
Journal of Computer Virology and Hacking Techniques (2024) 20:1–14
https://doi.org/10.1007/s11416-023-00482-1

ORIG INAL PAPER

Networking and cryptography library with a non-repudiation flavor
for blockchain

Mohamed Rasslan1 ·Mahmoud M. Nasreldin2 · Doaa Abdelrahman3 · Aya Elshobaky4 · Heba Aslan1,3

Received: 23 August 2022 / Accepted: 9 May 2023 / Published online: 5 August 2023
© The Author(s) 2023

Abstract
Blockchain is currently one of the most widely discussed inventions in the information and communication technology
industry. It is a pillar of the fourth industrial revolution and it is a cryptographically demanding technology that is regarded
as one of the most influential topics in academia. Many blockchain platforms currently utilize third-party cryptographic
libraries that offer many cryptographic primitives in order to ensure users’ protection against cyber-attacks. The Networking
and Cryptography library (NaCl) is an open-source library for cryptographic primitives. NaCl is known to be one of the best
libraries that provide usability property. Although NaCl is easy to use and ensures: confidentiality, integrity, and authenticity,
it fails to provide the non-repudiation service. In this paper, an improvement to the blockchain platforms is proposed by
enhancing the NaCl library to achieve the non-repudiation property that enhances the security level of the implemented
blockchain platform. In NaCl, to provide the aforementioned security services, messages are signed and then encrypted.
Therefore, the non-repudiation service is not provided. In this paper, the proposed solution is based on adding a signature
block to enable a non-repudiation property. First, logical analysis is conducted using the BAN logic on the NaCl library to
prove that it does not provide the non-repudiation property. Subsequently, a modification to the library is proposed, and the
correctness of the proposed solution is proven using BAN logic. The analysis suggests that the proposed solution fixes the
aforementioned problem.

Keywords Blockchain ·Cryptocurrencies ·Networks ·Confidentiality · Integrity ·Non-repudiation ·Cryptographic libraries ·
Security goals

1 Introduction

Since the introduction of Bitcoin in 2008 [1], the concept
of blockchain, which dates back to the 1970s [2] has been
employed by many developers to provide solutions for their
applications. Blockchain technology and cryptocurrencies
have sparked concerns related to guaranteeing users’ privacy
and security protection due to the deployment of algorithms
that can be selected by users (“bring your own algorithm”

B Mohamed Rasslan
mohamed@eri.sci.eg

1 Informatics Department, Electronics Research Institute, Cairo
12622, Egypt

2 CyberistInsight, Ottawa, ON K1S 1N4, Canada

3 Center of Informatics Science, Faculty of Information
Technology and Computer Science, Nile University, Giza
12588, Egypt

4 Alexandria University, Alexandria 21500, Egypt

concept). Blockchain, a public ledger where transactions are
stored in blocks, is characterized by immutability, decentral-
ization, anonymity, and auditability [3]. Data are stored in a
chain of blocks, where each block is linked to the previous
block through its hash. The nodes of the network (miners)
are responsible for calculating the hash value [4]. Blockchain
blocks are distributed to all users, leading to block immutabil-
ity. This is because to alter any block, a large number of
calculations must be performed. In addition, the consensus
process is performed in a decentralized and distributed man-
nerwithout the intervention of a third party. To guarantee data
integrity, blockchain uses cryptographic algorithms such as
asymmetric encryption, digital signature, and hash functions.
In addition, cryptographic techniques provide the ability to
trace transactions and ensure data confidentiality [3]. The
following three generations of blockchain exist: blockchain
1.0, blockchain 2.0, and blockchain 3.0. However, a new gen-
eration, blockchain 4.0 is currently under development [5].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-023-00482-1&domain=pdf

2 M. Rasslanet al.

While blockchain 1.0 is mainly concerned with cryptocur-
rency applications, blockchain 2.0 concerns whole markets
and economies; it stores not only transactions but also smart
contracts and applications; an example of this type of appli-
cation is Ethereum. Blockchain 3.0, which is considered an
evolutionof blockchain 2.0, extends the technology intomore
applications in areas such as art, health, science, and govern-
ment. Artificial intelligence has recently been introduced in
blockchain 4.0, to enhance consensus efficiency, scalability,
and energy efficiency and to incorporate blockchain tech-
nology into real environments. Blockchain is used in many
applications, such as banking, financial transactions, supply
chain management, healthcare, and education. The security
requirements for these applications include confidentiality,
integrity, and authentication. Confidentiality is delivered
through the encryption of sensitive information. On the other
hand, authentication is achieved through digital signatures.
Integrity is ensured via twomechanisms.Thefirst is the inclu-
sion of the hash value of the preceding block and the second is
the calculation of the root hash of all block transactions.Most
blockchain platforms use third-party cryptographic solutions
[6]. One of these solutions is the networking and cryptogra-
phy library (NaCl) [7], which is a public domain library for
network communication, encryption, decryption, and signa-
tures.NaCl (pronounced "salt") and its forks (i.e. LibSodium)
provide cryptographic algorithms that are utilized in well-
known blockchain platforms (e.g. Apache Tuweni, Duniter,
Tezos), cryptocurrencies (e.g. Zcash), and cryptocoin wallets
(e.g. SilentDragon, SilentDragonLite). NaCl is the chemi-
cal abbreviation for sodium chloride, commonly known as
salt which is an ionic compound with the chemical formula
NaCl. Cryptographic algorithms aim to provide the following
four well-known security services: confidentiality, authentic-
ity, integrity, and non-repudiation. As mentioned in [7], the
NaCl library ensures confidentiality and integrity; however,
it does not provide non-repudiation, which is considered an
authentication service. Non-repudiation is the main security
requirement that must be fulfilled, especially in the case of
disputes. This paper proposes a solution to the aforemen-
tioned drawback of the NaCl library. In NaCl, to provide the
aforementioned security services, messages are signed and
then encrypted. Therefore, the non-repudiation service is not
provided. In the present paper, to solve this problem, another
signature block is added. Furthermore, the security analysis
of both the NaCl library and the proposed improvement is
conducted using Burrows, Abadi and Needham (BAN) logic
[8, 9]. The analysis demonstrates that the proposedmodifica-
tion fixes the problem. The main contributions of the present
paper can be summarized as follows:

• Examine which security libraries are used in Blockchain
applicationsf.

• Analyze the NaCl library using the BAN logic. The analy-
sis shows that the NaCl library has the following primary
drawback, the inability to provide a non-repudiation secu-
rity service.

• Propose a solution to this problem and analyze it using
BAN logic.

The remainder of this paper is organized as follows. The
next section provides a literature review of different security
libraries. Subsequently, a description of the NaCl library is
provided, followed by a security analysis using BAN logic.
The proposed solution is then described in detail and ana-
lyzed using (BAN) logic in Sect. 3. In Sect. 4, a performance
analysis is illustrated. The final section concludes the paper.

2 Literature review

This section provides a brief description of the different
cryptographic libraries used in modern applications. Then,
a description of the NaCl library modules is detailed. Sub-
sequently, it proposes critiques of the library and security
analysis using BAN logic.

