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Abstract
A large amount of new malware is constantly being generated, which must not only be distinguished from benign samples,
but also classified into malware families. For this purpose, investigating how existing malware families are developed and
examining emerging families need to be explored. This paper focuses on the online processing of incoming malicious samples
to assign them to existing families or, in the case of samples from new families, to cluster them. We experimented with seven
prevalent malware families from the EMBER dataset, four in the training set and three additional new families in the test
set. The features were extracted by static analysis of portable executable files for the Windows operating system. Based on
the classification score of the multilayer perceptron, we determined which samples would be classified and which would be
clustered into new malware families. We classified 97.21% of streaming data with a balanced accuracy of 95.33%. Then, we
clustered the remaining data using a self-organizing map, achieving a purity from 47.61% for four clusters to 77.68% for ten
clusters. These results indicate that our approach has the potential to be applied to the classification and clustering of zero-day
malware into malware families.

Keywords Malware classification · Online clustering · Static analysis · Zero-day malware

1 Introduction

Malware is one of the most significant security threats today,
which includes several different categories ofmalicious code,
such as viruses, trojans, bots, worms, backdoors, spyware,
and ransomware. The number of new malicious software
is growing exponentially. Therefore, malware detection is
an important issue in cyber security, which is a key area
to combat these threats. Every day, approximately 560,000
new malware samples are detected, according to the AV-Test
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Institute [1]. Due to a large amount of newmalware, detailed
manual analysis of each one is impractical. Therefore, auto-
matic categorization of malware into groups corresponding
to malware families is necessary.

Antivirus companies frequently keep a knowledge base
of the behavior of malware families. Samples of the same
group share a lot of code and exhibit similar behaviors, mak-
ing them variants. Such samples are similar to each other in
terms of similaritymetrics that can also be learned to improve
classification accuracy [2].

Malware detection techniques are generally divided into
two categories: signature-based and anomaly-detection tech-
niques [3]. Signature-based detection uses a set of predefined
signatures, typically sequences of bytes in the malware code,
to determine whether or not a scanned software program is
malicious. The signature-based method compares the pro-
gram’s content with known signatures, and if a match is
found, the program is reported as malicious. The signature-
based approach’s main limitation is its inability to detect
newly developed (zero-day) malware, which are emerging
threats previously unknown to themalware detection system,
as well as evolving threats like metamorphic and polymor-
phic malware [4].
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Machine learning technologies are becoming more popu-
lar and are also being introduced into malware analysis and
malware detection. Today, malware can be identified using
one of three methods: static analysis, dynamic analysis, or
hybrid analysis. Static analysis is amethod of examiningmal-
ware without running it. This is typically accomplished by
analyzing the code of a binaryfile to comprehend its function-
ality and identify any malicious activity. Dynamic analysis
involves executing the malware sample in a safe setting, like
a sandbox, and watching its behavior in real-time. It is nec-
essary to continuously monitor the malware’s file system,
registry, and network activity to detect any malicious behav-
ior, such as data exfiltration or unauthorized connections to
remote servers. Dynamic and static analysis components are
combined in hybrid methods [5].

Malware classification is the process of categorizing mal-
ware samples into previously studied and known families.
On the other hand, malware clustering divides unlabeled data
into different clusters so that similar data fall into the same
cluster and dissimilar data fall into different clusters. Cluster-
ing algorithms have been used to detect zero-day malware,
i.e., previously unknown malware [6]. The groups formed
through classification or clustering methods are then dis-
tributed to malware analysts, which usually focus only on a
few malware families. This grouping can save malware ana-
lysts a significant amount of time since they may manually
analyze malware samples similar to those already analyzed.

Malicious and benign samples are represented using vec-
tors of features extracted using static or dynamic analysis [5].
While static analysis is faster than dynamic analysis since it
does not require running samples, dynamic analysis extracts
more relevant features, such as system calls or network data,
than those extracted from static analysis. Our work is based
on the EMBER dataset [7], which contains features extracted
from static analysis.

Zero-day malware is challenging to detect using tradi-
tional signature-based detection techniques since no signa-
ture for such malware was created and appended in the
database of known signatures [8]. The detection of zero-
day malware is also difficult for a detection system based
on machine learning, which is more robust and can better
adapt to new threats however is more prone to have a high
false positive rate than the signature-based detectionmethod.

We propose a newmalware family classification and clus-
tering system designed for the online processing of zero-day
malware. Sample by sample is processed in real-time and
assigned to existing or newly emerging malware families.
According to the classification score of the multilayer per-
ceptron, malware samples are classified into known malware
families or determined to be clustered using self-organizing
maps into new malware families. Using our approach, we
classified 97.21% of streaming data with a balanced accu-
racy of 95.33%. Then, we clustered the remaining data using

a self-organizing map, achieving a purity from 47.61% to
77.68% depending on the number of clusters. The innova-
tive content of our work is as follows:

• we proposed the architecture of the classification and
clustering system, which enables the handling of even
zero-day malware,

• we experimentally proved that our system is efficient
enough to classify or cluster significantly more than
560,000 samples, the averagenumber ofmalwaredetected
daily.

The rest of the paper is organized as follows: Sect. 2
reviews related works on malware family classification. In
Sect. 3, we present three state-of-the-art online clustering
algorithms used in the experimental part. Our proposed
malware classification model is presented in Sect. 4. Sec-
tion5 provides an experimental setup, while the experiments
description and the results are presented in Sect. 6. Conclu-
sion and future work are given in Sect. 7.

2 Related work

The background of malware family classification and clus-
tering that has been researched in the past is presented in this
section.

