTTP request con-
taining placeholders at selected parameter places.

An example of how the HTTP request in Listing 1 might
look after having been processed by the Repeater is reported
in Listing 2.

The output of the repeater module will be used in the
fuzzing phase.

® || [Eom—
[ A 4
User TCP traffic Website

interception

|
=

Transparent
proxy

Fig.3 Transparent Proxy

"id_fuzz_1": {
"Request": {

"method": "POST",
"url": "http://sitevuln.org/search.php?
test=query",
"header": {"User-Agent": "Mozilla/5.0
(Win...,},
"payload": "searchFor=test&goButton=go"
},
"Response": {
"url": "http://sitevuln.org/search.php?

test=query",
"status_code": 200,
"header": {"Server": "nginx/1.19.0",...},
"time_elapsed": "0:00:00.031389",
"content_length": 4773,
"html": "<!DOCTYPE HTML PUBLIC
"-//W3C//DTD ..."
I
"PlaceholderRequest": {
"method": "POST",
"url": "http://sitevuln.org/search.php?
test=Squery$
"header": {"User-Agent": "Mozilla/5.0... 1},
"payload": "searchFor=S$test$&goButton=$gos$"
}

~

Listing 2: JSON data before the fuzzing phase

5.4 Intruder

The Intruder module, whose high-level architecture is
described in Fig. 5, performs a fuzzing against the target
application with several attack payloads that specialize the
placeholder HTTP requests generated by the Repeater mod-
ule. The fuzzing session produces a set of HTTP interactions,
together with additional information (see Listing 3):

idFuzz: session fuzzing identifier;

Request: the HTTP request used for fuzzing;
Response: the related HTTP response;

TypePayload: the type of payload used during the
fuzzing session, e.g., SQIli, XSS, and PT;
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e Payload the payload string used during the fuzzing ses-
sion.

The attack on the system is carried out using one or more
payload lists that trigger the aforementioned vulnerabilities.
Payloads were selected from several public lists, as well as
by deeply investigating the behavior of several web applica-
tion scanners. Collected payloads were fine-tuned during the
vulnerability knowledge base generation process defined in
Algoritm 3. We decided to retain:

e 59 PT payloads;
e 67 SQLi payloads;
e 15 XSS payloads.

In Sect.6, we show that the accuracy depends on both
the type and the number of payloads used during the fuzzing
process. In this work, we use an empirical approach to choose
the payloads by simply collecting those that generate the most
interesting analyzer observations. Payload set optimization
is discussed in more detail in Sect. 7. To fuzz the application,
the Sniper Attack is used.

@ Springer

"id_fuzz_1": {

"Results": [{
"Request": {
"method": "POST",
"url": ".../search.php?test= '’
UNION SELECT 1...",
"header": {"User-Agent": "Mozilla/5.0
(Wind, ..."},
"payload": "searchFor=aaaa\uOOa7goButton=go

I
"Response": {

"url": ".../search.php?test=

UNION

"status_code": 200,

"header": {"Server": "nginx/1.19.0..."},
"time_elapsed": "0:00:00.035058",
"content_length": 6720,

"html": "<!DOCTYPE HTML PUBLIC
\"-//W3C//DTD..."
Y,

"TypePayload": "sqgli",
"Payload": " ’ UNION SELECT 1, table_name,
"jfks’ ...},
{"Request": {"..."},
"Response": {"..."},
"TypePayload": "sgli",
"Payload": " 1 UNION SELECT 1..."}

}

Listing 3: JSON data obtained after the fuzzing phase

Definition 2 (Sniper Attack) Let phr a placeholder HTTP
request composed of n injection points i p, and FS a set of m
fuzzing strings defined in the payload configuration file.

For eachip, generate m requests by replacing the i p place-
holder with all m fuzzing strings in F'S while configuring the
other injection points with valid values. The sniper attack is
performed by sending to the target web application the n x m
HTTP requests obtained in such a way.

This type of attack is beneficial when you want to test
several request parameters individually for the same type of
vulnerability. It is also useful to evaluate efficiency, as it is
possible to compute the number of performed HTTP requests
by multiplying the number of placeholders by the number of
used payloads.

5.5 Analyzer

The high-level structure of the Analyzer module is
reported in Fig. 6. The aim of such a component is to
convert the collected fuzzing interactions into information
understandable by the Oracle knowledge base. The hearth
of the vulnerability discovery phase is indeed the observa-
tions’ analysis. To confirm a vulnerability, a security expert
typically observes the differences between a valid HTTP
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response and the collected fuzzing responses. We replicate
the same approach by comparing the performed HTTP inter-
actions. As said, the Repeater module extracts the result of a
valid HTTP interaction, whereas the Intruder module collects
the information generated by the fuzzing phase.

After collecting the HTTP responses, the Intruder parses
them to extract relevant information and check for the pres-
ence of potential vulnerabilities. We call such information
HTTP interaction features.

Definition 3 (HTTP interaction features) Let:

e HI the set of HTTP interactions obtained through a
fuzzing attack;

e i € HI a single HTTP interaction;

e p(i),i € HI a parser function of the intruder module.

Wedefine HTTP interaction features astheset
of values returned by p (7).

We identify the following useful HTTP interaction fea-
tures:

e Payload Type: the categorized payload, namely SQLi,
XSS, PT, or Normal (for valid HTTP interactions;

e Payload String: the payload string utilized during the
fuzzing attack;

e HTTP status code: the HTTP response code associated
with the sent HTTP request;

e Content-Length: length in bytes of the obtained HTTP
response;

e Time-elapsed: elapsed time in microseconds from the
time the HTTP request is sent to the time the associated
response arrives;

e Body response: the content of the HTTP response.