2.1 Cryptographic libraries

Blockchain is an immutable distributed digital ledger that
is based on cryptographic algorithms to provide security,
and uses consensus mechanism to agree upon the transac-
tion log [10]. Cryptographic libraries are used to perform
the cryptographic operations needed to provide trust in using
Blockchain technology. Following are examples of crypto-
graphic libraries that are used in literature: wolfCrypt [11], an
embedded library for symmetric and asymmetric algorithms,
Cifra [12] that ismainly concerned in implementing symmet-
ric algorithms, TinyCrypt [13] and micro-ecc (uECC) [14],
Crypto-JS [15], and Relic [16], which contains symmetric
and asymmetric cryptographic schemes with particular sup-
port for many elliptic curves. A lightweight cryptographic
librarywhich is namedBouncyCastle is based on lightweight
APIs for TLS (RFC 2246, RFC 4346) and DTLS (RFC
6347/ RFC 4347) [17]. In [18], a comparison among crypto-
graphic libraries utilized for encryptionoperations performed
in Blockchain is conducted. The following libraries are used
in Blockchain networks: PBC library [19], Crypto++ library
[20], MIRACL library [21], and Hyperledger Ursa [22].

Researchers have explained that the usability and mis-
use resistance of application programming interface (API)
implementations are critical for practical cryptographic
library deployments. Many solid API design guides provide
developers with the required knowledge to develop usable
and misuse-resistant cryptographic implementations. In the
OpenSSL cryptographic library [23], users cannot modify

123

Networking and cryptography library with a non-repudiation… 3

their APIs design because of the backward compatibil-
ity issue. Few cryptographic libraries consider fundamental
usability. However, more recent libraries, such as the Net-
working and Cryptography library (NaCl) and its forks,
provide high levels of usability and misuse-resistance fea-
tures of APIs [24, 25]. Improving the usability of API
is a fundamental objective of the NaCl library. The NaCl
library focuses on the most significant use-cases and manip-
ulates use-cases that are not complex in high-level API.
The NaCl cryptographic library and its forks, such as
libsodium, are distinguished based on their user-oriented
viewpoint and concentration on usability features. Crypto-
graphic researchers and software developers have elaborated
on the features of cryptographic libraries (e.g., the usability
and misuse resistance of API designs) and their impor-
tance, which encompasses making cryptographic libraries
bug-free codes. Recent libraries such as NaCl and its forks
(i.e., libsodium, sodiumoxide, rust_sodium, PyNaCl, Tweet-
NaCl, PySodium, and Keyczar) offer robust concentrations
for achieving a high level of usability and misuse-resistant
features of APIs design [26, 27]. The Keyczar cryptographic
library allows developers to safely and easily use cryptog-
raphy. The PyNaCl library binds to the NaCl library using
Python. Moreover, PyNaCl was considered to be the lib-
sodium interface using Python. Furthermore, sodium is a
potential replacement for PyNaCl. NaCl and its forks are
cryptographic libraries that are designed and implemented
with a focus on usability (these libraries do not require the
designer/developer to select cryptographic details). These
libraries provide secure asymmetric and symmetric APIs.
The NaCl cryptographic library and its forks (i.e., Tweet-
NaCl and libsodium APIs) were used in the implementation
of post-quantum cryptographic algorithms [28]. NaCl and
its forks (i.e. LibSodium [29, 30]) provide cryptographic
algorithms that are utilized in well-known blockchain plat-
forms (e.g. Apache Tuweni [31], Duniter [32], Tezos [33]),
cryptocurrencies (e.g. Zcash [34]), and cryptocoin wallets
(e.g. SilentDragon [35], SilentDragonLite). In what follows,
we elaborate on some blockchain platforms, cryptocurren-
cies, and cryptocoin wallets that deploy a fork of the NaCl
cryptographic library (i.e. LibSodium). Apache Tuweni [31]
is a blockchain platform that consists of a set of libraries
(e.g. LibSodium which is a fork of the NaCl cryptographic
library), tools that help in the development of blockchain, and
decentralized software built in Java and other Java Virtual
Machine (JVM) languages (e.g. Java, Kotlin, Scala, Groovy,
Clojure, Fantom,Ceylon, Jython, JRuby, Frege,Xtend,Golo,
Concurnaas, Yeti.) The Ethereum Virtual Machine (EVM)
is implemented using Kotlin code. Duniter [32] (originally
uCoin) is a blockchain platform that deploys a fork of the
NaCl cryptographic library (i.e. LibSodium). It is a free
software that enables users to create a new type of P2P
crypto-currency using individuals and universal dividends.

The Duniter network is decentralized. It uses blockchain to
synchronize the state of money across nodes. In contrast to
Bitcoin, Duniter has no power race. In Bitcoin, because of the
CPU race, power is provided to those who own more com-
puting power. Duniter is democratic; because every user is
identified as a unique human, they canwrite in the blockchain
in turns. When a member writes data in the blockchain, he
must wait before being able to write again. This ensures that
the blockchain does not end in the hand of a few users and
that it does not burn too much energy. To identify users,
Duniter chooses a self-regulated system by itsmembers. This
is known as the Web of Trust (WoT). Each member can cer-
tify new users. When a user receives sufficient certifications,
and is not too far away from the existing members in the web
of trust, he becomes a member. Bitcoin’s blockchain mecha-
nism is important for two main reasons: synchronization and
security. Duniter’s blockchain thus benefit from these two
features. However, Duniter’s blockchain is slightly different:
it does not only store transactions, but also stores commu-
nity activity in order to define theWoT. It also has a different
Proof-of-Work (PoW) mechanism that is made possible by
the WoT definition, providing a much more energy-efficient
mechanism in order to compute the blockchain. Tezos [33]
is an open-source blockchain platform that deploys a fork
of the NaCl cryptographic library (i.e. LibSodium) and exe-
cutes peer-to-peer transactions and serve as a platform for
deploying smart contracts. The native cryptocurrency for
the Tezos blockchain is the Tez (ISO 4217: XTZ; sign: tZ).
The Tezos network achieves consensus using proof-of-stake.
Tezos uses an on-chain governance model that enables the
protocol to be amended (when upgraded proposals receive a
favorable vote from the community.) Its testnet was launched
in June 2018, and its main net went live in September 2018.
Tezos, which was first proposed in 2014, was created by
Arthur and Kathleen Breitman. Zcash [34] is a cryptocur-
rency aimed at using cryptography (i.e. deploy a fork of
the NaCl cryptographic library (i.e. LibSodium)) to provide
enhanced privacy for its users compared to other cryptocur-
rencies such asBitcoin. Zcash is based onBitcoin’s codebase.
It shares many similarities, such as, a fixed total supply of
21 million units. Transactions can be "transparent" and sim-
ilar to bitcoin transactions. Zcash affords private transactors,
the option of "selective disclosure". This allows a user to
prove payment for auditing purposes. One reason to allow
private transactors is to comply with anti-money laundering
or tax regulations. "Transactions are auditable but disclosure
is under the participant’s control. While miners receive 80%
of a block reward, 20% is given to the "Zcash development
fund": 8% to Zcash Open Major Grants, 7% to Electric Coin
Co., and 5% to The Zcash Foundation. Silent Dragon (SD)
[35] is a compatible wallet (that deploy a fork of the NaCl
cryptographic library (i.e. LibSodium)) and a full node that
runs on Linux, Windows, and macOS for HUSH. HUSH is

123

4 M. Rasslanet al.

Fig. 1 NaCl library structure

the cryptocurrency of the Hush platform. SD is a one-stop
solution that offers high-speed messaging and transactions.
The next subsection briefly describes the NaCl library.

2.2 NaCl library

The NaCl library was first published in 2008. The first ver-
sion of NaCl was released in 2009. Subsequently, the library
has undergone several enhancements, such as the inclusion
of both the C + + NaCl API and digital signatures. The
most recent version of the NaCl library was released in
2017. The NaCl library aims to ensure strong confidentiality,
integrity, and availability [7], as shown in Fig. 1. Confiden-
tiality is provided only for the packet content. Therefore,
users must incorporate anti-traffic analysis tools in their
systems to hide packet lengths and timings. The library con-
sisted of six main functions: crypto_box, crypto_box_open,
crypto_box_keypair, crypto_sign, crypto_sign_open, and
crypto_sign_keypair. The following paragraphs provide
descriptions of these functions.