The authors of [9] present a non-signature-based virus
detection method based on Self-Organizing Maps (SOMs)
that can detect files with viruses without knowing virus sig-
natures. Their approach used structural information about the
data contained in the executable file. The researchers also
developed the program VirusDetector, which can determine
whether or not a file is virus-infected. They used the SOM
in an unusual way in that it was "trained" with n fractions
of the same sample rather than n different samples of data,
and it can reflect the presence of data in an executable that is
somehow different from the rest.

In [10], the authors proposed a method for automatic
analysis of malware behavior using clustering and classi-
fication. The authors monitored the malware binaries in a
Sandbox environment and generated a sequential report of
observed behavior for each binary. Rieck et al. used the
CWSandbox monitoring tool for extracting API call names
and parameters. The API call names and parameters were
encoded into a multi-level representation called the Malware
Instruction Set. The sequential messages were then put into
a high-dimensional vector space where behavioral similarity
could be assessed geometrically, allowing intuitive yet pow-
erful clustering and classification methods to be designed.
The embedded messages were then subjected to machine
learning techniques for clustering, which enables identifying
novel classes of malware with similar behavior and classifi-
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cation of behavior, which allows the assignment of malware
to known classes of behavior. Their incremental method for
behavior-based analysis is capable of processing the behavior
of thousands of malware binaries daily.

The authors of [11] developed a categorization system
for automatically grouping phishing sites or malware sam-
ples into families that share specific common characteristics.
Their system combined the individual clustering solutions
produced by different algorithms using a cluster ensemble.
Zhuang et al. used the k-medoids clustering method and the
hierarchical clustering algorithm as feature selection algo-
rithms to extract different attributes of phishing emails.

In [6], authors describe a framework for malware detec-
tion that combines the accuracy of supervised classification
methods for detecting known classes with the adaptability
of unsupervised learning for detecting new malware from
existing ones using a class-based profiling approach. The
authors used a two-level classifier to solve the problem of the
unbalanced distribution of classes due to a disproportionate
number of benign and malicious network flows. Initially, a
macro-level binary classifier isolates malicious streams from
non-malicious ones. The multiclass classification technique
was then also used to categorize malicious flows into one of
the already existing malware classes or as a new malware
class. The authors developed a class-based probabilistic pro-
filing method to detect malware classes other than those in
the training set. Comar et al. presented a tree-based feature
transformation to handle the data imperfection issues in net-
work flowdata to createmore informative non-linear features
to detect different malware classes precisely.

The authors of [12] presented a method for the auto-
matic classification of malware families using feed-forward
Artificial Neural Networks. They resized and converted the
malware binaries to grayscale images. Texture features are
extracted using a Gabor wavelet with eight orientations and
four scales. The authors used the Mahenhur Dataset, which
contains 3,131 malware samples from 24 unique families. A
total of 320 features were selected to train the malware using
the neural network tool. The authors reported a classification
accuracy of 96.35%.

The authors of [13] created a zero-day malware detection
system that used relevant features obtained from static and
dynamic malware analysis. The dataset used contains 3,130
portable executables (PE) files, including 1,720 malicious
and 1,410 benign files. Malicious samples were collected
from an online repository of Virus-Share, and the benign files
were collected manually from System directories of succes-
sive versions of the Windows Operating system. The authors
used an information gain method and ranker algorithm to
select seven features from the feature set, which were then
used to build a classification model using machine learning
algorithms from the WEKA library. The authors used seven
classifiers, IB1, Naive Bayes, J48, Random Forest, Bagging,

Decision Table, andMulti-Layer Perceptron, for distinguish-
ing malicious files from benign ones.

In [14], Radwan presented a method for classifying a
portable executable file as benign ormalicious usingmachine
learning. The proposed method for extracting the integrated
feature set, which used a static analysis method, was cre-
ated by combining a few selected raw features from the PE
files and a set of derived features. The author used a dataset
of 5,184 samples, 2,683 of which were malware and 2,501
benign. The dataset was divided into two categories: raw
sample dataset (53 features) and integrated dataset (74 fea-
tures), which included derived and expanded features. Seven
different machine learning classification models were used:
k-nearest neighbors, Gradient boosted trees, Decision Tree,
Random forest, File large margin, Logistic regression, and
Naive Bayes. The classification algorithms are evaluated
using the train test split method (70/30) and 10-fold cross-
validation for splitting raw and integrated datasets.

In [15], the authors proposed a static malware detection
technique using the classification method. Zhang et al. used
a dataset released by EMBER, where most PE file samples
are labeled malicious or benign. Then, using the detection
results of Virus Total and K7 Antivirus Gateway (K7GW),
the authors relabeled the malware data into several classes,
each representing a type of malware. The malware classifiers
are constructed using two linear and two ensemble decision
tree models. The authors used linear models such as Support
vector classifier and logistic regression, and the ensemble
decision tree models are random forest and an efficient gra-
dient boosting decision tree named Light gradient boosting
machine. The ensemble decision tree models outperformed
the other linear models, especially random forest.

The authors [16] proposed a new method for incremental
automatic malware family identification and malware clas-
sification called MalFamAware, which is based on an online
clustering algorithm. This method efficiently updates the
clusters as new samples are added without having to res-
can the entire dataset. BIRCH (Balanced Iterative Reducing
and Clustering using Hierarchies) was used by the authors
as an online clustering algorithm and was compared with
CURE (Clustering using Representatives), DBSCAN, k-
means, and other clustering algorithms. Depending on the
situation, MalFamAware classifies new incoming malware
into the corresponding existing family or creates a class for
a new family.