Payloads are categorized by the searched vulnerabil-
ity. Categorization is performed to decrease the number of
false positives. Such an approach mimics the methodology
adopted by security experts to exclude false positives during
their tests. After fuzzing the web application, obtaining the
responses, and analyzing a potential vulnerability, they verify
if the used payloads may trigger it. During the fuzzing attack,
we collect the payload types. The oracle will select a subset
of rules from the knowledge base depending on the used
payload. The Analyzer compares valid and fuzzing feature
interactions and generates what we define Analyzer Obser-
vations.

Definition 4 (Analyzer Observations) Let:

e HI the set of HTTP interactions obtained through a
fuzzing attack;

® ify;; € HI a single HTTP interaction of the fuzzing
attack;

® iy4iq avalid HTTP interaction;

foatia the HTTP interaction features of iyq7i4;

Jifu.. the HTTP interaction features of i fy;;.

Then, Analyzer Observations is a set of observations returned
by a function of fyaiiq and fi,..: analyze(fvaiid, fis,..)

The analyzer observations are the relevant observations
commonly investigated by a security expert to verify the pres-
ence of a vulnerability. They are generated by comparing the
HTTP interaction features of a valid HTTP interaction with
those captured during a fuzzing attack.

During a security testing activity, security experts look for
several strings within the response to confirm the presence
of a vulnerability. For example, when performing an SQLi
attack, they might be checking for the existence of string
sequences like the following one: *You have an error
in your SQL syntax”.

Another relevant analysis is about content length and
elapsed time anomalies, which typically unveil the presence
of blind-based vulnerabilities.

Based on the above considerations, the analyzer obser-
vations are essentially a formalized representation of the
security expert’s analysis:

e Relevant strings: tokens of interest extracted from the
body of f; Fuzs

e Payload string: the payload field of f;,,..;

o Payload Type: the payload type field of fi . ;
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e HTTP status code: the return code field of f; Fuzes

e Anomalous Content-Length: a boolean value config-
ured based on the difference between the content-length
field values associated, respectively, with fyqiq and
Jifuz.- If such a difference is above a predefined thresh-
old value, Anmalous Content-Length is set to true, false
otherwise;

e Anomalous response time delay a boolean value con-
figured based on the difference between the elapsed
time field values associated, respectively, with f,,;4 and
Jifuz.- If the difference is above a predefined threshold
value, Anomalous response time delay is set to true, false
otherwise.

5.6 Oracle

The vulnerability discovery phase is accomplished through
the Oracle module, which interacts with a vulnerability
knowledge base to verify if the detected anomalies can be
ascribed to the presence of vulnerabilities.

Hence, the vulnerability knowledge base leverages the
logic programming declarative semantics to define a rela-
tionship between analyzer observations and vulnerabilities.
The knowledge base is composed of terms,predicates,
and rules categorized by the vulnerability type. Figure 7
shows the Oracle architecture. The Oracle module receives
the analyzer observations and, based on the rules contained
in the knowledge base, determines whether vulnerabilities
exist in the tested web application. When considering the
payload type, a specific subset of rules is activated. This
means that the knowledge base rules are only triggered if they
pertain to a particular vulnerability, as verified by checking
the payload type used during the attack. To formalize these
considerations, we introduce the concept of the vulnerability
knowledge base.

Definition 5 (Vulnerability Knowledge Base)
Let:

e T the finite set of vulnerability types (SQL injection,
XSS, etc.);
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e 1 € T a vulnerability type; If t,q € T, then ¢t # q.

e [P =T the finite set of payload types;

e AQ aset of analyzer observations obtained from the exe-
cution of the analyze() function, with:

s the status code of AQ;

r_s the relevant strings of AQ);

pt € P the payload type of AQ;

— dcontent_lengrh the anomalous content-length value of
AQ;

— response_time the anomalous response time delay of

AO.

Then:

e analyzer observations can be modeled as Prolog argu-
ments. We call them vulnerability observations. We
define VO as the set of vulnerability observations;

® S, r_S, pt, Qcontent_length> Qresponse_time values can be
modeled as Prolog facts;

o VKB is a set of vr vulnerability rules;

e VKB, is a subset of VKB containing all the vr; vulner-
ability rules for a given vulnerability type ¢;

o VKB, forms a VKB partition2 ;

e A vulnerability rule vr is a conjunction of a subset of
vulnerability observations:

Vr = V01 A V02... \ VOy,

where 0 < m < card(AO); vo; € VO,

e The application is vulnerable to t when a vr;, € VKB; is
true;

e An application is vulnerable to v when at least one vul-
nerability rule is true. This property can be modeled as a
disjunction of vulnerability rules:

is_vulnerable = vr; V vra... V vry,

Oracle output (for which a sample excerpt is reported in List-
ing 4) is composed of the following fields:

e idFuzz: session’s fuzzing identifier;

e Request: the HTTP request used for fuzzing;

e Response: the HTTP response generated by the fuzzing
attack;

e TypePayload: the payload used during the fuzzing
attack;

e Payload: the specific payload string tested during the
fuzzing attack;

e Observation: an observation reported by the Analyzer;

2 https://en.wikipedia.org/wiki/Partition_of_a_set.
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e Oracle: the Oracle response in terms of vulnerability
rules fired as true.

