Journal of Computer Virology and Hacking Techniques (2024) 20:261-275
https://doi.org/10.1007/s11416-023-00476-z

ORIGINAL PAPER O‘)

Check for
updates

Recognition of tor malware and onion services

1

Jesper Bergman'(® - Oliver B. Popov'’

Received: 11 October 2022 / Accepted: 16 March 2023 / Published online: 29 April 2023
© The Author(s) 2023

Abstract

The transformation of the contemporary societies through digital technologies has had a profound effect on all human
activities including those that are in the realm of illegal, unlawful, and criminal deeds. Moreover, the affordances provided
by the anonymity creating techniques such as the Tor protocol which are beneficial for preserving civil liberties, appear to
be highly profitable for various types of miscreants whose crimes range from human trafficking, arms trading, and child
pornography to selling controlled substances and racketeering. The Tor similar technologies are the foundation of a vast,
often mysterious, sometimes anecdotal, and occasionally dangerous space termed as the Dark Web. Using the features that
make the Internet a uniquely generative knowledge agglomeration, with no borders, and permeating different jurisdictions,
the Dark Web is a source of perpetual challenges for both national and international law enforcement agencies. The anonymity
granted to the wrong people increases the complexity and the cost of identifying both the crimes and the criminals, which
is often exacerbated with lack of proper human resources. Technologies such as machine learning and artificial intelligence
come to the rescue through automation, intensive data harvesting, and analysis built into various types of web crawlers to
explore and identify dark markets and the people behind them. It is essential for an effective and efficient crawling to have a
pool of dark sites or onion URLs. The research study presents a way to build a crawling mechanism by extracting onion URLs
from malicious executables by running them in a sandbox environment and then analysing the log file using machine learning
algorithms. By discerning between the malware that uses the Tor network and the one that does not, we were able to classify
the Tor using malware with an accuracy rate of 91% with a logistic regression algorithm. The initial results suggest that it is
possible to use this machine learning approach to diagnose new malicious servers on the Tor network. Embedding this kind
of mechanism into the crawler may also induce predictability, and thus efficiency in recognising dark market activities, and
consequently, their closure.

Keywords Tor - Malware - Machine learning - Forensics

1 Introduction Networks (ACNSs), affords through anonymity-granting tech-

niques preservation of civil liberties. Nevertheless, the same

The generative nature of digital technologies has transformed
parts of the society from kinetic or analogue into non-kinetic
or digital, creating a hybrid social, economic, and cultural
space termed as Cyber Physical Systems (CPS). Digital
transformation, among others, has had a profound effect on
all human activities including those that are in the realm
of illegal and criminal deeds. For instance, the Tor pro-
tocol, almost a synonym for Anonymous Communication

B Jesper Bergman
jesperbe @dsv.su.se

Oliver B. Popov
popov @dsv.su.se

Department of Computer and Systems Sciences, Stockholm
University, Stockholm, Sweden

protocol appears to be highly profitable for miscreants whose
crimes range from human trafficking, arms trading, and child
pornography to selling controlled substances and racketeer-
ing.

Tor similar technologies are the foundation of vast and
occasionally dangerous space termed as the Dark Web. With
no borders, and permeating different jurisdictions, the dark
web is a source of perpetual challenges for national and inter-
national law enforcement agencies. The anonymity increases
the complexity and the cost of identifying both crimes and
criminals, which is often exacerbated with a lack of proper
human resources [15]. However, digital technologies have
also created a multitude of techniques and tools, for instance
machine learning, artificial intelligence, intensive data har-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-023-00476-z&domain=pdf
http://orcid.org/0000-0002-2653-9325
http://orcid.org/0000-0001-6176-6817

262

J. Bergman, O.B. Popov

vesting, and analysis, that can be automated and built into
web crawlers to explore and identify dark markets and the
people behind them. It is an imperative for an effective and
an efficient crawling to have a pool of dark sites or onion
URLs.