In [17], the authors used self-organizing maps to generate
clusters that capture similarities betweenmalware behaviors.
In their work, Pirscoveanu et al. used features chosen based
on API calls. These features represent successful and unsuc-
cessful calls (i.e., calls that have succeeded, resp. failed in
changing the state of the system on the infected machine)
and the return codes from failed calls. Then they apply prin-
cipal component analysis (PCA) to reduce the set of features.
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Using the elbow method and gap statistics, the authors then
determined the number of clusters. Each sample was then
projected onto a two-dimensional map using self-organizing
maps, where the number of clusters equaled the number of
mapnodes. The authors used the dataset to create a behavioral
profile of the malicious types, which was passed to a self-
organizing map to compare the proposed clustering result
with labels obtained from Antivirus companies via VirusTo-
tal.1

In [18], the authors classified malware using continuous
system activity data (such as CPU use, RAM/SWAP use, and
network I/O). They also used SOFM (Self Organizing Fea-
ture Maps) to process machine activity data to capture fuzzy
boundaries between machine activity and classes (malicious
or benign). First, the authors used SOFM as a stand-alone
malware classificationmethod that usesmachine activity data
as input. In their paper Burnap et al. state that they trained
two maps because it was difficult to separate clean files from
malicious ones on one map due to the competitive nature of
the SOFM. They used benign samples to train the "Good"
map, and malicious samples were used to train the "Bad"
map. The authors also mention that they created a voting
system that gathers accurate classifications during counter-
testing for each sequence provided in the maps. Testing with
unseen datawas accomplished by comparing theBestMatch-
ing Unit (BMU) output activity from each map for a given
input vector. The authors then used the BMU output from the
SOFM as a feature and combined the SOFM with an ensem-
ble classifier built on a Logistic regressionmodel. Finally, the
authors’ method demonstrated increased classification accu-
racy compared to classification algorithms such as Random
forest, Support vector machines, and Multilayer perceptron.

3 Theoretical background

Cluster analysis or clustering is an unsupervised machine
learning method of identifying and grouping a set of abstract
objects into classes of similar objects (called clusters). Intu-
itively, data from the same cluster should be more similar
to each other than data from different clusters. Sequential
clustering algorithms are considered simple and fast and are
among those that produce a single clustering as a result.
In the following algorithms described in this section, all
input data to be clustered are presented to the algorithms
only once. Specifically, the algorithms are Online k-means
(OKM), Basic Sequential Algorithmic Scheme (BSAS), and
Self-Organizing Map (SOM). All these algorithms belong
to the class of online clustering algorithms, and we applied
them to cluster the samples into malware families.

1 https://www.virustotal.com

3.1 Online k-means (OKM) algorithm

First, we introduce the online k-means (OKM) algorithm,
also known as sequential k-means or MacQueen’s k-means
[19]. The sequential k-means algorithm sequentially clusters
a new example and updates the centroid for that particular
cluster. One disadvantage of the online k-means algorithm
is that the number of clusters, k, must be determined in
advance. OKMalgorithm can be initialized in different ways,
for example, by selecting the first k data points or ran-
domly selecting k data points from the entire data set. The
pseudocode for the online k-means algorithm is given in
Algorithm 1 below [20].

Algorithm 1 Sequential k-means algorithm (OKM)
Input: a number of clusters k to be created, a set of data points X
Output: a set of k clusters
1: initialize cluster centroids μ1, . . . , μk randomly
2: set the counts n1, . . . , nk to zero
3: repeat
4: select a random point x from X and find the

nearest center μi to this point
5: if μi is closest to x then
6: increment ni
7: replace μi by μi + 1

ni
(x − μi )

8: end if
9: until interrupted

3.2 Basic sequential algorithmic scheme (BSAS)

The Basis Sequential Algorithmic Scheme (BSAS) [21] is a
well-known clustering method in which all feature vectors
are presented to the algorithm only once, and the number of
clusters is not known a priori. The clusters are gradually gen-
erated as the algorithm evolves. The basic idea of BSAS is to
assign each newly considered feature vector x to an existing
cluster or create a new cluster for that vector depending on
the distance to already created clusters.

The distance d(x,C) between a feature vector x and a
cluster C may be defined in several ways. We will consider
d(x,C) as the distance between x and the centroid ofC . The
BSAS has the following parameters: the dissimilarity thresh-
old �, i.e., the threshold used for creating new clusters, and
a number q, i.e., the maximum number of clusters allowed.
When the distance between a new vector and any other clus-
ters is beyond a dissimilarity threshold, and if the number of
the maximum clusters allowed has not been reached, a new
cluster containing the new presented vector is created. The
value of the threshold � directly affects the number of clus-
ters formed by BSAS. If the user chooses the too small value
of �, then unnecessary clusters will be created, while if the
user chooses the too large value of �, less than an appropri-

123

https://www.virustotal.com


Classification and online clustering of zero-day malware

ate number of clusters will be formed. The pseudocode for
the BSAS algorithm is given below in Algorithm 2.