"id_fuzz 1": {

"Results": [
{

"Request": {..."method": "POST",... },
"Response": {...,

"time_elapsed": "0:00:00.035058",
"content_length": 6720...},
"TypePayload": "sgli",

"Payload": " ’ UNION SELECT 1 ...",
"Observation": {

"StatusCode": 200,

"SearchKeyword": {
"File not found": O,
"No such file": 0,
"uid=": 0

T,

"TimeDelay": 0,
"ContentLength": 0
1,

"Oracle": [{

"rule": "ruleSQLI3 (

"value": {
"StatusCode": 200,

"ContentLength": 0,
"TimeDelay": O,
"SearchKeyword": {
"SQL": 1
}

"result": true}]

Y,

Listing 4: JSON data generated by the Oracle

As mentioned previously, we have developed a process
called the vulnerability knowledge base generation pro-
cess to construct the vulnerability knowledge base. This
involved analyzing abnormal behaviors observed during pen-
etration tests conducted in academic labs that focused on
input-handling vulnerabilities. In particular, we solved vari-
ous PortSwigger labs,? which are known for their emphasis
on input-handling vulnerabilities. Through this process, we
continuously refined our knowledge base. Additionally, dur-
ing our training sessions, we further enhanced the attack
payloads by fine-tuning them. Algorithm 3 shows the vul-
nerability knowledge base generation process.

We used the Sniper Attack with a predefined set of attack
payloads. Failure in solving the lab might occur for two rea-
sons:

3 https://portswigger.net/.

Algorithm 3: Vulnerability knowledge base generation
process

Input : Port Swigger labs (a set of payloads)
Output: The vulnerability knowledge base (an improved set of
payloads)
(1) foreach input_handling_lab in Port Swigger labs do
?) valid_resp <— HttpRequest (req);
@3) valid_obs < Analyzer (valid_resp) ;
“@) responses < SendSniperAttack (payloads) ;

5) observations < Analyzer (responses) ;

(6) if VulnNotTriggered (observations, valid_obs) then
7 rules < RulesTuning (observations, valid_obs) ;
) L payloads < PayloadTuning (payloads, rules);

9) knowledge_base < RuleMinimization (rules);
(10) payloads < PayloadMinimization (payloads);
(11) return (knowledge_base, payloads);

e the absence of a payload capable of triggering the vul-
nerability;

e the absence of relevant analyzer observations that reveal
the vulnerability.

Hence, after a lab failure, we repeated it by tuning both
payloads and analyzer observations. At the end of the pro-
cess, we performed a further optimization step to reduce the
number of payloads and knowledge base rules as much as
possible. We basically applied the well-known logic mini-
mization [38] process to obtain the minimal number of rules.

Also, the payloads were fine-tuned by selecting the mini-
mal set that triggers the vulnerabilities contained within the
chosen labs.

6 Evaluation

In this section, we will present the performance metrics
that we have defined to evaluate the effectiveness of our
rule-based fuzzer. These metrics are used to assess the per-
formance of our approach on a benchmark consisting of both
vulnerable and non-vulnerable test cases. We will discuss the
limitations and strengths of our approach and compare its per-
formance with a well-known injection vulnerability scanner
commonly used in the scientific community to detect vulner-
abilities in web applications.

6.1 Benchmark and performance metrics

Our rule-based fuzzer was tested on a benchmark containing
a set of test cases derived from the well-known WAVSEP
(Web Application Vulnerability Scanner Evaluation Project)
benchmark [39]. WAVSEP is a web application vulnerability
benchmark designed to help assess the performance of web
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vulnerability scanners. We selected several input-handling
test cases from the WAVSEP benchmark, namely:

e 125 test cases vulnerable to SQLi;
e 117 test cases vulnerable to PT;
e 55 test cases vulnerable to XSS.

To evaluate the fuzzer performance in the absence of vul-
nerabilities, we added additional test cases to the WAVSEP
benchmark. In particular, additional 103 non-vulnerable test
cases were added. To this purpose, we selected the latest
version (version 5.6 at the time of writing) of WordPress,
which is a widely used Content Management System for
building web applications. We designated certain test cases as
non-vulnerable because there were no known input-handling
vulnerabilities identified for the specific version of Word-
Press used in our testing sessions.

Fuzz results are classified into:

e True Positives — TP: vulnerable test cases that the rule-
based fuzzer properly detects;

e True Negatives — TN: non-vulnerable test cases that
the rule-based fuzzer rightfully ignores;

e False Positives — FP: non-vulnerable test cases that the
rule-based fuzzer erroneously classifies as vulnerable;

e False Negatives — FN: vulnerable test cases that
the rule-based fuzzer erroneously classifies as non-
vulnerable.

We define the following performance metrics:

_ TP+TN
* Accuracy = 7prN I FpIFN
e Precision = TPIFP

e Recall = %

Accuracy, precision, and recall can be defined as follows:

e Accuracy: is the proportion of the total number of vul-
nerable and non-vulnerable test cases to the total number
of test cases;

e Precision: is the proportion of vulnerable test cases cor-
rectly detected as vulnerable to the total number of test
cases detected as vulnerable;

e Recall: is the proportion of vulnerable test cases correctly
detected as vulnerable to the total number of vulnerable
test cases.

Accuracy is the most intuitive performance metric and
is simply a ratio of correctly detected test cases to the total
number of test cases. A good performance is not a direct con-
sequence of high accuracy. The metric becomes relevant with
a uniform set of false positive and false negative tests. High
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Table 4 Rule-based fuzzer performance for specific vulnerabilities

Vulnerability TP TN FP FN Acc. Prec. Rec. Tot.
SQLI 125 47 56 O 075 0.69 1 228
PT 117 69 34 0 085 077 1 220
XSS 54 48 55 1 065 049 0,98 158

Table5 Enhanced rule-based fuzzer performance metrics for XSS vul-
nerabilities

Vulnerability TP TN

FP FN Acc. Prec. Rec. Tot.