The crypto_box: This function provides public key
authenticated encryption. The first step is to sign a mes-
sage “m” using the sender’s secret key “sk1”. This step
provides authenticity and integrity. The signed message is
then encrypted using the receiver’s public key “pk2” to pro-
duce the ciphertext “c”. This step provides confidentiality. To
ensuremessage freshness, a nonce “n” is used. The following
equation represents the encryption function.

c � crypto_box(m, n, pk2, sk1) (1)

The function input consists of the sender’s secret key sk1,
the receiver’s public key pk2, plain packet m, and nonce n,
and it outputs an authenticated ciphertext c. The crypto_box
function automatically handles all necessary conversions and
initializations.

crypto_box_open: Upon receiving the message, the
recipient uses its secret key "sk2" to decrypt the signature. It
then uses the public key of the sender "pk1" to authenticate

the message, as represented in the following function:

m � crypto_box_open(c, n, pk1, sk2) (2)

The function input consists of the sender’s public key pk1,
the receiver’s secret key sk2, ciphertext c, and nonce n, and
outputs plaintext m. The crypto_box function automatically
handles all necessary conversions and initializations.

crypto_box_keypair: This is used to generate the public
keys. It takes the secret key (sk) as input and outputs the
public key (pk), as shown below.

pk � crypto_box_keypair(sk) (3)

crypto_sign: In some cases, confidentiality is not required.
For example, a sender may broadcast a message to many
people. Therefore, the library requires only public-key sig-
natures. The sender signs the message “m” using its secret
key “sk” to produce the signature “sm,” as follows:

sm � crypto_sign(m, sk) (4)

crypto_sign_open: Upon receiving the message, the
receiver authenticates the message using the sender’s pub-
lic key “pk” and the signature “sm” as shown below:

m � crypto_sign_open(sm, pk) (5)

crypto_sign_keypair: This works as crypto_box_keypair
and is used to generate public key pairs. It takes the secret
key (sk) as input and outputs the public key (pk), as shown
below.

pk � crypto_sign_keypair(sk) (6)

For more information about NaCl, the reader can refer to
[36, 37] and for more information about blockchain tech-
nology, the reader can refer to [38–42]. As stated in [7],
the library does not provide non-repudiation, which is the
primary requirement for authentication. Therefore, the next
section introduces a solution to address this problem.

2.3 Attack on NaCl library and its security analysis

In the following paragraphs, a scenario attack concerning
NaCl is described and the security analysis using BAN logic
is conducted. First, the scenario attack is described as follows.
Assume that Alice sends the message “M” to Bob after it
is signed using the secret key of Alice “skalice,” and then
encrypted using the public key of Bob “pkBob”. The message
sent to Bob is as follows:

C1 � {{M}skalice}pkBob (7)

123

Networking and cryptography library with a non-repudiation… 5

After receiving the message, Bob decrypts the message
using his private key and then the public key of Alice. How-
ever, Bob can re-encrypt the signed part using Eve’s public
key to produce the ciphertext to be sent to Eve:

C2 � {M}skalice}pkEve (8)

Finally, Bob sends the ciphertext to Eve as if it comes
from Alice. This represents a violation of the nonrepudia-
tion property. To confirm this scenario threat, the analysis is
conducted by applying BAN logic to the NaCl library.

NaCl is typically used in blockchain applications. Authen-
tication protocols are fundamental components of the
blockchain, and it is necessary to ensure the correctness
of these protocols. BAN logic uses logic to define authen-
tication protocols. They convert each message into a logical
description in a flawless form. For an effective confirmation
of correctness, the certainty (belief) of the sender (signer)
and receiver (verifier) should fulfill the procedure objectives.
They assume that the verification step of the authentication
is accomplished among the signer (Alice) and the receiver
(Bob) if there is a message "X" that the receiver Bob is con-
vinced that it has been sent by the sender, Alice. Therefore,
the authentication process between Alice and Bob is accom-
plished if Bob | ≡ Alice | ≡ X and Bob | ≡ X, where the
representation | ≡means to believe (or be convinced by) [8].
The fundamental rules of BAN logic are as follows:

The interpretation rule

Bob|≡ (Alice|∼ (X , Y))

Bob|≡ (Alice|∼ X), Bob|≡ (Alice|∼ Y)
(9)

This rule states that if Bob believes (convinced by the pro-
tocol) that Alice generates a message containing both X and
Y, he believes that Alice generates each message distinctly.

Message Meaning Rule

Bob|≡ Q−Alice−→ Alice, Bob � [X]S−Alice

Bob|≡ Alice|∼ X
, Alice �� Bob

(10)

This rule states that if Bob believes (convinced by the pro-
tocol) that QAlice is the public key of Alice and Bob obtains
a statement X that is signed by Alice’s secret key SAlice, this
indicates that Bob believes that Alice once generated X.

Nonce Verification Rule

Bob|≡ #(X), Bob|≡ Alice ∼ X

Bob|≡ Alice|≡ X
(11)

This rule states that if Bob believes (convinced by the
protocol) that X is a new statement and Alice once generated
X, it believes that Alice believes in X.

Jurisdiction Rule

Bob|≡ Alice ⇒ X , Bob|≡ Alice|≡ X

Bob|≡ X
(12)

This rule states that if Bob believes (convinced by the
protocol) that Alice has jurisdiction (authority) over X and
Bob believes that Alice believes in X, Bob believes in X.

Freshness Rule

Bob| ≡ #(X)

Bob| ≡ #(X , Y)
(13)

This rule states that if Bob believes (is convinced by the
protocol) in the freshness ofX andY,He believes in the fresh-
ness of each message. This study assumes that the statement
is transmitted between the sender, Alice, and the receiver,
Bob.

Authentication is accomplished between Alice and Bob if
the following goals are accomplished:

Goal 1: Bob|≡ Alice|≡ Mi (14)

Goal 2: Bob|≡ Mi (15)

where Mi characterizes the statement that is sent by Alice

• Alice first signs the statement (message) “Mi” using the
encryption secret key. The result is then encrypted by
making use of Bob’s public-key of encryption in order
to generate “C1”.

• Alice transmits C1 � {{{Mi, n}skea}pkeb to Bob, where
n is the nonce produced by Alice.