Algorithm 2 Basic Sequential Algorithmic Scheme (BSAS)
Input: the dissimilarity threshold �, the maximum allowed number of

clusters q, and a set of data points X
Output: a set of clusters
1: initialize m = 1
2: select a random point x1 from X
3: define the first cluster Cm = {x1}
4: for each x in X \{x1} do
5: find Ck : d(x,Ck) = min1≤i≤md(x,Ci )

6: if d(x,Ck) > � and m < q then
7: m = m + 1
8: Cm = {x}
9: else
10: Ck = Ck ∪ {x}
11: update the centroid of Ck
12: end if
13: end for

3.3 Self-organizingmap (SOM)

A self-organizing map (SOM) was proposed by Finnish
researcher Teuvo Kohonen in 1982 and is, therefore, some-
times called a Kohonen map [22]. The SOM is an unsuper-
vised machine learning technique that transforms a complex
high-dimensional input space into a simpler low-dimensional
(typically two-dimensional grid) discrete output space while
simultaneously preserving similarity relations between the
presented data. Self-organizing maps apply competitive
learning rules where output neurons compete with each other
to be active neurons, resulting in only one of them being
activated at any one time. An output neuron that wins the
competition is called a winning neuron.

Before running the algorithm, several parameters need to
be set, including the size and shape of the map, as well as the
distance at which neurons are compared for similarity. After
selecting the parameters, a map with a predetermined size is
created. Individual neurons in the network can be combined
into layers.

SOM typically consists of two layers of neurons without
any hidden layers [23]. The input layer represents input vec-
tor data. A weight is a connection that connects an input
neuron to an output neuron, and each output neuron has
a weight vector associated with it. The formation of self-
organizing maps begins by initializing the synaptic weights
of the network. The weights are updated during the learning
process. The winner is the neuron whose weight vector is
most similar to the input vector.

The winning neuron of the competition or the best-
matching neuron c at iteration t (i.e., for the input data xt ) is
determined using the followingequation

c(t) = argmin {‖x(t) − wi (t)‖} , for i = 1, 2, . . . , n

wherewi (t) is the weight of i-th output neuron at time t , and
n is the number of output neurons. After the winning neuron
c has been selected, the weight vectors of the winner and
its neighboring units in the output space are updated. The
weight update function is defined as follows:

wi (t + 1) = wi (t) + α(t)hci (t) [x(t) − wi (t)] ,

where α(t) is the learning rate parameter, and hci (t) is the
neighborhood kernel function around the winner c at time t .
The learning rate is the speedwith which the weights change.
The connection between the input space and the output space
is created by the neighborhood function, which also deter-
mines the rate of change of the neighborhood around the
winner neuron. This function affects the training result of the
SOMprocedure.AGaussian function is a common choice for
a neighborhood function hci that determines how a neuron is
involved in the training process:

hci (t) = exp

(
− d2ci
2σ 2(t)

)
α(t).

where dci denotes the distance between the winning neu-
ron c and the excited neuron i ,σ 2(t) is a factor used to control
the width of the neighborhood kernel at time t . The learning
rate α(t) is a decreasing function toward zero.

SOM can be used in a variety of ways, including cluster-
ing tasks. The authors of [24] assumed that each SOM unit
is the center of a cluster, and as a result, the k-unit SOM
performed a k-means-like task. The authors also added that
when the radius of the neighborhood function in the SOM is
zero, the SOM and k-means algorithms strictly correspond
to one another.

The basic SOM algorithm can be summarized by the fol-
lowing pseudocode:

Algorithm 3 Self-organizing map (SOM)
Input: dimension and size of the output space, distance function, neigh-

borhood function, learning rate, and a set of data points X .
Output: a set of clusters
1: initialize the weights of each neuron
2: t = 1
3: select randomly an input vector from the set of training data X
4: for each input vector do
5: calculate the distances measure between

the input vector and all the weights
vectors.

6: find the best matching neuron c(t) at
iteration t .

7: update the weight vectors of the neurons.
8: t = t + 1 and update neighborhood size and

learning rate.
9: end for
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Table 1 The list of symbols and their descriptions

Symbol Description

S the streaming data {st , st+1, st+2, . . .} containing
unlabeled malicious samples captured from time t

T the dataset with labeled malicious samples captured
before the time t

k the number of classes, i.e., malware families, of the
samples from T

pi for the single-classifier method, it is the probability
estimation of the classifier that a given test sample
belongs to the i-th class

p′
i for the the multi-classifier method, it is the

probability estimation of the i-th classifier that a
given test sample belongs to the i-th class

τ for the single-classifier method, it is the threshold for
determining whether a sample will be classified or
clustered

τ ′ for the multi-classifier method, it is the threshold for
determining whether a sample will be classified or
clustered

4 The proposed approach

This section contains a description of the proposed system
for the classification and clustering of malware families. The
definition of the problem that our system attempts to solve is
as follows.

Let S = {st , st+1, st+2, . . .} be a streaming data con-
taining unlabeled malicious samples captured from time t .
Let us also have a dataset T with labeled malicious samples
captured before the time t where labels are divided into k dif-
ferent classes corresponding to k known malware families.
The goal is to process si , i ≥ t, as follows:

1. if si is from the known malware family, then assign it to
this family,

2. otherwise:

(a) if si is similar to some already clustered (unlabeled)
samples s j ∈ S, where t ≤ j ≤ i , then assign si to
the corresponding cluster

(b) otherwise, create a new cluster and assign si to it.

We use the notation summarized in Table 1 to describe
your approach. Our approach attempts to solve this problem
in two phases:

• First phase: deciding which stream data samples to clas-
sify and which to cluster,

• Second phase: classification and clustering of samples
based on the decision from the first phase.