XSS 54 103 0 1 09 1 0,98 158

precision refers to a low false-positive rate. Finally, recall,
also referred to as true rate, defines how many vulnerable
test cases were labeled as vulnerable among all the vulner-
able cases. A high recall value implies a high vulnerability
detection capability.

In addition to the performance metrics mentioned earlier,
we have also defined a few additional support metrics to
provide a more comprehensive evaluation of the rule-based
fuzzer’s behavior. One such metric is efficiency, which mea-
sures the number of HTTP requests required to complete a
fuzzing campaign. This metric helps us assess how efficiently
the fuzzer performs in finding vulnerabilities. Another met-
ric we use is the Number of Fuzzing Payloads (NFP), which
indicates the level of optimization achieved by the fuzzer
during the fuzzing session. This metric allows us to evalu-
ate how effectively the fuzzer generates and uses different
fuzzing payloads to maximize code coverage and vulnera-
bility detection.

6.2 Rule-based fuzzer performance

The rule-based fuzzer was tested on the benchmark, and per-
formance metrics were collected. Table 4 shows the metrics
for each vulnerability type. It is possible to observe that the
fuzzer has high accuracy on SQLi and PT vulnerabilities.
The number of false positives is higher for XSS. The expla-
nation for this behavior is that the rule-based fuzzer checks
if an XSS string payload is reflected without analyzing the
so-called “reflection context” [40].

We address this problem by adding a vulnerability rule that
leverages a headless browser to check for the actual execution
of JavaScript code, hence improving the discovery of cross-
site scripting vulnerabilities, in the same way as indicated
in [41]. Results with the additional rule are shown in Table 5.
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6.3 Zed attack proxy comparison

OWASP Zed Attack Proxy (ZAP) [42] is a popular open-
source web application security scanner that is widely used
by professional penetration testers to identify vulnerabili-
ties in web applications. It is considered to be a reliable
alternative to commercial solutions, as it offers comparable
performance. This has been confirmed in Chen’s dynamic
application security testing solutions comparison [43], which
recognized ZAP as an effective tool in this domain.

Figure 8 shows a comparison between the Rule-Based
Fuzzer and Zed Attack Proxy performance metrics for each
vulnerability type.

The results show a similar accuracy for SQL injection
vulnerabilities and better accuracy of the rule-based fuzzer
for both XSS and PT vulnerabilities, although with lower
precision. Concerning recall, the rule-based fuzzer performs
better than ZAP in the case of SQL injection. Figures are
comparable for the XSS case. We perform worse than ZAP
when it comes to PT vulnerabilities. With reference to the
above results, we observe that precision and recall could both
be improved by tuning the vulnerability rules. The high level
of accuracy, on the other hand, proves the effectiveness of
the chosen payloads, as it would not be possible to trigger
the vulnerabilities without proper payloads. With the current
settings, the rule-based fuzzer outperforms ZAP in the case
of cross-site scripting vulnerabilities. Tables 6 and 7 show
the results in more detail.

6.4 Strengths and limitations of the rule-based
fuzzer

The performance of the rule-based fuzzer depends on the
number and type of payloads used during fuzzing. A high
number of payloads increases the vulnerability discovery
rate but reduces efficiency. Table 8 shows that performance

Table6 Comparison between rule-based fuzzer and ZAP: detailed fig-
ures

Rule-based fuzzer ZAP Total
TP TN FN FP TP TN FN FP
SQLi 125 47 0 56 74 103 51 O 228
PT 117 69 0 34 63 103 54 O 220
XSS 54 103 1 0 46 103 9 0 158

Table 7 Accuracy, precision and recall of rule-based fuzzer and ZAP

Rule-based fuzzer ZAP

SQLi PT XSS SQLi PT XSS
Accuracy 0.75 0.85 0.99 0.77 0.75 0.94
Precision 0.69 0.77 1 1 1 1
Recall 1 1 0.98 0.59 0.53 0.83

Table 8 Rule-Based Fuzzer performance improvements for a greater
number of payloads

NFP TP TN FP FN  Accuracy Precision Recall
32 212 49 54 85 0.62 0.79 0.71
64 245 49 54 52 073 0.81 0.82
77 269 49 54 28 0.79 0.83 0.90
143 296 44 59 1 0.85 0.83 0.99

Accuracy - Request
Trend

ACCURACY
#REQUEST

#PAYLOAD

—ACCUTEY s REUEST

Fig.9 Accuracy-Request Trend

depends on the number of used payloads (NFP parameter in
the table).

The table shows that performance metrics improve as the
number of payloads increases. A vulnerability is discovered
when a payload alters the normal process of the target appli-
cation by revealing a security flaw. Hence, the fuzzer has a
better chance of triggering abnormal application behaviors
if more payloads are used. However, more payloads lead to
a decrease in efficiency.

Figure 9 and Table 9 show the relative trend between the
number of payloads, the accuracy of the scanner, and the
number of requests. For example, accuracy slightly increases
if the number of payloads is equal to 143, but the number of
executed requests doubles compared to when we leverage just
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Table 9 Accuracy and number of requests versus the number of Pay-
loads

Payload Accuracy No. requests
32 0.65 24,128

64 0.73 48,256

77 0.79 58,058

143 0.85 106,642

77 payloads. The increase in accuracy is 6% in such a case.
The extensibility of the rule-based fuzzer allows changing the
number of payloads by simply adding attack strings in the
configuration file of the Analyzer module. The identification
of the most suitable trade-off between the number of payloads
and the scanner’s accuracy does indeed represent an integral
part of the rule-based fuzzer’s instrumentation process.