The research study shows the transformed digital crime
landscape. It also provides some insight into building “intel-
ligent” crawlers by extracting onion URLs from malicious
executables. The enumeration of a few results concerning
malware identification and seizure on the Dark web starts
with the work by [51] who use text analysis to attribute child
sexual abuse material posted on the dark web. Similarly, Chen
et al. [6] collected and analysed almost ten thousand web
pages related to jihad terrorism activities on the world wide
web (or the “clear web”). Frank [18] report on a collection of
information from the dark web and the use of data analysis
algorithms to discern between extremist and non-extremist
content.

Kwon et al. [29] studied the dark web forum content span-
ning over more than two years, assessing the nature of the
communication between the forum users. Nunes et al. [35]
classified products from dark marketplaces that even made it
possible to predict previously unseen items in an automated
way.

In contrast, Westlake et al. [60] question the validity of
child sexual abuse material analysed automatically by web
crawling techniques. Namely, the risk of failing to select rele-
vant criteria could lead to a distorted description of the quality
of the analysed data [60, p. 703].

The analysis of web content and Tor onion services is
only possible when the address to the corresponding server
is known. Therefore identifying new onion services par-
taking in cyber criminal activities is necessary. Due to the
anonymity, identifying and monitoring cyber criminal hidden
services is a demanding and challenging endeavour [15].

The use of malicious software to anonymously communi-
cate with the Tor command and control hidden services and
to host ransomware payment instruction websites is well doc-
umented [7]. Indeed, malware in general, and ransomware in
particular, appear to be rather profitable for cybercriminals.
A timeline of ransomware presented by [16] shows that while
ransomware is somewhat decreasing in popularity, it is still
a threat and has increased the overall monetary value of the
extortion [16].

Several researchers such as Pirscoveanu et al. [39] have
previously explored the possibilities of using machine learn-
ing classification algorithms to automatically categorise
malware based on the behaviour of the malicious software
(application programming interface (API) calls, registry key
modifications, etcetera). Pirscoveanu et al. [39] categorised
malware such as trojan, adware, potentially unwanted pro-
grams (PUP), and worm with a precision score of over 90%
for each respective category.

@ Springer

By using similar machine learning algorithms, malware
could be classified based on its dependency on the Tor net-
work or not. Hence, in the paper, Tor-related classes of
miscreant services and corresponding servers that can be
monitored and further investigated were identified. We also
discuss how this technique can be used in practice to aid law
enforcement agencies.

The disposition of the paper is comprised of six sections
and a bibliography. The first section termed as Introduction
(this one) describes briefly the nature of anonymous commu-
nication networks, malware analysis, and the challenges of
identifying cybercriminal services on the Tor network.

In the second section Related work, a more in-depth
presentation of previous research is given together with a
detailed explanation of malware analysis, machine learning,
web crawling, and the Tor network. The research methodol-
ogy is presented in Sect. 3, and it employs an empirical study
using an experiment based strategy. Section4 provides all
the research results from the experiments, while the related
discussion is placed in Sect.5. Finally, Sect.6 presents the
conclusions and the plausible directions for future work.

2 Related work

The section outlines some of the basic ideas and concepts
behind anonymous communication networks (ACNs), in par-
ticular the Tor network, and the concept of crawlers and their
varieties on Tor. In addition, the authors discuss malware and
the possibilities for its automated analysis, classification, and
the specifics of its presence on the Tor network. Some of the
motivational aspects behind the research are also addressed.

2.1 The tor network

The Tor network consists of “onion routers” (OR) - servers
that act as traffic relay nodes through the network. We recog-
nise three different types of relays: entry, exit, and middle
ones. When connecting to the Tor network, these relays form
virtual circuits (or paths), through which the traffic is routed.
The entry nodes designated as trusted (which entails they
are stable and reliable for connectivity and conformity to the
protocol) initiate the circuit, the middle relays (at least one
for each triple) extend the circuit, and dedicated exit relays
provide a connection to a destination server (Fig. 1).