The analysis is completed by assuming the following:

Alice|≡ pkeb−→ Bob (16)

Alice|≡ pkea−→ Alice (17)

Bob|≡ pkeb−→ Bob (18)

Bob|≡ pkea−→ Alice (19)

Bob|≡ Alice ⇒ Mi (20)

Alice|≡ #n (21)

Bob|≡ #n (22)

Equation (16) shows that Alice is convinced that pkeb is
the public key for encryption. Equation (17) shows that Alice

123

6 M. Rasslanet al.

is convinced that pkea is the public key for encryption. Equa-
tion (18) indicates thatBob is convinced that pkeb is his public
key for encryption: Eq. (19) shows that Bob is convinced
that pkea is Alice’s public key for encryption. Subsequently,
Eq. (20) shows that Bob is convinced that Alice has (author-
ity) jurisdiction over the sent statement (message). Finally,
Eqs. (21) and (22) show thatAlice andBob are convinced that
“n” is fresh (n changes every message). Given these assump-
tions, the messages transmitted during the initial phase were
converted into a logical description. Finally, the basic rules
of BAN logic were applied to the logical formulas. For more
information about the BAN logic, refer to [8, 9]. Using the
message C1� {{{Mi,n}skea}pkeb, Eq. (19) and the message
meaning rule (Eq. (10)):

Bob|≡ Alice|∼ (m, Mi) (23)

However, Alice and Bob are convinced that n is fresh
(Eqs. (21) and (22)). Thus, by applying the nonce verification
rule (Eq. 11), the following equation is obtained:

Bob|≡ Alice|≡ Mi (24)

According to the jurisdiction rule (Eq. (12)) usingEq. (20),
the following result is obtained:

Bob|≡ Mi (25)

The above analysis assumes that Bob is honest. However,
as previously mentioned, Bob can re-encrypt the part signed
by Alice to produce C2 (Eq. (8)). The following assumptions
were made in the logical analysis:

Eve|≡ pkea−→ Alice (26)

Eve|≡ Alice ⇒ Mi (27)

Alice|≡ #n (28)

Eve|≡ #n (29)

Using message C2 � {{{Mi,n}skea}pkEve, Eq. (26) and
the message meaning rule (Eq. (10)):

Eve|≡ Alice|∼ (m, Mi) (30)

However, Alice and Eve are convinced that n is fresh
(Eqs. (28) and (29)). Thus, by applying the nonce verification
rule (Eq. 11), the following equation is obtained:

Eve|≡ Alice|≡ Mi (31)

Fig. 2 The proposed modification to the NaCl library

According to the jurisdiction rule (Eq. (12)) usingEq. (27),
the following result is obtained:

Eve|≡ Mi (32)

The resulting goal is not supposed to have been achieved
by Alice. Thus, in the case of a dispute, Alice denies send-
ing this message to Eve. The above attack is considered
a violation of the authentication service, particularly the
non-repudiation service. In the following section, a detailed
description of the proposed modification is illustrated to mit-
igate the aforementioned security attacks.

3 Proposedmodification to NaCl library

In theproposedmodification, themain focus is on crypto_box
and crypto_box_open functions. As mentioned in [7], the
NaCl library does not achieve non-repudiation; therefore,
these functions must be fixed. To avoid the attack that is
described in the previous section, the message after encryp-
tion is signed. Thus, Alice sends the following message to
Bob: {{{M}skalice}pkBob} skalice. This is illustrated in Fig. 2.

In the following subsections, a detailed description of the
proposed modification is provided, followed by a BAN logic
analysis.

3.1 The proposedmitigation

The proposed solution consists of three modules: gen_
keypairs, crypto_authenc_sign, and crypto_dec_ver.

gen_keypairs is used to generate public and private keys
forBob to be used to verify themessages received fromAlice.
In addition, it is used to generate two key pairs for Alice. The
first key pair is used in signature, and the latter is used for
encryption. The reason separate key pairs are used for sig-
nature and encryption is to provide more security. When a
private key is compromised for encryption, the attacker can

123

Networking and cryptography library with a non-repudiation… 7

gen_keypairs:
Input: sksa, skea, skeb

Output: pksa, pkea, pkeb

{ pksa = crypto_sign_keypair(sksa)
pkea = crypto_box_keypair(skea)

pkeb = crypto_box_keypair(skeb)
}

Fig. 3 Pseudocode of gen_keypairs function

Start

Step 1: Generate Alice keypairs for
signature using function

Step 2: Generate Alice keypairs for encryption using
function crypto_box_keypair

Step 3: Generate Bob keypairs for encryption using function
crypto_box_keypair

End

Fig. 4 Flowchart of gen_keypairs function

decrypt the transferred messages but cannot use it for sig-
natures. First, genkeypairs generate the signature key pairs
of Alice by using crypto_sign_keypair in the NaCl library.
It, then, generates Alice’s key pairs for encryption using the
crypto_box_keypair in the NaCl library. The last step is to
generate the Bob key pairs used for encryption. The pseu-
docode for this function (gen_keypairs) is depicted in Fig. 3.
A flowchart of the gen_keypairs is shown in Fig. 4.

In Fig. 3, pksa is the public key forAlice’s signature, sksa is
the secret key for Alice’s signature, pkea is the public key for
Alice’s encryption, skea is the secret key for Alice’s encryp-
tion, pkeb is the public key for Bob’s encryption, and skeb is
the secret key for Bob’s encryption.

crypto_authenc_sign is used to perform the crypto-
graphic operations at the sender. First, the sender (Alice)
signs the message “M” using her secret key for encryp-
tion “skea,” and encrypts the output using the public key
for encryption of the receiver (Bob) “pkeb” to produce the
output ciphertext “c”. This is performed using crypto_box
in the NaCl library. To provide non-repudiation, a second
step is performed. In this step, Alice signs the output cipher-
text to produce “sm” using its secret signature key “sksa”.

crypto_authenc_sign:
Input: M, n, pkeb, skea, sksa

Output: sm
{c = crypto_box(M,n,pkeb,skea)
sm = crypto_sign(c,sksa)
}

Fig. 5 Pseudocode of crypto_authenc_sign function

crypto_dec_ver:
Input: sm, pksa, n, pkea, skeb

Output: M
{c = crypto_sign_open(sm,pksa)
 M = crypto_box_open(c,n,pkea,skeb)
}

Fig. 6 Pseudocode of crypto_dec_ver function

This is performed using the crypto_sign function of the NaCl
library. The pseudocode for this function (crypto_auth_sign)
is depicted in Fig. 5.

crypto_dec_ver is used to perform cryptographic opera-
tions at the receiver. First, the receiver (Bob) verifies Alice’s
signature using the public key of the signature of Alice
“pksa”. This is performed using the crypto_sign_open func-
tion of the NaCl library. To retrieve M, Bob decrypts the
output using its secret key of encryption “skeb,” and then ver-
ifies Alice’s signature using the public key of encryption of
Alice “pkea”. This is performed using the crypto_box_open
function of the NaCl library. The pseudocode for this func-
tion (crypto_dec_ver) is depicted in Fig. 6. A flowchart of
both crypto_authen_sign and crypto_dec_ver functions are
shown in Figs.7 and 8.

3.2 Implementation of themodified NaCl library

The modified NaCl library is implemented using the C pro-
gramming language and NaCl libraries. The code shown in
Fig. 9 is used to compute the secret and public keys of the
sender (Alice) for the encryption and signature. In addition,
it generates the secret and public keys of the receiver (Bob)
for encryption. The program output is as follows:

Step 1 (Fig. 4): Alice’s secret key for encryption:

0x7b,0x31,0x5b,0x94,0xfc,0xa6,0x66,0x85,0x15,0x3d,0xb1,0x5b,
0x58,0x89,0xc6,0xa6,0xc,0xa4,0xef,0x5e,0x42,0xb1,0xc7,0xe0,0x78,
0xd1,0xd2,0xd4,0x52,0x08,0xa2,0x46

123

8 M. Rasslanet al.

A

Start

Generate random message

Generate the nonce byte

Encrypt M using crypto_box function, Alice's secret key of
encryption, and bob's public key of the encryption

Sign the ciphertext using crypto_sign function and Alice's secret key
of the signature

Send the signed ciphertext to Bob

End

Fig. 7 Flowchart of crypto_authenc_sign function

Start

Bob receives the signed ciphertext sent
from Alice

Bob verifies the message using Alice's public key
of the signature using the crypto_sign_open

function

Bob decrypts the verified ciphertext using Alice’s public key
of encryption and Bob’s secret key of encryption using the

crypto_box_open function

Bob generates the original message

End

Fig. 8 Flowchart of crypto_dec_ver function

Alice’s public key for encryption:

0xd4,0x12,0x0d,0x05,0x52,0x6d,0x68,0xe4,0xb5,0xb1,0xe6,0x8a,
0x9e,0x65,0x76,0x17,0x50,0xb4,0x1d,0x46,0xa9,0x10,0xb8,0xc7,
0x15,0x0c,0x9e,0xd8,0xdd,0xed,0xef,0x00

Step 2 (Fig. 4): Alice’s public key for signature:

0x9c,0x75,0xd8,0xb9,0xbe,0x75,0xf9,0x5e,0x91,0xcd,0x2d,0x9b,
0x12,0xc8,0x54,0xc7,0x30,0x77,0xb8,0x6f,0x9f,0xca,0x8f,0xf3,0x05,
0xe6,0x54,0x33,0xf0,0x78,0xc4,0xc8

Alice’s secret key for signature:

0x08,0x5d,0xbb,0x34,0x00,0xba,0x8c,0x36,0x61,0xb8,0xa9,0x70,
0x5c,0xc4,0x7b,0x91,0x6e,0x4c,0x52,0x70,0xf8,0x2a,0x2a,0x52,
0x7b,0x1b,0xfd,0x26,0x80,0x41,0x19,0x69,0xb4,0xc9,0xcf,0x43,
0x61,0x89,0x30,0xbb,0x60,0x69,0x26,0x86,0xe4,0x1a,0x90,0xfe,
0x39,0xd9,0xdb,0xfb,0x8d,0x03,0x92,0xe7,0x9d,0x76,0x52,0x00,
0x59,0x8c,0x9a,0xd0

Step 3 (Fig. 4): Bob’s secret key for encryption:

0x51,0x65,0xca,0x35,0x22,0x34,0x6b,0x26,0xee,0xc7,0x64,0xce,
0xaa,0x4f,0x2b,0x10,0x21,0x65,0x50,0x3c,0x93,0xcd,0x1f,0x3f,0x7f,
0x90,0x8b,0x26,0x1b,0x0e,0x43,0xf9

Bob’s public key for encryption:

0xff,0xca,0x3c,0x2c,0xee,0x6b,0x3e,0x60,0xc6,0x78,0x1c,0x6d,0x30,
0xb7,0xe1,0xad,0x0c,0xce,0x12,0x9e,0xb7,0xeb,0x7c,0x2c,0x32,
0xa4,0x70,0xf0,0x03,0x71,0x22,0x5a

The code shown in Fig. 10 is used to implement the
crypto_authenc_sign function. This function is used by the
sender (Alice) to sign the message using its secret key for
encryption and then encrypts the output using the public key
of encryption of the receiver. Finally, it signs an authenti-
cated message using its secret key for the signature before
sending the output to Bob. The generated random message
before encryption and signing is as follows:

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xe2,0xc3,0x2e,0x3d,

0xbd,0x31,0xcc,0x7d,0x4c,0x63

The output is as follows after applying crypto_
authenc_sign function:

0xce,0xd8,0x39,0x39,0x1b,0xee,0xb4,0xf2,0xc2,0xd0,0x9d,0xc8,
0xa8,0x5d,0xa9,0x70,0x45,0x0f,0xc9,0xbf,0x06,0x1e,0x03,0x27,
0x5b,0xc7,0x9c,0xc6,0xed,0x91,0x71,0x15,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x54,0xcc,0x4b,0x48,0x6b,0xaf,0x66,0x8a,0x02,0xe5,0xc0,0x46,
0xd4,0x7e,0xfa,0xdd,0x18,0x35,0x0a,0x6a,0x54,0x3e,0x3e,0xad,
0xdb,0xca,0x15,0x9a,0x17,0xa8,0x64,0x1b,0x24,0x16,0xd7,0x64,
0x4d,0x92,0x37,0xd4,0xbe,0x4a,0xb8,0xfd,0x9d,0xa9,0xe8,0xb6,
0xc0,0x93,0x1f,0xe3,0x1c,0xcb,0x23,0xe0,0xfc,0x05

The code shown in Fig. 11 is used to implement the
crypto_dec_ver function. This function is used by the

123

Networking and cryptography library with a non-repudiation… 9

Fig. 9 The C code used in the
implementation of gen_keypairs
function

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "crypto_box.h"
#include "randombytes.h"
#include "crypto_sign.h"
#include "crypto_hash.h"
#include "crypto_scalarmult_curve25519.h"

void gen_keypairs (unsigned char *ASpk, unsigned char *ASsk, unsigned
char *ACpk,

unsigned char *ACsk, unsigned char *BCpk, unsigned char
*BCsk)
{

int i=0;
unsigned char h[crypto_hash_BYTES];
crypto_sign_keypair(ASpk,ASsk);
crypto_hash(h,ASpk,sizeof ASpk);

for(i=0; i < crypto_box_SECRETKEYBYTES ; i++)
 {
 ACsk[i]=h[i];
 }
 crypto_scalarmult_curve25519_base(ACpk,ACsk);
 crypto_box_keypair(BCpk,BCsk);

}

void crypto_Enc_Sign(unsigned char *c,unsigned char *m,unsigned long long mlen, unsigned char *n,unsigned char *BCpk,unsigned char
*ACsk,
unsigned char *sm, unsigned long long *smlen, unsigned char *ASsk)
{

int i=0;
unsigned long long smlenR;
clock_t begin1 = clock();
crypto_box(c,m,mlen + crypto_box_ZEROBYTES,n,BCpk,ACsk);
clock_t end1 = clock();
double time_spent1 = (double)(end1 - begin1)*1000 / CLOCKS_PER_SEC;
clock_t begin2 = clock();
crypto_sign(sm,&smlenR,c,mlen + crypto_box_ZEROBYTES,ASsk);
clock_t end2 = clock();
double time_spent2 = (double)(end2 - begin2)*1000 / CLOCKS_PER_SEC;
*smlen=smlenR;

}

Fig. 10 The C code used in the implementation of crypto_authenc_sign function

void crypto_Dec_Ver(unsigned char *m2,unsigned long long mlen,unsigned char *n,unsigned char *ACpk,unsigned char *BCsk,
char *sm, unsigned long long smlen,unsigned char *ASpk)

{
int i=0;

 unsigned long long tmlength=0; // the length of the verified message
 unsigned char tm[10000]; // verified message array

clock_t begin3 = clock();
// verify the signed message
crypto_sign_open(tm,&tmlength,sm,smlen,ASpk);
clock_t end3 = clock();
double time_spent3 = (double)(end3 - begin3)*1000 / CLOCKS_PER_SEC;
clock_t begin4 = clock();

 if (crypto_box_open(m2,tm,mlen + crypto_box_ZEROBYTES,n,ACpk,BCsk) == 0)
 {

printf(" \n \n ciphertext succeed verification\n");
 }

 else {printf(" \n \n ciphertext fails verification\n");}
clock_t end4 = clock();

 double time_spent4 = (double)(end4 - begin4)*1000 / CLOCKS_PER_SEC;
}

unsigned

Fig. 11 The C code used in the implementation of crypto_dec_ver function

123

10 M. Rasslanet al.

receiver (Bob) to verify and retrieve the original message.
The program output is as follows after verification and
decryption:

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xe2,0xc3,0x2e,0x3d,
0xbd,0x31,0xcc,0x7d,0x4c,0x63