Generally, it is important to underline a few intrin-
sic limitations of a rule-based approach. The vulnerability
knowledge base has been implemented through the process
described in Sect. 5. Itis clearly possible to extend the process
to other training scenarios and increase the system’s perfor-
mance by adding new rules and assertions. The approach
depends on the effectiveness of the knowledge base and
requires a continuous update. As new attacks are devised on a
daily basis, keeping the pace of required updates to the knowl-
edge base can become very challenging. Another problem
associated with the quality of the information contained in
the knowledge base concerns the selection of “good-enough”
fuzzing strings for the triggering of the entire set of target vul-
nerabilities. With reference to the points raised above, in the
conclusions section, we will propose some ideas to overcome
the “static nature” of the rule-based approach.

7 Optimization strategies

The previous section analyzes the performance of the rule-
based fuzzer and highlights the limitations of this approach.
In this section, we will first discuss a couple of general per-
formance enhancement criteria. Then, our focus will shift to
the specific topic of payload optimization. Finally, we will
introduce a few additional performance metrics.

7.1 Performance enhancements

As observed in Sect. 6.4, the performance metrics improve
when a larger number of payloads are used. This behavior
can be attributed to the use of more “feature classes” when
a greater number of payloads are employed. We explain the
concept of “feature class” in Sect.7.2. However, increasing
the number of payloads does not necessarily increase the
precision metric, as it is influenced by the number of false
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positives. To mitigate the occurrence of false positives and
reduce incorrect results, it is possible to implement simple
criteria that effectively decrease their number.

Performance Enhancement Criterion 1:
Compare the observations obtained by sending a valid pay-
load with those obtained with the fuzzed payload.

This criterion aims to reduce the number of false posi-
tives by analyzing the response content, particularly for rules
involving the analysis of strings. For example, consider a
Path Traversal (PT) rule that aims to detect the presence of
the “root” string in the response content, which would indi-
cate that the web server may have executed the “/etc/passwd”
operating system command. However, it is important to note
that the “root” string may also appear in the response content,
especially within code comments, as illustrated in Listing 5.

If the knowledge base rules check for the presence of cer-
tain words in the observed valid response, it can help reduce
the number of false positives. However, it would be more
effective if the observations did not contain the words used
to trigger a vulnerability in the first place. Continuing with the
previous example, the “passwd” file often contains the word
“sbin” in its content. This word is very specific and less likely
to be found in source code comments or other non-relevant
areas. This forms the basis for the second criterion.

Performance Enhancement Criterion 2:

When selecting a string presence in the content of an HTTP
response to trigger a rule and there’s a choice between two
different words, opt for the more discriminant word, i.e., the
one that minimizes the chances of being found in the content
of a valid request.

In Sect.5.5, we emphasize the importance of consider-
ing the payload type to trigger the appropriate rules. This
approach can also be extended to analyze the type of payloads
being used and prevent the activation of irrelevant rules. For
instance, when employing SQL payloads to detect SQL injec-
tion vulnerabilities, it is beneficial to distinguish between
error-based and time-based payloads.

The rules within the oracle can evaluate conditions
depending on the specific subcategory. For instance, the
“anomalous time” check would not be triggered unless a
“time-based” SQL payload is used.

Performance Enhancement Criterion 3:
Whenever possible, employ more fine-grained payload types
and minimize the number of activated rules.

By implementing these straightforward rules, it becomes
possible to enhance the performance of the rule-based fuzzer.
In the benchmark detailed in Sect.6, we can observe the
improved statistics in Table 10, clearly illustrating the desired
performance enhancement.
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<p>

<i>
<code>install-noconsolehelper.sh</code>

</i>.

</p>

Both scripts perform sanity checks to ensure OProfile is installed and that
<code>opxml</code>, a C++ program required to interface with OProfile, exists and can be run.
The difference is in how root authentication with the plug-in is set up.
<i><code>install.sh</code></1i> uses the pluggable authentication modules (PAM) mechanism.
This is the default and recommended method for root authentication. When an OProfile task is
required, you will be presented with this dialog to enter the root password:

<a href="Troubleshooting.html#Troubleshooting">Troubleshooting</a> section.

Listing 5: Source code with no path traversal vulnerability and root string in the content. Ref.: https://searchcode.com/

codesearch/raw/687277589/

Table 10 Increased rule-based fuzzer performance with optimization
criteria

Vulnerability Acc. Prec. Rec.
SQLI 0.98 0.96 1
PT 0.99 0.97 1
XSS 0.99 1 0.98

7.2 Payloads optimizations

As outlined in Sect. 6.4, augmenting the number of pay-
loads correlates with improved performance metrics. This
relationship stems from the payloads’ capacity to elicit the
observations necessary for identifying vulnerabilities. Nev-
ertheless, it is feasible to establish optimization techniques
aimed at reducing the number of payloads while maintain-
ing the same level of vulnerability detection performance. In
this section, we expound on these strategies, which can be
categorized into two groups:

1. Payload Feature Optimization: these optimizations focus
on enhancing the effectiveness of individual payloads by
refining their features.

2. Optimization through Web Application Enumeration:
these optimizations revolve around the process of enu-
merating a web application to pinpoint vulnerabilities
more efficiently.

7.2.1 Payload feature optimization

In a broader context, this category of optimization strategies
can be subdivided into the following more specific subcate-
gories:

e Semantic Payload Generation: instead of generating a
large number of random payloads, focus on generating
payloads with specific semantic features that are more
likely to trigger vulnerabilities. For instance, for SQL
injection testing, you can create payloads that contain
common SQL keywords or syntax patterns known to be
effective in revealing vulnerabilities;

e Dynamic Payload Generation: develop a dynamic pay-
load generation mechanism that adapts payloads based
on the application’s responses. Start with simple pay-
loads and gradually increase complexity as you gather
more information about the application’s behavior. This
can help reduce the number of payloads needed while
maintaining effective testing;

e Payload Mutation Strategies: implement strategies for
mutating existing payloads intelligently. Rather than cre-
ating entirely new payloads, modify existing ones by
changing specific parts of the payload. This can lead to a
more efficient use of payloads.