The encryption, which is the sine qua non of all anony-
mous networks including Tor, is applied to the respective
network traffic in layers that resemble the shape of an onion.
This is where the term “onion routing” originates from. While
the minimum number of nodes needed to establish a circuit
is three, it is possible to have more than one middle relay in
a circuit. Each node knows only the node it is sending the

Recognition of tor malware and onion services

263

PC client using
Tor browser
Onion

service
3g2upldpgb6iufcdm.onion/ ‘I. Entry
~ relay

‘i. Middle

Middle

relay m Exit
(rendezvous) relay
Www ﬁ |

bbc.co.uk

Fig.1 Simplified overview of the Tor network’s components

traffic to and the node it is receiving the traffic from. Thus,
there is no a single node that knows the entire structure [13].

In addition to the ORs, there are nine central Directory
Authority (DA) servers controlled by a number of selected
trusted parties around the world [57]. The DA servers share
information about the nodes in the network that is cached by
other ORs as a Directory cache. The directory cache contains
information about the nodes in the network, such as up-time,
donated bandwidth, consensus weight (which is a qualifica-
tion of their trustworthiness and reliability), and the identity
key belonging to the OR [56].

The DA servers are the only central points that come hard-
coded with the installation package of the Tor software. The
Directory servers also furnish the necessary descriptors for
reaching onion services or the servers only reachable within
the Tor network [56].

2.1.1 Tor onion services

Onion services are simply servers on the Tor network that
uphold the Tor principles to establish a “non-traceable” route
to the host. An onion service has several trusted “introductory
points”, ORs that could also work as entry and middle relay
nodes. Within the network they can be used to connect to a
service via a “rendezvous point” (RP) which is an OR as well.
The introductory points direct the requester (or the one that
solicits a service) to the rendezvous point. Then the client and
the onion service communicate via the RP which prevents the
service from revealing its location. [58].

2.1.2 The.onion top level domain

An onion service on the Tor network has a public key that
is used to derive its associated the URL. In the Tor protocol
version 2 (v2), the derivation was done by taking the 16 first
characters of the SHA1 of the RSA key of the onion service
and encode it using base32, and then adding”.onion” as the
top-level domain.

As of version 3 (v3), the domain name is comprised of
the base32 of the public key (an ED25519 key), its check-
sum, and the version number (1 byte) [58]. A v2 of an onion
service’s URL would look similar to:
“yyhws9optuwiwsns.onion” whereas a v3 server would have
a URL akin to:
“15satjgud6gucryazcyvyvhuxhr74ubygigiuyixe3abysis67
ororad.onion”

Reaching an onion service assumes knowledge of the URL
to it. There are services on the Tor network that index
known URLs to onion services and offer search engine
services for the visitors (for example https://ahmia.fi). Nev-
ertheless, there is a slight difference between the ways it
works on the Tor web compared to the clear web. The Tor
network does not use IP addresses for reaching onion ser-
vices; it only refers to URLs with the top level domain
.onion. Therefore, onion services cannot be identified by
scanning the closed IPv4/IPv6 space, which is possible on
the IP based Internet. The identification of the servers on the
Tor network is pertinent to the the capability of the search
engines to obtain the URLs from somewhere. Hence, the
corroboration of new onion services becomes a resource
intensive task. Using a brute force to “guess” an onion
URL for a v3 onion site would mean 56 characters with
a 32 character key-space (A-Z and 3-7), i.e. the number
of possible combinations would be 5632, which is equal to
87501775260248338795649138639242377629452267851
964481536.

Furthermore, for any URLs guessing it would be neces-
sary to send a request to check their availability on the Tor
network. While technically possible, it is not a very efficient
way of doing it. This is a privacy maintaining and preserving
feature of the Tor protocol, though when used for criminal
purposes it turns into a problem for law enforcement agencies
(LEAS).

2.2 Crawling onion services

After the infamous seizure and investigation of the Silk road
in 2013, much of the research in the interplay between cyber-
crime and ACNSs, has focused on analysing marketplaces
similar to the Silk Road such as AlphaBay [53], Hell [41],
Darkode [41], Black Market Reloaded [51, 53], Agora, and
Valhalla [53].