3.3 Logical analysis of themodified NaCl library
using BAN logic

In this subsection, the logical analysis of the modified NaCl
library is, first, introduced. Burrows et al. [8] introduced
a logic analysis method called BAN logic which analyzes
the authentication protocols, all primitives’ shared keys, and
public keys are formalized. BAN logic consists of a set
of rules. These rules describe and investigate information
exchange protocols. Specifically, BAN logic enables users
to define the dependability and security of transmitted infor-
mation. BAN logic begins with the notion that transmitted
information is unprotected and subject to tampering and pub-
lic observation. BAN logic enables one to simply reason
cryptographic protocols using a formal methodology. The
foundation of BAN logic is the certainty (belief) of a con-
tended party in the certainty of a formalized prescription.
A formalized prescription is incorrect in the general sense
of certainty [9]. As mentioned above, authentication proto-
cols are essential components in the blockchain, and it is
necessary to ensure the correctness of these protocols. BAN
logic uses logic to define authentication protocols. The steps
applied to the initial NaCl library were performed for the
modified proposal. First, each message was converted into a
logical description. For an effective confirmation of correct-
ness, the certainty (belief) of the sender (signer) and receiver
(verifier) should fulfill the procedure objectives. BAN logic
assumes that the verification step of the authentication is
accomplished among the signer (Alice) and the receiver
(Bob) if there is a message “X” such that the receiver Bob is
convinced that it has been sent by the sender, Alice. There-
fore, the authentication process between Alice and Bob is
accomplished if Bob | ≡ Alice | ≡ X and Bob | ≡ X, where
the representation | ≡means to believe (or be convinced by).
Authentication is accomplished betweenAlice andBob if the
following goals are accomplished:

Goal 1: Bob|≡ Alice|≡ Mi (33)

Goal 2: Bob|≡ Mi (34)

where Mi characterizes the statement that is sent by Alice

• Alice first signs the statement (message) “Mi” using the
encryption secret-key. Then, the result is encrypted by
making use of Bob’s public-key of encryption to generate
“c”. Subsequently, c is signed using Alice’s secret signa-
ture key.

• Alice transmits {{{Mi, n}skea}pkeb}sksa to Bob, where n
is a nonce produced by Alice.

The analysis is completed by assuming the following:

Alice|≡ pkeb−→ Bob (35)

Alice|≡ pkea−→ Alice (36)

Alice|≡ pksa−→ Alice (37)

Bob|≡ pkeb−→ Bob (38)

Bob|≡ pkea−→ Alice (39)

Bob|≡ pksa−→ Alice (40)

Bob|≡ Alice ⇒ Mi (41)

Alice|≡ #n (42)

Bob|≡ #n (43)

Equation (35) shows thatAlice is convinced that pkeb is the
public key for encryption. Equation (36) indicates that Alice
is convinced that pkea is the public key for encryption. Equa-
tion (37) shows that Alice is convinced that pksa is the public
key for the signature. Equation (38) demonstrates that Bob is
convinced that pkeb is his public key for encryption: Eq. (39)
shows that Bob is convinced that pkea isAlice’s public key for
encryption. Equation (40) shows that Bob is convinced that
pksa is Alice’s public signature key. Subsequently, Eq. (41)
shows that Bob is convinced that Alice has (authority) juris-
diction over the sent statement (message). Finally, Eqs. (42)
and (43) show that Alice and Bob are convinced that “n” is
fresh (n changes with every message). Given these assump-
tions, the messages transmitted during the initial phase were
converted into a logical description. Finally, the basic rules
of BAN logic were applied to the logical formulas. For more
information about the BAN logic, refer to [8, 9]. Using the
message {{{Mi,n}skea}pkeb}sksa, Eq. (40) and the message
meaning rule

Bob|≡ Alice|∼ (n, Mi) (44)

123

Networking and cryptography library with a non-repudiation… 11

Fig. 12 Total computing time at sender and receiver

However, Alice and Bob are convinced that n is fresh
(Eqs. (42) and (43)). Thus, by applying the nonce verification
rule, the following is obtained.

Bob|≡ Alice|≡ Mi (45)

According to the jurisdiction rule using Eq. (41), the fol-
lowing result is obtained:

Bob|≡ Mi (46)

From Eqs. (45) and (46), it is proven that the proposed
modification to the NaCl library achieves the objectives of
authentication (non-repudiation property) without pitfalls.
This is due to the fact that Bob will not be able to re-sign the
message rather than Alice. The use of BAN logic proves that
the initial NaCl library cannot resist nonrepudiation attacks.
On the other hand, the proposed modification fixes this issue
and is proven by logical analysis.

4 Performance analysis

In this section, Fig. 12 and Table 1 provide a comparison of
the execution times for both communicating parties (sender
and receiver) in the case of the original NaCl and modi-
fied NaCl. The test environment consists of the following
(the processor: 1.6 GHz Dual-Core Intel Core i5, Memory:
8 GB 1600 MHz DDR3, Development language: C, The
IDE: Eclipse, the calculated time is in milliseconds (ms),
and the calculated message length is in bytes). The modified
NaCl consumes more time which is expected as adding a
new block of signature will increase the execution time by
a range of 50% since the time is calculated for three blocks
instead of two. However, the modified NaCl library achieves

Table 1 Total computing time at sender and receiver

/Message length
(byte)

Total time (original
Nacl) sender and
receiver (ms)

Total time
(modified NaCl)
sender and
receiver (ms)

1 5.406 8.08

2 5.176 7.271

3 5.684 7.836

5 5.895 8.349

6 5.339 7.596

7 5.725 8.497

9 6.535 8.869

10 6.4 8.682

30 6.118 8.853

50 5.422 8.005

100 6.729 9.016

400 4.618 6.736

1000 4.968 7.05

5000 4.982 7.124

9000 4.865 7.434

Table 2 Security goals in original NaCl and modified NaCl

Security
Goal

Confidentiality Integrity Non-Repudiation

Original
NaCl

Yes Yes No

Modified
NaCl

Yes Yes Yes

the non-repudiation security goal, as shown in Table 2. In
Table 1, the total time represents the sum of time needed
for the cryptographic operations at both the sender and the
receiver.

Example of the running code while the message length is
10 bytes:

Alice’s private key for encryption:

0x0b,0xc7,0x3e,0xae,0xfb,0xd5,0x40,0xc2,0x48,0x9f,0xa3,0x62,0xe2,
0xb2,0xaa,0xb7,0xc6,0x73,0x42,0xd7,0xd3,0xd3,0xfd,0x12,0x24,
0x47,0x64,0xee,0x30,0x7b,0x57,0xbb

Alice’s public key for encryption:

0x97,0x69,0x63,0x32,0xa7,0x7c,0xd6,0x4e,0xe4,0xd5,0x4c,0x8c,
0xd1,0x2f,0x8d,0x6f,0x8c,0x50,0xd0,0x16,0xd2,0x3c,0xe0,0x7e,
0x42,0x33,0xa1,0xf7,0x98,0x25,0x5c,0x47

123

12 M. Rasslanet al.

Bob’s private key for decryption:

0xba,0xb3,0x3e,0xdc,0x5f,0x96,0x62,0x88,0xaf,0x07,0xaf,0xa5,0xd3,
0x92,0x79,0x0e,0xb6,0x2d,0x7b,0xee,0xa0,0x41,0xc0,0x5b,0x1a,
0x0e,0x5f,0x2f,0x76,0x5f,0x2c,0x53

Bob’s public key for decryption:

0x25,0x3c,0x87,0x2d,0x02,0x1d,0xd1,0x3c,0x7e,0x0b,0x56,0x30,
0xee,0x30,0xe9,0x17,0xce,0xeb,0xa8,0x2c,0x80,0x03,0x30,0x99,
0xb2,0xc2,0x53,0x52,0xaa,0xd9,0xd7,0x4d