The best payload set aims to minimize the number of
payloads having different features. Through the proven expe-
rience of web application penetration testers, we try to
define several features for each vulnerability. However, this
approach is generic and can be further extended to any type
of feature classification and improved by adding further fea-
tures.

The general observation is that each payload “stimulates”
the web application in various ways, and each payload pos-
sesses specific characteristics that can be shared with other
payloads. For instance, an SQL injection can be executed
using a ‘sleep’ instruction, a single quote character, or a dou-
ble quote character. Moreover, the payload might contain the
valid payload string or replace it. Each condition can be con-
sidered a feature or characteristic of a payload, and these
features can have categorical values. As a result, it is reason-
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able to expect that two payloads with identical characteristics
will trigger the same anomalous observations. We can, hence,
define features for payloads that allow us to categorize them
into similar classes. A ‘feature class’ consists of payloads
that share the same set of features.

Payload Optimization Criterion 1:

For each feature class, extract a single payload. The opti-
mal payload set should include one payload from each feature
class. The goal of the best payload set is to minimize the num-
ber of payloads with different features.

We draw from the extensive experience of web application
penetration testers to define numerous features for each vul-
nerability.

However, this approach is versatile and can be expanded to
encompass any feature classification while also benefiting
from the addition of further features.

XSS features For cross-site scripting vulnerabilities, it
is possible to identify several features. To trigger the vul-
nerability, the injected payload must be reflected within an
executable JavaScript code without causing errors. The valid
payload is contingent upon the reflection context, which is
the location where the input is reflected. The payload that
‘triggers’ the vulnerability is also influenced by the input
sanitization methods employed by the web application to
mitigate web attacks. In fact, for each defensive mechanism,
it is possible to modify the payload to circumvent it [44].
Table 11 presents the list of analyzed features.

SQLi features

For SQL injection vulnerabilities, it is essential to catego-
rize the input type. For instance, error-based or blind-based
SQL injection attacks aim to generate an SQL syntax error,
which would either display an SQL error message or return
an error status code. In contrast, a time-based SQL injection
attack attempts to execute an SQL ‘sleep’ command, creating
a time delay in the web application that can be analyzed. The
oracle can be fine-tuned by distinguishing between payload
types (SQL or time-based SQL). Specifically, if the payload
used is not time-based, a response delay will not be evaluated
as an SQL injection condition.

Another critical feature to consider is the type of quota-
tion mark used in the backend SQL queries. When a web
application is vulnerable to SQL injection, the injected pay-
load is inserted into an SQL query that retrieves data from
the database. Typically, the input is injected into a “WHERE’
clause and can be enclosed in quotation marks, such as single
or double quotes. As previously mentioned, an error-based
SQL injection vulnerability can be exposed by causing an
SQL syntax error in the web application. Therefore, if the

@ Springer

injected payload is enclosed in double quotes, a payload that
triggers an SQL syntax error must contain a double quote®.

As this information is not usually deducible through
information gathering,> a comprehensive payload set should
encompass all possible quotation marks. Additionally, an
important feature to consider is the underlying Database
Management System (DBMS) in use. Each DBMS employs a
specific SQL dialect with different instructions. For instance,
PostgreSQL uses the pg_sleep () instruction to induce
sleep, while MySQL uses SELECT SLEEP (). For each
dialect, it is possible to define multiple payloads. If N repre-
sents the number of dialects under examination, the number
of payloads required to cover all possible databasesis M x N.
Payload reduction can be achieved by employing enumera-
tion techniques as described in Sect.7.2.2.

As with XSS vulnerabilities, the analysis of the sanitiza-
tion techniques employed by the web application is crucial
for SQL injection vulnerabilities [45]. Table 12 provides a
summary of valuable features for SQL injection vulnerabil-
ities.

PT features

To trigger a path traversal vulnerability, the injected pay-
load must point to a readable and existing file. This type of
vulnerability occurs due to flaws in a web application that
allow arbitrary file reading. The specific file that constitutes
a valid payload depends on the underlying operating sys-
tem and web server interpreter. For instance, a valid file for
PHP might be 1ogin.php, whereas for a Windows system,
it could be c: \Windows\System32\Drivers\etc
\hosts. In the context of path traversal vulnerabilities, the
presence or absence of sanitization techniques that block
special characters such as dots, backslashes, and slashes are
noteworthy features. These features can significantly influ-
ence the variety of payloads needed to comprehensively test
for this vulnerability [46]. Table 13 provides an overview of
the analyzed features.

7.2.2 Optimization through web application enumeration

Payload reduction through Web Application Enumeration
can happen in different ways:

4 For example, if the <username> payload is used to create the
following SQL query: SELECT * from USER WHERE name =
"<username>", sending test" as the payload would generate an
SQL query with three double quotes, causing a syntax error that can be
analyzed to discover the vulnerability.

3> The quotation mark can be ascertained by inspecting the backend
source code. This information may be obtained through a vulnerabil-
ity that exposes the source code or by employing a grey-box fuzzing
approach. In such cases, the payload set can be streamlined by exclu-
sively utilizing the correct quotation mark.
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Table 11 XSS features

Feature

Descr.