One technique for collecting evidence from websites on
ACNs is to collect and store their content automatically as
historical copies. The archived data can be analysed later
and eventually included in an investigation. The automated
collection and archiving of websites is often referred to as
“crawling”. Crawling is merely a simple paraphrase for auto-
mated collection of web content.

By replicating the web crawling techniques applied by
search engine companies such as Google, Yandex, and Baidu,

@ Springer

https://ahmia.fi

264

J. Bergman, O.B. Popov

dark marketplaces can be indexed and analysed. They are
usually protected by authentication pages, yet reachable and
accessible via the right automation techniques.

The obvious problem of finding URLs when crawling
ACNs is aggravated with the fact that there are a very few
onion sites that link to each other. Usually, administrators of
illegal websites tend to keep their exposure to a minimum and
to avoid linking to competing sites. As a result of this, visual
graphs of Tor Onion websites and their links have shown that
a small number of servers have a large number of outgoing
links, these are the link collections and search engines and
the rest have few outgoing links [4]. There are ACN crawlers
available on the net that collect onion URLs from different
websites on the world wide web WWW and archive the web
content as a digital copy, e.g. [8, 26].

Using historical copies of ACN websites as part of an
investigation and possibly also as evidence in a court of law
requires admissible and forensically sound evidence, as in
the case with the dark marketplaces Silk Road 2.0 [12] or
AlphaBay [43].

In addition to scraping web content from web servers on
ACNs like Tor, information about the servers can be scraped
as well; a command and control server for a botnet can, for
example, be scanned and monitored to see possible META
data such as operating system and other software versions,
uptime, open ports, and more. In addition, law enforcement
might be obliged to attack an Onion Service in order to disrupt
it, given that the.onion URL is know [46].

Popov et al. [40] suggest a conceptual model of an intelli-
gent dark web crawler that emphasises the overarching goal
of the artefact forensic soundness.

In the current article, by using machine learning based
classification, we present a way to identify Tor dependant
malicious software. The proposed approach enables us to
extract onion site URLSs that can be used later by the crawler
to (1) work effectively and efficiently by finding new Onion
Services, and (2) produce a better training data for improv-
ing prediction and classification as the design of the crawler
presented in Popov et al. [40].

2.3 Malware analysis

Malware is generally executed in an operating system (OS),
since it needs to communicate with the built-in components
which include, among other things, the software application
programmable interfaces (API) and libraries. The compo-
nents are also manipulated by the malware to communicate
with a command and control servers that send instructions
to the malware on an infected computer. API calls and
libraries are essential in malware analysis since they reveal
behavioural patterns.

Windows is the largest operating system amongst desk-
top computers [52] which implies that most of the malicious

@ Springer

software is written for the Microsoft OS. Windows based
software, either malicious or benign, uses several different
components to interact with the hardware and the operat-
ing system. Some of these components are Dynamic Link
Libraries (DLLs), API calls, registry keys, mutexes, and
atoms [30, 31]. These components can provide malware
analysts with valuable clues relative to the operation of the
examined programs.

DLLs are exercised by Windows software to make system
calls to the file system, parts of the hardware, and the registry
[30]. Therefore, the DLLs can provide an essential insight
during the malware analysis process.

Mutexes, or mutex objects, are mutually exclusive objects
owned by only one process at a time which makes them
suitable for process synchronisation. There is a history of
using mutexes by malware authors in marking an infected
system to avoid repetitive infections of the same systems.
[31, p. 434].

2.4 Automated malware analysis and classification

Analysing malware is often a time consuming and tedious
task. It is done either by manually inspecting the machine
code of the malware executable or (semi)automatically by
running the malware in an isolated environment (a sandbox)
to assess the behaviour of the components. It is a com-
mon approach to analyse a number of malware samples by
employing a set of different methods such as association
rules, support vector machines, decision trees, random forest,
and naive Bayes algorithms [19].