Zero-day
malware Classifier

p1

p2

pk

Fig. 1 Classification probabilities prediction (p1, . . . , pk) from a mul-
ticlass classifier

Zero-day
malware

Classifier 1

Classifier k

Classifier 2

p′
1

p′
2

p′
k

Fig. 2 Classification probabilities prediction (p′
1, . . . , p

′
k) from the k

binary classifiers

In the first phase, the streaming data S is first preprocessed
using the standard score and the PCA algorithm. Then, the
classification probabilities for the classes (i.e., known mal-
ware families) are predicted using already trained one or
more classifiers. We considered two different methods for
computing the classification probabilities prediction. In the
first method, the classification probabilities prediction for a
given classifier is defined as a vector (p1, . . . , pk) of cali-
brated probabilities, where pi is the probability estimation
of the classifier that a given test sample belongs to the i-
th class. The classification probabilities prediction from the
second method is defined as a vector (p′

1, . . . , p
′
k) of prob-

abilities, where p′
i is the probability estimation of the i-th

classifier that a given test sample belongs to the i-th class.
The concrete calculation of classification probability predic-
tions depends on the given classifier and will be discussed in
Sect. 6.2.

Thus, the first method relies on one multiclass classifier,
as shown in Fig. 1, where this classifier was trained using the
labeled data from the dataset T with k classes.

On the other hand, the second method relies on k binary
classifiers, as illustrated in Fig. 2. In this case, the i-th classi-
fier corresponds to the i-th class, i.e., the dataset T is divided
into two classes: samples from the i-th class, and the sec-
ond class consists of samples that do not belong to the i-th
class. This division is applied for each of the k classes sep-
arately. Then, k binary classifiers were trained on such data,
and the i-th classifier provided p′

i , which is the probability
prediction that a test sample belongs to the i-th class. In the
rest of the paper, the first method will be referred to as the
single-classifiermethod and the second as themulti-classifier
method.
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The reason why we considered both methods is that the
performance of these methods varies depending on the data
structure. Themulti-classifier method, where we trained sep-
arate classifiers for each class, can be suitable if the classes
have different characteristics. However, it may also lead to
redundancy in the learned features. In addition, training k
binary classifiers slows down the training process compared
to training one multiclass classifier.

Streaming data samples si are divided into two chunks
according to the classification probabilities prediction. In
bothmethods, maximal probabilitymax1≤ j≤k p j , resp. max-
imal probabilitymax1≤ j≤k p′

j is compared to some threshold
parameter τ , resp. τ ′. A test sample for which this maxi-
mal probability is greater or equal to the threshold is called
high-confidence sample. On the other hand, low-confidence
samples are samples where the maximal probability from the
classification probabilities prediction vector is lower than a
given threshold.

In the second phase, high-confidence samples are clas-
sified into the known malware families and low-confidence
samples proceed into the online clustering algorithm. The
same feature set extracted using PCA in the first phase was
used for classification and clustering. The threshold τ , resp.
τ ′ is a parameter of our approach, and it determines the
amount of stream data that will be classified or clustered.
The proposed architecture is depicted in Fig. 3.

Testing various clustering algorithms to find the best
clustering is essential since online clustering methods may
exhibit varying performance traits based on the dataset. The
main difference between our approach and existing works
regarding malware family classification is that our method
processes the streaming data in real-time, while some other
works rely on batch processing. Both streaming data pro-
cessing and batch processing have their advantages and
disadvantages. While streaming data processing can provide
a faster decision to samples as they occur, on the other hand,
processing in large batches may be more efficient since it can
be parallelized.

5 Experimental setup

This section presents the dataset used in the experimental
part, and the metrics for evaluating the classification and
clustering results are explained. The implementation of our
proposed model and methods for evaluating classification
and clustering results are based on scikit-learn2 and PyClus-
tering3 libraries. All experiments in this work were executed
on a single computer platform having two processors (Intel
Xeon Gold 6136, 3.0GHz, 12 cores each), with 64 GB of

2 https://scikit-learn.org
3 https://pyclustering.github.io

Table 2 The size of training labeled data set D, size of streaming unla-
beled data set S, and the overall dataset size, i.e., |D| + |S|
Malware Family |D| |S| Size

Xtrat 16,689 19,280 35,969

Zbot 10,782 13,293 24,075

Ramnit 10,275 10,320 20,595

Sality 9,522 9,050 18,572

Ursnif 0 5,733 5,733

Emotet 0 4,904 4,904

Sivis 0 2,803 2,803

RAM running the Ubuntu server 18.04 LTS operating sys-
tem.

5.1 Dataset

We worked with the EMBER dataset [7] that contains fea-
tures from portable executable files extracted using static
analysis, which aims at searching for information about the
file structure without running a program. The features were
extracted using the LIEF open source package [25] and
includes metadata from portable executable file format [26],
strings, byte and entropy histograms. The feature set consists
of 2,381 features that are described in [7].

The EMBER dataset contains 400,000 labeled malware
samples divided into a training set (300,000 samples) and a
test set (100,000 samples) according to the following date.
Samples that appeared until October 2018 are included in
the training set, while samples appeared between November
and December 2018 are included in the test set. The training
set contains samples from more than 3,000 malware fami-
lies. However, we focus primarily on the four most prevalent
malware families: Xtrat, Zbot, Ramnit, and Sality. The train-
ing dataset T used in our model consists of samples from
the EMBER training set with labels corresponding to these
four malware families. The streaming data S used in our
model consists of samples from the EMBER test data set
with labels corresponding to these four malware families and
three additional malware families: Emotet, Ursnif, and Sivis.
We considered three new families to get closer to the real
situation when new malware families are constantly being
created. One of our goals is to verify whether our proposed
model can identify new families using online clustering.

Table 2 summarizes the number of samples used in the
experimental part, arranged in descending order of sample
count for each of the seven prevalent malware families from
the EMBER dataset.