Possible values

Reflection context
Filtering
Escaping
Encoding

Where the string is reflected

Which strings are filtered

Which strings are escaped

Which strings are encoded

In body, in JS code, in attribute, in comment, in event
Quote, double quote, script, img, tag bracket, backtick
Quote, double quote, script, img, tag bracket, backtick
Quote, double quote, script, img, tag bracket, backtick

Table 12 SQLi features

Feature Descr. Possible values
DMBS The used DBMS MySQL, PostgreSQL, MSSQL
Payload type The used payload Time-based SQL, SQL
Filtering Which strings are filtered Quote, double quote, SELECT, space
Escaping Which strings are escaped Quote, double quote, SELECT, space
Encoding Which strings are encoded Quote, double quote, SELECT, space
Table 13 PT features
Feature Descr. Possible values
(ON) The underlying operating system Linux, Windows
The file type Which file type is used OS file, PHP file, Application Server file, etc
Filtering Which strings are filtered Dot, backslash, slash
Escaping Which strings are escaped Dot, backslash, slash
Encoding Which strings are encoded Dot, backslash, slash

e Application Profiling: before conducting the fuzzing pro-
cess, profile the target application thoroughly to identify
its attack surface, input vectors, and potential vulnerabili-
ties. This information can guide the selection of payloads,
reducing the need for a large number of generic payloads;

e Input Enumeration: enumerate and catalog all possible
input points in the web application, including input fields,
URLSs, and headers. Prioritize testing these inputs over
less critical ones;

e Response Analysis: analyze the application’s responses
to initial requests to gain insights into its behavior. Iden-
tify patterns or anomalies that can help you craft more
targeted payloads.

By incorporating these strategies into the fuzzing process,
one can significantly reduce the number of payloads required
while maintaining a high level of effectiveness in detecting
vulnerabilities. This optimization can lead to more efficient
and focused testing, especially in situations where generating
a massive number of payloads is resource-intensive or time-
consuming.

The effectiveness of payloads is also contingent upon
the specific web application environment. For example, a
path traversal payload designed for a Windows-based sys-
tem would be ineffective against a Linux-based one. This

underscores the importance of tailoring payloads to suit the
target environment. It is worth noting that web application
scanners are generally not optimized for environment anal-
ysis and payload selection. Instead, they typically employ
a predefined set of payloads intended to trigger known vul-
nerabilities. Recent works [47, 48] have demonstrated the
feasibility of formalizing penetration testing activities in
terms of hacking goals. We have introduced an algorithm
and a generic framework for integrating various actions and
attacks, enabling the discovery of web vulnerabilities through
an offensive approach. An effective method for improving
web application security is to include enumeration actions
before the fuzzing phase, utilizing the methodology we have
proposed.

Through this approach, it is possible to infer the web appli-
cation environment and consequently reduce the number of
payloads. Once the enumeration phase is completed, attacks
can be launched against the web application.

XSS footprinting

For cross-site scripting vulnerabilities, it is crucial to ver-
ify two conditions:

1. the sent payload is reflected.
2. the “reflection context” is an executable one.
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Table 14 Number of payloads for XSS detection

Table 16 Number of payloads for PT detection

Scanner NP Scanner NP
ZAP 52 ZAP 18

Non optimized rule-based fuzzer 15 Non optimized rule-based fuzzer 59

Rule-based fuzzer with minimized payloads 13 Rule-based fuzzer with minimized payloads 5

Table 15 Number of payloads for SQL injection detection

Scanner NP
ZAP 157
Non optimized rule-based fuzzer 67
Rule-based fuzzer with minimized payloads 29

In [40], we introduced the concept of the reflection con-
text and demonstrated its utility in optimizing the number
of requests. A similar approach can be applied in this work
to identify cross-site scripting vulnerabilities. By analyzing
where the input is reflected when a request is sent, it becomes
possible to reduce the number of payloads to just a single one.
However, several requests may need to be sent to properly
understand the reflection context.

SQL and PT footprinting

If the used DBMS is discovered, it is possible to divide the
number of payloads by excluding those that target other SQL
dialects. Information Conflict of interest vulnerabilities can
reveal the used DBMS and facilitate this optimization. For
example, the presence of a PHPinfo file can disclose essen-
tial information like the underlying DBMS and the operating
system in use. Therefore, by detecting the used DBMS, it is
possible to exclude unnecessary payloads.

In the case of path traversal vulnerabilities, it is crucial
to identify underlying systems, such as the operating system
or the webserver running the web application. This knowl-
edge allows for the exclusion of payloads designed to exploit
vulnerabilities in different systems. For instance, if the under-
lying operating system is Linux, a payload attempting to
exploit a path traversal vulnerability by reading the content of

C:\Windows\System32\drivers\etc\hostsisinef-

fective. Therefore, discovering the underlying system per-
mits payload optimization without compromising perfor-
mance metrics.

7.2.3 Payload optimization: summary results

Tables 14, 15, and 16 display the quantity of payloads
employed by ZAP, as well as by our rule-based fuzzer, both
with and without the payload number reduction strategies
detailed in Sect.7.2.2.

As can be observed, the optimization strategies resulted
in a 13% reduction in the number of payloads used for
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Table 17 Comparison table: language support and vulnerability cover-
age

Work Language XSS SQLi PT
Our work Any v v v
[50] JAVA v v v
[51] Any v v v
[52] PHP v

[53] PHP v v v
[54] Any v

[55] Any v

[56] PHP v

[57] Any v v v
[58] PHP v v v
[59] PHP v v v
[60] PHP v

[61] PHP v v v
[62] PHP v

[63] Java v

[64] Java v

[65] Any v v

[66] Java v

[67] Any v

[68] Any v

[69] Any v

[70] Java v

[71] Java

[72] Any v v

[73] PHP v

[74] Any v v

[75] Java v

[76] Java v v
[77] Java v

[78] Java v v

[79] Any v v

[80] PHP v v

[81] PHP v

[18] PHP v v

[82] Any v v

[83] PHP v

[84] PHP v v

[85] Any v

[86] Any v
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Fig. 10 Scanners and vulnerability coverage

XSS detection, a 56% reduction in the number of payloads
used for SQL injection detection, and a remarkable 91%
reduction for path traversal detection. This indicates that
the non-optimized rule-based fuzzer’s input payload set con-
tained numerous inputs with similar features, as discussed in
Sect.7.2.