The extensive literature review by [19] posits that machine
learning based malware classification is useful to combat the
increasingly sophisticated obfuscation techniques for mal-
ware. Although efficient and effective, the authors argue that
large quantities of collected malware behaviour could result
in imbalanced data sets that might skew the classifications.

Meng et al. [34] second that malware data sets might be
imbalanced due to few benign samples in relation to mali-
cious samples, and also amongst different malware families
the proportionality might be skewed due to a higher preva-
lence of one family and not the other.

Alazab et al. [2] experimented using static analysis of
Windows executables consisting of (1) disassembly of the
malware (2) extraction of API calls, and (3) mapping of API
calls with Microsoft’s software developments documentation
pages. While not referring to any machine learning algo-
rithms, Alazab et al. [2] still underline the value of API call
analysis of Windows executable files to categorise them as
either benign or malicious.

Pirscoveanu et al. [39] employed Cuckoo Sandbox!' to
classify malware in different categories depending on their

! https://cuckoo.org.

https://cuckoo.org

Recognition of tor malware and onion services

265

behaviour. They used API calls of Windows executables to
train a support vector machine (SVM) and classify malware
executables into their respective categories: Trojan, adware,
rootkit, and potentially unwanted program (PUP) Pirscov-
eanu et al. [39].

Tian et al. [55] did a similar classification study based on
static analyses of ASCII strings present in the executables
which included strings, API calls, registry keys, and other
clear text data that was available in disassembly tool IDA Pro.
The authors achieved an accuracy rate of over 97% using a
random forest classifier based on the executable strings [55].

Shalaginov et al. [49] applied a machine learning approach
based on static analyses of portable executable (PE) headers
of malicious and benign Windows software. By using infor-
mation gain and Correlation-based Feature Subset Selection
(CFS) algorithms for feature selection, the researchers suc-
cessfully classified malware using C4.5 and k-NN with an
accuracy of circa 97% at best.

Pektas and Acarman [38] explored ensemble learning with
a random forest algorithm to classify Android malware with
an accuracy level of 92%. They created a data set for train-
ing classification models by using behavioural analyses from
Cuckoo sandbox. In addition to the random forest algorithm,
the authors also reached for linear regression and naive Bayes
classification with accuracy rates of 91% and 83% respec-
tively.

Cuckoo Sandbox Machine

: E Vicitim

| = VM :
Cuckoo malware
behaviour reports

<rsync over 55H=

RETOMOS Machine

=retomos_feature_extractor=
Parsed malware
=retomos behaviour reports
malware_classifier=
Output file:
malware
classifications

and .onion URLs

Fig.2 Topology of the research experiment setup

2.5 Tor facilitated malware

Ling et al. [32] developed “TorWard”-a tool for discovering,
blocking, and tracing malicious traffic on the Tor network.
The anonymity afforded by the Tor network leaves a few
digital footprints when the malware communicates with the
operational servers.

The same feature was behind the incognito malware com-
munication in the case of “CryptoWall” mainly based on Tor
with occasional overtures to I2P protocol to connect to its
command and control servers [50]. Similarly, Tor benefits
were extended to the work of “Onion Ransomware” [28],
“ZeuS” [54], Retefe [23, 61], and REvil [36] for their mali-
cious operations. Another example is “Eleanor” - a Mac OS
X malware that utilised the Tor network to set up an onion
service on the infected system, allowing the operators to con-
nect to the victim anonymously [21, 44].

A Tor based malware detection system presented by [20]
introduced lists of IP addresses to entry relays as a detection
mechanism for Tor facilitating software - both benign and
malicious. Complementary sources such as the correlation of
IP traffic to known domain flux botnets helped in discerning
as malicious a host connectivity in Tor and flux botnets [20].

According to [5], there are both advantages and disad-
vantages of facilitating the Tor network for communicating
malware.

The authors concluded that (1) Tor is used by malicious
software to receive operational commands and to share and
distribute data, and (2) that the Tor protocol creates obsta-
cles to the anonymous communication channel due to the
preference of domain names over IP addresses. Namely,
the command and control servers cannot hide multiple IP
addresses behind one single domain on Tor [5].