The following is a brief description of the malware fami-
lies. More information about malware families and technical
details can be found in [27].
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Fig. 3 The architecture of our proposed model for processing zero-day malware to malware families

The Xtrat malware family is able to steal sensitive
data from infected devices, including login passwords,
keystrokes, and information from online forms. Zbot, also
known as Zeus, is a Trojan horse frequently used to steal
financial data, including credit card numbers and login infor-
mation for online banking. The Ramnit is a worm that has
the ability to steal login passwords, financial information,
and other sensitive data. It is also capable of downloading
additional malware onto compromised devices. Sality ismal-
ware that has the ability to replicate itself and propagate over
networks. It can infect executable files and change the code
within to avoid detection.

Emotet is a modular malware that mainly targets affected
computers to steal sensitive data. It is usually spread through
phishing emails and can use social engineering tactics to
deceive users into downloading and installing the malware.
Ursnif is a banking Trojan that can steal private data such
as usernames, passwords, and credit card numbers. Typical
infection vectors are phishing emails or drive-by downloads.
Sivis is a backdoor Trojan that belongs among more recent
malware families. Sivis often spreads via phishing emails or
by taking advantage of vulnerabilities in outdated software.
Once Sivis is activated, attackers may utilize the victim’s
computer to carry out orders, steal data, or launch more
attacks.

5.2 Evaluationmetrics

Our dataset contains samples from seven classes that have
different sizes. We used balanced accuracy (BAC) to evalu-
ate the imbalanced testing set for the multiclass classification
problem. The balanced accuracy score is defined as the aver-
age of true positive rates (recalls) across all k classes:

BAC = 1

k

k∑
i=1

T PRi ,

where T PRi is the true positive rate for classCi . The bal-
anced accuracy helps identify whether the classifier performs
well in all classes or is biased towards a particular class.

In the clustering part, we evaluated the quality of clusters
using two standard measures: purity and silhouette coef-
ficient (SC). Let the purity of cluster C j be defined as
Purity(C j ) = maxi pi j , where pi j is the probability that a
randomly selected sample from clusterC j belongs to class i .
The overall purity is the weighted sum of individual purities
and is given as follows:

Purity = 1

n

k∑
j=1

|C j |Purity(C j ).

where n is the size of a dataset.
While purity uses labels when evaluating the quality of

clusters, the silhouette coefficient does not depend on labels.
It can therefore be used in the validation phase to determine
the number of clusters. The average silhouette coefficient
[28] for each cluster is defined as follows.

Consider n samples x1, . . . , xn that have been divided into
the k clustersC1, . . . ,Ck .Average distance between xi ∈ C j

to all other samples in cluster C j is given by

a(xi ) = 1

|C j | − 1

∑
y∈C j
y �=xi

d(xi , y).

Let bk(xi ) be the average distance from the sample xi ∈
C j to all samples in the cluster Ck not containing xi :

bk(xi ) = 1

|Ck |
∑
y∈Ck

d(xi , y).

Let b(xi ) be the minimum of bk(xi ) for all clusters Ck,

where k �= j . The silhouette coefficient of xi is given by
combining a(xi ) and b(xi ) as follows:

s(xi ) = b(xi ) − a(xi )

max(a(xi ), b(xi ))
.
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The silhouette coefficient s(xi ) ranges from -1 to 1, with
higher scores indicating better performance. Finally, the aver-
age silhouette coefficient for a given dataset is defined as the
average value of s(xi ) over all samples in the dataset.

The choice of metric for evaluating the quality of clus-
ters depends on the information we have about the samples.
Some antivirus companies may receive hundreds of thou-
sands of new samples daily, but it is not known, immediately
after their appearance, whether they are malicious. However,
these samples are analyzed (manually or through automated
processes based on machine learning), and the correspond-
ing labels are created. For this reason, we also assume in our
work that we also have the labels available for evaluating
clusters, i.e., respective malware families.

6 Experimental results

This section contains a description of individual experiments.
For both methods, i.e., for the single-classifier method with
one multiclass classifier and themulti-classifier method with
four binary classifiers, we considered the following three
classifiers: Multilayer perceptron (MLP), Random forest
(RF), and k-nearest neighbors (KNN). First, we performed
feature extraction and hyper-parameters tuning of these three
classifiers. Then, the relationship between BAC and the per-
centageof classified samples (i.e., number ofhigh-confidence
samples divided by |S| times 100%) is presented for both
methods for calculating the classification probabilities pre-
diction vector. Finally, for the single-classifier method only,
we present the relationship between the number of clusters
and the quality of the clusters given in terms of purity and
average silhouette coefficient.

6.1 Preprocessing

The standard score and PCA algorithmwere applied to the
data setT containing the labeled samples. The standard score,
or z-score, converts a value x to a standard score z via z =
(x− x̄)/s, where x̄ is themean and s is the standard deviation.
The PCA [29] is an unsupervised learning algorithm used
for dimensionality reduction. We used the PCA to extract
new, uncorrelated features that are linear combinations of the
original features given by the EMBER dataset described in
Sect. 5.1. The same preprocessing methods, i.e., the standard
score for data normalization and PCA for feature extraction,
were also applied to unlabeled streaming data S.

In this experiment, we considered the options for the opti-
mal number of features from the interval {20, 30, 40, . . . , 200}.
Table 3 shows the optimal number of features and the bal-
anced accuracy achieved on the training data D for the
multiclass classifier and four binary classifiers.