7.3 Additional performance metrics

In order to evaluate the effectiveness of the optimization
strategies and enhance the assessment of scanners, it is pos-
sible to include additional performance metrics. As noted
earlier, improving a scanner’s performance involves reducing
the number of payloads while maintaining or even enhanc-
ing its effectiveness. Two additional vital metrics are the
scanner’s vulnerability coverage and its compatibility with
various source code languages. Notably, many scanners in
the literature are specialized for a single vulnerability type
or can only be applied to web applications developed in spe-
cific programming languages [49].

In summary, two new performance metrics can be defined:

e Vulnerability Coverage (VC): VC measures the number
of vulnerabilities that a scanner is capable of identifying;

e Language Support (LS): LS assesses the range of pro-
gramming languages supported by the scanner.

We conducted an analysis of vulnerability coverage and
language support based on 38 studies included in Zhang et
al.’s 2021 survey [49]. The results are presented in Table 17.

Figure 10 illustrates that 57,9% of the scanners mentioned
in the survey’s references primarily focus on a single vulner-
ability, while only 18,4% of them cover all three different
types of vulnerabilities. Among these, only two also happen
to be language-independent (see Fig. 11).

Unfortunately, many works do not make their source code
publicly available, making it challenging to replicate exper-
iments or build upon the authors’ approaches. In contrast,
we have made our source code publicly accessible to facil-
itate improvement and extension of our approach Table 18

W One vulnerability M Two vulnerabilities Three vulnerabilities

o

'S

%)

PHP Java Any

Fig. 11 Vulnerability coverage per language

Table 18 Comparison after the application of optimization steps

Rule-based fuzzer Optimized rule-based

Acc. Prec. Recall NP Acc. Prec. Recall NP
SQLi 0.74 069 1 67 098 096 1 29
PT 085 077 1 59 099 0.07 1 5
XSS 099 1 0.98 15 099 1 0.98 17

By analyzing the reflection context, it is possible to define the payload
dynamically. Obviously, the footprinting step requires several requests

presents a summary of the key performance metrics, includ-
ing Accuracy, Precision, Recall, and Number of Payloads,
attained by our fuzzer before and after implementing the dis-
cussed optimizations.®

8 Conclusions

In this work, we have introduced a rule-based fuzzer designed
to detect web application injection vulnerabilities, with a
particular focus on cross-site scripting, SQL Injection, and
Path Traversal. It is worth noting that our proposed approach
can be adapted to identify various types of input-based vul-
nerabilities. We conducted a comprehensive performance
analysis comparing our system with Zed Attack Proxy
(ZAP), one of the most widely used web application secu-
rity scanners. Our results demonstrate that the rule-based
approach can yield comparable outcomes to those achieved
with ZAP. Additionally, we discussed how optimizing pay-
loads, observations, and rules can enhance the performance
of our rule-based fuzzer.

We have identified the number of used payloads as a cru-
cial performance metric and have shown thatit can be reduced
through specific optimization criteria. Nevertheless, there is
room for further payload reduction through the exploration
of alternative approaches.

6 https://github.com/NS-unina/Rule-Based-Fuzzer/tree/master.
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As part of our future work, we intend to concentrate on
devising a payload optimization strategy to maximize vulner-
ability coverage while minimizing the number of payloads
used. Drawing from past experience [40], we believe that
an approach rooted in Reinforcement Learning (RL) can be
instrumental in achieving this objective. With RL, we can
train an agent to detect all vulnerabilities within a predefined
environment while minimizing payload usage.

In recent years, Large Language Models (LLMs) have
made substantial contributions to natural language pro-
cessing (NLP) [87]. Several contemporary approaches are
investigating the security implications of generating source
code using such models [88, 89]. They aim to determine
whether these models can be leveraged to identify and rec-
tify security vulnerabilities in source code [90-92]. While
these approaches typically operate in a white-box context,
there is potential for our work to benefit from the adoption of
LLMs. As elaborated in Sect. 7, optimization criteria encom-
pass tasks such as application profiling, input enumeration,
and response analysis. These are areas where Natural Lan-
guage Processing techniques could be applied effectively. In
future research, we plan to explore this avenue to enhance
our work.

The results we have presented in this work are contingent
on the test suite we used. Although some research endeavors
have attempted to gauge the effectiveness of test suites for
evaluating web scanners, no formalized test suite that guar-
antees complete vulnerability coverage of a web scanner [49]
currently exists. In future endeavors, we intend to delve into
this issue, aiming to formalize performance metrics for web
application vulnerability test suites. This will involve delin-
eating the limitations of existing platforms and proposing
enhanced alternatives.

Our forthcoming efforts will also be directed toward
enhancing the Oracle module by introducing assertions and
vulnerability observations. In this context, an evolved rule-
based approach may harness a reinforcement learning model
to automatically generate rules. The modular architecture
of our platform facilitates the collection of requests from a
training environment, replication within a specific test envi-
ronment, and performance evaluation.

We are optimistic that our work will serve as a valuable
resource for security researchers seeking to explore novel
fuzzing approaches for identifying input-handling vulnera-
bilities.
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