3 Research method

In this research study, we used an experiment based, quan-
titative research method to address the research problem,
since proper analytics of large quantities of data requires
efficient and effective machine learning applications. The
experiment was based on data collected from a malware
behaviour analysis system, which was later transformed
into a data set and subjected to machine learning algo-
rithms to make the classification whether the malware
was using the Tor network for its operations or not. To
assess the performance of the algorithms, multiple evalua-
tion procedures and metrics were used. The exact figures
are presented in section four. The programs created to make
these experiments were collectively named “RETOMOS”-an
acronym for “Recogniser of Tor Malware and Onion Ser-
vices”. The source code available on: https://github.com/
jesperatstockholmuniversity/RETOMOS

@ Springer

https://github.com/jesperatstockholmuniversity/RETOMOS
https://github.com/jesperatstockholmuniversity/RETOMOS

266

J. Bergman, O.B. Popov

3.1 Experiment setup and its limitations

The experimental setup for this research study consisted of
two physical machines and three modules, as depicted in
Fig. 2. There was one physical machine for running the
Cuckoo sandbox, and one for running the scripts of the
RETOMOS toolset. Each machine contained one or two
modules, namely the following.

1. Cuckoo Sandbox Machine

e The malware behaviour analysis system that logged
the behaviour of the executed malware samples and
wrote structured malware report files from them.

2. RETOMOS Machine

e The malware behaviour report database that contains
"washed down" malware reports that were fetched
from the Cuckoo sandbox machine via rsync.> A
script of the RETOMOS toolset was used to extract
the features from the Cuckoo report files into the
database. The database itself was used as training data
for the classifiers.

e The machine learning based classifier - a program
that used the malware behaviour reports as training
data to make classifications and identify.onion URLs
from them. Writes the result in an output file.

The hardware and software setup was similar to the one
presented by Pirscoveanu et al. [39], that also used Cuckoo
Sandbox to extract behavioural log files and then analyse
them using machine learning algorithms. The RETOMOS
scripts used to extract data from log files, wash the data,
inserting it to a database, and then finally analysing the data
to train classifiers on them are available on the researchers’
Github.com page.®> The RETOMOS repository contained the
following scripts:

e retomos.py - This script is the main program that
receives the user input and runs the below scripts with
the user specified options.

e retomos_feature_extractor.py - This script
extracts.json data from malware reports and inserts it into
an SQLite3 database to use it as training data later on.

e retomos_malware_classifier.py - This script
trains the classifiers on the SQLite3 database input and
tries to extract.onion URLs from malware samples clas-
sified as Tor dependant.

2 https://rsync.samba.org.
3 https://github.com/jesperatstockholmuniversity/RETOMOS.

@ Springer

3.1.1 Malware samples

The malware samples used in the experiment were down-
loaded from two repositories on [59]. All files that were not
.exe (header 4A 5A) files were excluded from the analysis.
The full list of the 4794.exe only malware samples can be
found on: https://github.com/jesperatstockholmuniversity/
RETOMOS/blob/main/All_EXE_Malware_Samples.sha256

File: VirusShare_00357

MD5: 88228ea666e518190a935e92b03481el
SHA1l: 304bfcecll62073acadecacaecalad8ll
80405283

File: VirusShare_CryptoRansom_20160715.zip
MD5: 451f9041eb6c0c585bdc6led9f8aefbf
SHAl: cecc29daa705207ac407921b09a97786
21£fc3733

Virusshare.com is a website run by Corvus Forensics*

which has been used in other machine learning focused
malware research studies: [1, 3, 25, 39]. The files in the
repositories provided by Virusshare.com are of mixed for-
mats, and for this research study, all files that were not .exe
files were excluded in order to have as homogeneous input
data as possible, in order to make guarantee that all files were
analysed in the same way in Cuckoo sandbox.