6.2 Classifiers selection

In the single-classifiermethod and themulti-classifiermethod,
we considered the following three classifiers: MLP, RF, and
KNN. We tuned the hyper-parameters of the MLP, RF, and
KNN classifiers using the grid search that exhaustively con-
sidered all parameter combinations. The following searching
grid parameters were explored for MLP:

• hidden layer sizes: (100,0), (200,0), (400,0), (100,50),
(200,100), (400,100), (400,200)

• activation function: relu, tanh, logistic
• solver for weight optimization: lbfgs, adam
• alpha: 0.0001, 0.001, 0.01

The parameter alpha controls the strength of regulariza-
tion applied to the neural network’s weights. The names
of the activation functions and the solvers are taken from
neural_network.MLPclassifier class from the scikit-
learn library, which was used in the experiments. For random
forest, we explored the number of trees in the forest, themax-
imal depth of trees, and the criterion that measure the quality
of a split:

• number of estimators: 100, 500, 1000
• maximal depth: 7, 8, 9, 10
• criterion: gini, entropy

The names of the criteria are taken from ensemble.
RandomForestClassifier class from the scikit-learn
library, which was used in the experiments. Finally, for
the KNN, we considered the following numbers of nearest
neighbors, k: 1,3,5,7,9,11. The selected values of the hyper-
parameters for the MLP, RF, and KNN models are given
Table 4.

According to the experimental results described in Table
3, the MLP achieved the highest classification accuracy for
the multiclass classifier and for all binary classifiers. Figure4
demonstrates that the MLP classifier outperformed the RF
and the KNN classifiers in terms of ROC curves and the
AUC (Area Under Curve) measure.

In the following experiments, we will use MLP to deter-
mine which stream data samples to classify and which to
cluster. For a test sample, the output of the MLP with the
softmax activation is a probability distribution over the pos-
sible classes. The predicted class for a test sample is then the
highest probable class.

6.3 Data stream splitting

At the end of the first phase of our model, streaming
data is divided into the high-confidence samples and the
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Table 3 An optimal number of
features extracted using PCA
and the balanced accuracy for
the multiclass classifier
(class_all) and four binary
classifiers (class_family) trained
for the corresponding malware
families

Classifiers MLP RF KNN
Classes # Features BAC # Features BAC # Features BAC

class_all 170 96.8% 180 93.20% 190 94.65%

class_Xtrat 180 99.63% 130 99.52% 160 99.61%

class_Zbot 160 97.46% 150 92.40% 180 97.46%

class_Ramnit 160 96.46% 190 92.19% 140 93.77%

class_Sality 110 95.47% 160 90.41% 190 94.44%

Table 4 Hyperparameter tuning for the multiclass MLP (class_all) and four binary MLPs (class_family) trained for the corresponding malware
families

Classifiers MLP RF KNN
Parameters Hidden_layer_sizes Activation Solver Alpha Criterion Max_depth n_estimators k

class_all (400, 200) relu adam 0.001 Entropy 10 500 1

class_Xtrat (400, 200) relu adam 0.001 Entropy 10 500 5

class_Zbot (200, 0) relu adam 0.001 Entropy 10 100 1

class_Ramnit (400, 200) relu adam 0.0001 Entropy 10 1000 1

class_Sality (400, 200) relu lbfgs 0.0001 Gini 10 1000 1

(a) Xtrat malware family. (b) Zbot malware family.

(c) Ramnit malware family. (d) Sality malware family.

Fig. 4 ROC curves and AUC values of four binary classifiers used in the multi-classifier method. The ROC curves are zoomed in the upper left
corner
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Fig. 5 Relation between the percentage of classified samples and the
balanced accuracy

low-confidence samples according to the classificationproba-
bilities prediction vector. Figure5 shows the relation between
the balanced accuracy and the percentage of classified sam-
ples for various thresholds τ, resp. τ ′. Specifically, we
experimented with the following values of the thresholds:
0.1, 0.2, …, 0.9, 0.99, 0.999, …, 0.99999999.

The single-classifier method achieved the highest BAC,
98.60%, for the threshold τ = 0.99999, classifying 67.97%
of the samples. While the multi-classifier method achieved
the highest BAC, 96.74%, for the threshold τ ′ = 0.9999,
classifying 67.58% of the samples.

The results show that the single-classifier method, where
one multiclass classifier was used to determine the data to
be clustered, outperforms the multi-classifier method based
on four binary classifiers. For this reason, in the following
section, we will present the clustering results only using the
single-classifier method.

A threshold τ is the parameter of our model and can be
used to influence the BAC. However, we do not know the
optimal number of clusters in advance for the low-confidence
samples. One way to determine the number of clusters is
based on the silhouette coefficient, where labels are not
required for its computation. Specifically, we may cluster
incoming low-confidence samples simultaneously for sev-
eral numbers of clusters. Based on these silhouette coefficient
time series, we may predict future silhouette coefficient val-
ues for different numbers of clusters. Then we can select the
number of clusters for which the highest silhouette coeffi-
cient is expected.

Since the optimal value of the parameter τ is not known
in advance, therefore, in the following experiments, we con-
sidered only two extreme cases:

• τ = 0.6, when almost all streaming data is classified
(specifically, it was approximately 98%),

• τ = 0.9999999, when approximately half of the stream-
ing data was classified (specifically, it was approximately
55%).

6.4 Clustering

For various numbers of clusters, we conducted experiments
where three online clustering algorithms were applied to the
low-confidence samples. We used the elbowmethod to deter-
mine the optimal number of clusters. Figure6 for different
values of the parameter τ show the relationship between
the number of clusters and Within-Cluster Sum of Square
(WCSS), which is the sum of the squared distance between
each point of the cluster and its centroid. Since the plots do
not exhibit clear elbow points, we present clustering results
for clusters between four to ten. The number of clusters
determined the number of output neurons in SOM and the
maximumnumber of clusters for BSAS. At BSAS, we exper-
imented with different values of the dissimilarity threshold
�. The highest average silhouette coefficients and purities of
clusters were achieved for the default value of � = 1.