Alice’s public key for signature:

0xdb,0x73,0x6a,0x22,0xf0,0xb1,0xbd,0xad,0xf8,0x8c,0x14,0xe7,
0x85,0x85,0x79,0x59,0x57,0xa4,0x45,0x7f,0x7a,0x81,0x0b,0xed,
0xc3,0x66,0x1c,0x59,0x94,0x45,0xdd,0xd8

Alice’s private key for signature:

0x68,0x17,0xb2,0xcb,0xae,0x41,0xdb,0x57,0xf3,0x64,0x97,0x9b,
0x17,0xc0,0x44,0x54,0xe7,0x57,0xc8,0x37,0x79,0x88,0x20,0x00,
0xf9,0x08,0x02,0x0b,0x41,0x87,0xc9,0x76,0xf0,0x96,0x14,0x05,
0x09,0xbf,0x12,0x61,0x70,0xac,0xfa,0x17,0x7d,0x86,0x1f,0xa9,
0xe2,0xf0,0xc9,0x92,0x25,0x5e,0x87,0x5c,0xe2,0x8f,0xe3,0x58,
0xad,0xac,0x5a,0x64

The generated random message before encryption and
signing:

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x96,0x45,0x46,
0xf8,0x7d,0x1c,0xd6,0x3a,0x00

At the sender, the consumed time for signing a message
(of length 10 bytes) using Alice’s secret key of encryption
followed by encryption using Bob’s public key of encryption
is 0.115 ms. Then, the time of signing the message using
Alice’s secret key of signature is 1.992 ms. The sent message
is as follows:

0x82,0x8c,0x49,0x27,0xbe,0xe5,0x59,0xe3,0xca,0xf6,0xc3,0x0c,0x84,
0xf6,0x0d,0x19,0xfd,0x49,0xff,0x1e,0x7d,0xcf,0xfc,0xe9,0xa7,0xa5,
0xe5,0xf6,0x28,0xae,0x16,0x2c,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xb0,0x26,
0x3b,0xc3,0x69,0x51,0x71,0x8a,0xf1,0x39,0x2f,0xee,0x76,0x2c,
0x20,0x6a,0x40,0xe2,0xef,0x52,0x95,0xc1,0xbe,0x4a,0xfc,0xf9,
0x1e,0xd6,0x64,0xd3,0xbb,0x7c,0x09,0xb1,0xce,0x3c,0xfd,0x8c,
0x1f,0x13,0x75,0xe7,0xd1,0x92,0xf8,0xe2,0x5a,0x5a,0xfd,0x7c,
0x12,0x38,0x67,0xda,0xa5,0xb0,0x74,0x08

At the receiver, the consumed time for verifying the
received message using Alice’s public key of signature is
0.1189 ms. Then, the time of decrypting the message using
Bob’s private key and verifying using Alice’s public key of
encryption is 5.963000 ms. The output message is:

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x96,0x45,0x46,
0xf8,0x7d,0x1c,0xd6,0x3a,0x00

Therefore, the total consumed-time for a message of
length 10 bytes at both the sender and the receiver sides is
8.462000 ms.

5 Conclusion and future work

Blockchain provides solutions for several applications.
Blockchain has the ability to provide the following char-
acteristics: decentralization, anonymity, privacy, trust, and
immutability. This makes it a solution for most inventions
in the information and communication technology industry.
It is a pillar of the fourth industrial revolution and it is a
cryptographically demanding technology that is regarded as
one of the most influential topics in academia. The secu-
rity services that need to be delivered to design a secure
application are confidentiality, integrity, authentication, and
non-repudiation. These security services are provided using
cryptographic algorithms that are the base of Blockchain
functionality. Many blockchain platforms currently utilize
third-party cryptographic libraries that offer many crypto-
graphic primitives in order to ensure users’ protection against
cyber-attacks. NaCl and its forks are the most widely used
cryptographic libraries. NaCl is known to be one of the
best libraries that provide usability property. While NaCl
is easy to use and guarantees: confidentiality, integrity, and
authenticity, it fails to provide a non-repudiation service. In
this paper, an improvement to the blockchain platforms is
proposed by enhancing the NaCl library to achieve the non-
repudiation property that is widely used in the Blockchain
platform. In order to provide the aforementioned security
services, NaCl operation is based on signing and encrypting
the messages. Therefore, the non-repudiation service is not
provided as proved by applying the BAN logic rules to the
library. To deliver the non-repudiation property, we propose
a solution that is based on adding a signature block. Themod-
ified library is analyzed using the BAN logic that proves the
correctness of the proposed solution. The analysis suggests
that the proposed solution fixes the aforementioned problem.
Adding non-repudiation to a blockchain platform keeps law
and order when it comes to technology misuse. In this paper,
we introduce the modification that adds non-repudiation to
blockchain platforms that are built on the NaCl library and
its forks and rely on developers to revisit these forks in order
to implement the suggestedmodification. Adding a signature
block increases the execution time of the proposed modifi-
cation since the time is calculated for three blocks instead

123

Networking and cryptography library with a non-repudiation… 13

of two. In order to improve the performance of the imple-
mentation of the modified NaCl library, parallelization and
pipelining techniques are suggested to be deployed in future
work.

Author contributions MR: Conceptualization and Idea establishment;
Funding Acquisition; Writing—Review & Editing; Coding: Formal
Analysis; Methodology. MMN: Conceptualization and Idea estab-
lishment; Funding Acquisition; Writing—Review & Editing; Coding;
Formal Analysis; Methodology. DA: Idea establishment; Funding
Acquisition; Writing—Review & Editing; Coding; Formal Analysis;
Methodology. AE; Coding. HA; Funding Acquisition; Writing—Re-
view & Editing; Formal Analysis. The authors read and approved the
final manuscript.

Funding The authors received no funding for this study.

Declarations

Conflict of interest The authors declare that they have no conflicts of
interest to report regarding the present study.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system
(2008). https://bitcoin.org/bitcoin.pdf.

2. Wong, E.: Retrieving dispersed data from SDD-1: a system for
distributed databases. In: 1977 Berkeley Workshop on Distributed
Data Management and Computer Networks, University of Califor-
nia, Berkeley, CA, USA, pp. 217–235 (1977)

3. Zheng, Z., Xie, S., Dai, H., Chen X., Wang, H.: An overview of
blockchain technology: architecture, consensus, and future trends.
In: 6th IEEE International Congress on Big Data, Honolulu,
pp. 557–564 (2017)

4. Casinoa, F., Dasaklisb, T.K., Patsakisa, C.: A systematic literature
review of blockchain-based applications: current status, classifica-
tion and open issues. Telematics Inform. 36(1), 55–81 (2019)

5. Colomo-Palacios, R., Sánchez-Gordón, M., Arias-Aranda, D.: A
critical review on blockchain assessment initiatives: a technology
evolution viewpoint. Softw. Evolut. Process 32(11), 1–11 (2020)

6. Storublevtcev, N.: Cryptography in blockchain. In: Interna-
tional Conference on Computational Science and Applications
ICCSA2019, Saint Petersburg, Russia, pp 495–508 (2019)

7. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a
new cryptographic library. In: International Conference on Cryp-
tology and Information Security in Latin America LATINCRYPT

2012: Progress in Cryptology—LATINCRYPT 2012, Santiago de
Chile, Chile, pp. 159–176 (2012).

8. Burrows, M., Abadi, M., Needham, R.: A logic of authentication.
In: Proceedings of the Royal Society of London A: Mathemati-
cal, Physical and Engineering Sciences, London, UK, pp. 233–271
(1989)

9. Wessels, J.: Application of BAN-logic. Technical report, CMG
Public Sector B.V (2001). http://www.win.tue.nl/ipa/archive/
springdays2001/banwessels

10. Gamage, H.T.M., Weerasinghe, H.D., Dias, N.G.J.: A survey
on blockchain technology concepts, applications, and issues. SN
Comput. Sci. 1, 114 (2020). https://doi.org/10.1007/s42979-020-
00123-0

11. wolfSSL Inc. wolfCrypt Embedded Crypto Engine. https://www.
wolfssl.com/products/wolfcrypt/. Last Accessed 21 Feb 2023

12. Cifra. A collection of cryptographic primitives targeted at embed-
ded use. https://github.com/ctz/cifra. Last Accessed 21 Feb 2023

13. Intel Corporation. TinyCryptCryptographicLibrary. https://github.
com/intel/tinycrypt. Last Accessed 21 Feb 2023

14. Ken MacKay. micro-ecc. http://kmackay.ca/micro-ecc/. Last
Accessed 21 Feb 2023

15. https://github.com/brix/crypto-js. Last Accessed 21 Feb 2023
16. D. F. Aranha, C. P. L. Gouvˆea, T. Markmann, R. S. Wahby, and

K. Liao. RELIC is an Efficient LIbrary for Cryptography. https://
github.com/relic-toolkit/relic. Last Accessed 21 Feb 2023

17. https://bouncycastle.org/java.html. Last Accessed 21 Feb 2023
18. Ferrag, M.A., Shu, L.: The performance evaluation of blockchain-

based security and privacy systems for the internet of things: a
tutorial. IEEE Internet Things J. 8(24), 17236–17260 (2021)

19. PBCLibrary. http://crypto.stanford.edu/pbc. Last Accessed 21 Feb
2023

20. Crypto++ Library. https://www.cryptopp.com/. Last Accessed 21
Feb 2023

21. Miracl Library. https://github.com/miracl/MIRACL. Last
Accessed 21 Feb 2023

22. Hyperledger Ursa. https://www.hyperledger.org/projects/ursa.
Last Accessed 21 Feb 2023

23. OpenSSL https://github.com/openssl/openssl. Last Accessed 21
Feb 2023

24. Acar, Y., Backes, M., Fahl, S., Garfinkel, S., Kim, D., et al.:
Comparing the usability of cryptographic APIs. In: 2017 IEEE
Symposium on Security and Privacy (SP), California, CA, USA,
pp. 154–171 (2017). https://doi.org/10.1109/SP.2017.52

25. Grabovský, M.: Measuring the usability of cryptographic libraries.
Bachelor’s Thesis, Masaryk University Faculty of Informatics,
Brno, Czech Republic, Spring (2018)

26. Keck, P.: Analysing and improving the crypto ecosystem of Rust.
Master’s thesis, Institute of Software Technology, University of
Stuttgart, Stuttgart, Germany (2017)

27. Silde, T.: Comparative study of ECC libraries for embedded
devices. Technical report, Norwegian University of Science and
Technology (2019)

28. Balamurugan, C., Singh, K., Ganesan, G., Rajarajan, M.: Code-
based post-quantum cryptography. Preprints 2021, 2021040734.
https://doi.org/10.20944/preprints202104.0734.v1 (2021)

29. Zinzindohou, J., Bhargavan, K., Protzenko, J., Beurdouche, B.:
HACL*: A verified modern cryptographic library. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 1789–1806 (2017)

30. https://github.com/jedisct1/libsodium. Last Accessed 21 Feb 2023
31. https://tuweni.apache.org/docs/org.apache.tuweni.crypto.

sodium/-lib-sodium/index.html. Last Accessed 25 Feb 23.
32. https://duniter.org/. Last Accessed 25 Feb 2023
33. https://pytezos.org/contents.html. Last Accessed 25 Feb 2023
34. https://z.cash/. Last Accessed 25 Feb 2023

123

http://creativecommons.org/licenses/by/4.0/
https://bitcoin.org/bitcoin.pdf
http://www.win.tue.nl/ipa/archive/springdays2001/banwessels
https://doi.org/10.1007/s42979-020-00123-0
https://www.wolfssl.com/products/wolfcrypt/
https://github.com/ctz/cifra
https://github.com/intel/tinycrypt
http://kmackay.ca/micro-ecc/
https://github.com/brix/crypto-js
https://github.com/relic-toolkit/relic
https://bouncycastle.org/java.html
http://crypto.stanford.edu/pbc
https://www.cryptopp.com/
https://github.com/miracl/MIRACL
https://www.hyperledger.org/projects/ursa
https://github.com/openssl/openssl
https://doi.org/10.1109/SP.2017.52
https://doi.org/10.20944/preprints202104.0734.v1
https://github.com/jedisct1/libsodium
https://tuweni.apache.org/docs/org.apache.tuweni.crypto.sodium/-lib-sodium/index.html
https://duniter.org/
https://pytezos.org/contents.html
https://z.cash/

14 M. Rasslanet al.

35. https://github.com/MercerWeiss/SilentDragon. Last Accesses 25
Feb 2023

36. Patnaik, N., Hallett, J., Rashid, A.: Usability smells: an analysis
of developers’ struggle with crypto libraries. In: Proceedings of
the Fifteenth Symposium on Usable Privacy and Security (spon-
sored byUSENIX), Santa Clara,California, CA,USA, pp. 245–258
(2019)

37. Wohlwender, J., Huesmann, R., Heinemann, A., Wiesmaier, A.:
Cryptolib: comparing and selecting cryptography libraries. (long
version of EICC 2022 publication) (2022). arXiv:2203.16370.

38. Namasudra, S., Sharma, P.: Achieving a decentralized and secure
cab sharing system using blockchain technology. IEEE Trans Intell
Transp Syst (2022)

39. Lopez, M.A., Terron, S., Lombardo, J.M., Gonzalez-Crespo, R.:
Towards a solution to create, test and publish mixed reality expe-
riences for occupational safety and health learning: training-MR
(2021)

40. Namasudra, S., Sharma, P., Crespo, R.G., Shanmuganathan, V.:
Blockchain-BasedMedical Certificate Generation and Verification
for IoT-BasedHealthcare Systems. In: IEEEConsumer Electronics
Magazine, vol. 12, no. 2, pp. 83–93, 1 March 2023, https://doi.org/
10.1109/MCE.2021.3140048.

41. García-Peñalvo, F., Vázquez-Ingelmo, A., García-Holgado, A.,
Sampedro-Gómez, J., Sánchez-Puente, A., Vicente-Palacios, V.,
Dorado-Díaz, P.I., Sánchez, P.L.: Application of artificial intelli-
gence algorithms within the medical context for non-specialized
users: the CARTIER-IA platform (2021)

42. Sangjukta, D., Namasudra, S.:MACPABE:Multi-Authority-based
CP-ABE with efficient attribute revocation for IoT-enabled health-
care infrastructure. Int. J. Netw. Manag. (2022)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://github.com/MercerWeiss/SilentDragon
http://arxiv.org/abs/2203.16370
https://doi.org/10.1109/MCE.2021.3140048

	Networking and cryptography library with a non-repudiation flavor for blockchain
	Abstract
	1 Introduction
	2 Literature review
	2.1 Cryptographic libraries
	2.2 NaCl library
	2.3 Attack on NaCl library and its security analysis

	3 Proposed modification to NaCl library
	3.1 The proposed mitigation
	3.2 Implementation of the modified NaCl library
	3.3 Logical analysis of the modified NaCl library using BAN logic

	4 Performance analysis
	5 Conclusion and future work
	References