The relation between the number of clusters and the purity
of clusters, respectively, the silhouette coefficient, is depicted
in Fig. 7. This relation corresponds to the parameter τ = 0.6
for which the single-classifier method achieved the BAC,
95.33%, classifying 97.21% of the samples from S. The
results show that SOM online clustering algorithm outper-
formed the other two algorithms except in one case where
OKMachieved higher purity for the number of clusters equal
to five.

While Fig. 7 for the parameter τ = 0.6 represents the
case where 97.21% of streaming data S were classified, on
the other hand, Fig. 8 for the parameter τ = 0.9999999
represents the case when only 55.44% of the samples were
classified, achieving a BAC of 99.14%.

The results from Fig. 8 show that SOM online clustering
algorithm outperformed the other two algorithms in terms
of silhouette coefficient in all cases. For all numbers of
clusters, SOM and OKM algorithms achieved significantly
higher purities than BSAS algorithm. Note that all the online
clustering algorithms achieved higher purities of clusters for
τ = 0.6 for almost all numbers of clusters compared to the
purities achieved for the parameter τ = 0.9999999.

To summarize the results, we classified 97.21% of stream-
ing data with a balanced accuracy of 95.33% and clustered
the remaining data using SOM online clustering algorithm,
achieving a purity from 47.61% for four clusters to 77.68%
for ten clusters. These results indicate that our approach has
the potential to be applied to the classification and clustering
of zero-day malware into malware families.

123
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(a) τ = 0.9999999 (b) τ = 0.6

Fig. 6 The relation between the number of clusters and the WCSS for the parameter τ = 0.9999999 (a), respectively, the parameter τ = 0.6 (b)

(a) Purities of clusters. (b) Average silhouette coefficients.

Fig. 7 The relation between the number of clusters and the purity of clusters (a), respectively, the average silhouette coefficient (b). For the parameter
τ = 0.6, 2.79% of the samples from S were clustered

(a) Purities of clusters. (b) Average silhouette coefficients.

Fig. 8 The relation between the number of clusters and the purity of clusters (a), respectively, the average silhouette coefficient (b). For the parameter
τ = 0.9999999, 44.56% of the samples from S were clustered

6.5 Computational times

This section focuses on the computational times of classifica-
tion and clustering ofmalware families.We run our proposed
approach ten times, and the results of the classification part
are reported in the formofmeanand standarddeviation,while

the results of the clustering part are shown as boxplot graphs.
The dataset D of size 47,268 samples was used for training
theMLPclassifier, and the computational times for the classi-
fication and clustering parts were obtained for the processing
of streaming data S of size 65,383 samples. The training time
of the MLP took 81.80 s on average, with a standard devia-
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(a) SOM (b) BSAS (c) OKM

Fig. 9 The computational times of the clustering algorithms for the parameter τ = 0.9999999

(a) SOM (b) BSAS (c) OKM

Fig. 10 The computational times of the clustering algorithms for the parameter τ = 0.6

tion of 24.48 s. The computation times of the classification
and clustering parts depend on the parameter τ , which is used
in dividing the streaming data into those to be classified and
those to be clustered. For the parameter, τ = 0.9999999, the
MLP classification took 0.33 s on average, with a standard
deviation of 0.02 s, while for the parameter τ = 0.6, theMLP
classification took 0.38 s on average, with a standard devia-
tion of 0.01 s. The Figs. 9 and 10 show the computational
times of individual clustering algorithms for the parameter
τ = 0.9999999 and τ = 0.6, respectively. The differences
in the computational times of individual clustering algo-
rithms for different values of the parameter τ are because
the parameter τ affects the size of the data to be clustered.
The parameter τ = 0.9999999 was chosen so that roughly
half of the used streaming data (more precisely, 55% on aver-
age for the considered ten experiments) was clustered, while
for the parameter τ = 0.6 only approximately 2% of the
streaming data were clustered. Based on the given compu-
tational times, we can estimate that the implementation of
our proposed approach can process more than 3,000 samples
per second, which is sufficient to process 560,000 samples,
which according to the AV-Test Institute [1] are detected on
average per day.

7 Conclusions

Our approach can play a useful role for malware researchers
in classifying and clusteringmalware into families and study-
ing how the families evolve over time. The proposed model
was designed in an online form to provide decisions imme-
diately as samples occurred. In our work, the training data
were strictly separated from the test data based on the date
of appearance of malware samples. In addition, the test data
contained new malware families not presented in the train-
ing set, corresponding to the emergence of new malware
families. Following these conditions that align with the real
world, we classified zero-day malware with a balanced accu-
racy of 95.33% and clustered with a purity of up to 77.68%.
Experimental results indicate that the proposed model can
accurately classify and cluster malware into families.

A paper’s direct extension is to process streaming data
containing malicious and benign samples. This is a more
challenging problem since the low-confidence samples also
consist of benign files that can break the structure of the
clusters. Future work may also focus on the prediction of the
optimal threshold τ , based on which it is determined which
zero-day malware should be classified and which should be
clustered. The optimal threshold is the value at which we
obtain the highest overall accuracy of the classification and
clustering of stream data. This task is challenging since the
optimal threshold is related to the number of new malware
families, which may be hard to predict.
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