3.1.2 Cuckoo Sandbox setup

A Dell XPS with an Intel I7 CPU, 12 GB of RAM, running
Ubuntu 20.04 and the malware analysis environment Cuckoo
Sandbox 7.2 5 under Python 2.7, KVM and QEMU was used
as the choice of virtualisation software for the Cuckoo anal-
ysis machine. The "guest" or the "victim" machine was a
virtual Windows 7 32 bit machine with 4 GB of RAM, and the
software installed to simulate an authentic Windows machine
such as Tor Browser, Skype, Chrome, Firefox, Slack, Acro-
bat Reader, as well as .jpeg and .png pictures, .pdf files, and
.exe files in the user directory of the default user.

Cuckoo sandbox by default runs certain modules for
analysing behaviour and registering meta data, but also offers
multiple modules to be additionally enabled in the victim
machine to assess how the malware behaves when run in a
live system. The available modules were the following for
Cuckoo version 2.0.7 [10].

e applet: used to analyze Java applets.

4 https://corvusforensics.com/.

3 https://cuckoosandbox.org/.

https://rsync.samba.org
https://github.com/jesperatstockholmuniversity/RETOMOS
https://github.com/jesperatstockholmuniversity/RETOMOS/blob/main/All_EXE_Malware_Samples.sha256
https://github.com/jesperatstockholmuniversity/RETOMOS/blob/main/All_EXE_Malware_Samples.sha256
https://corvusforensics.com/
https://cuckoosandbox.org/

Recognition of tor malware and onion services

267

e bin: used to analyze generic binary data, such as shell-
codes.

e cpl: used to analyze Control Panel Applets.

e dll: used to run and analyze Dynamically Linked
Libraries.

e doc: used to run and analyze Microsoft Word documents.

e exe: default analysis package used to analyze generic
Windows executables.

e generic: used to run and analyze generic samples via
cmd.exe.

e ie: used to analyze Internet Explorer’s behavior when
opening the given URL or HTML file.

e jar: used to analyze Java JAR containers.

js: used to run and analyze Javascript files (e.g., those

found in attachments of emails).

hta: used to run and analyze HTML Application files.

msi: used to run and analyze MSI windows installer.

pdf: used to run and analyze PDF documents.

ppt: used to run and analyze Microsoft PowerPoint doc-

uments.

psl: used to run and analyze PowerShell scripts.

python: used to run and analyze Python scripts.

vbs: used to run and analyze VBScript files.

wsf: used to run and analyze Windows Script Host files.

xls: used to run and analyze Microsoft Excel documents.

zip: used to run and analyze Zip archives.

In the experiment setup used for this research study,
the following process modules were used: “generic”, “bin”,
“exe”, “dll”. These modules were considered the most
suitable ones for analysing malicious.exe files, since the com-
putational cost to include other, above mentioned, modules
as well would be too high, and only .exe files (with header 4D
5A) were submitted sequentially for analysis via the Cuckoo
APL

The routing option was set to “none”, which means that
Cuckoo does not route the traffic in any way; the routing is
done as it is configured to in the operating systems. The plat-
form to “windows”, since the victim analysis virtual machine
was a Windows 7 system. The time limitation for running
each malware sample was set to 320's (circa 5min and 195).
The default timeout for Cuckoo is 120s [9].

Cuckoo supports connecting the analysis “victim” virtual
machine to the Tor network, though this option is highly dis-
couraged in order not to put too much unnecessary pressure
on the Tor network [11]. Routing the malware analysis traffic
via Tor would also delay the analysis process.

These process module behaviours were registered by
Cuckoo and written to report logs files that were later
extracted and used as features in the training data sets to train
the different classifiers. Listing 1 presents an excerpt from a
Cuckoo report file. Cuckoo logs all everything a malware
sample does inside the sandbox/victim machine: network

activity, Windows registry activity, used DLLs, used API
calls, and more [10].

Listing 1 Excerpt from Cuckoo behaviour analysis report

"target": {
"category": "file",
"file": {
"yara": [],
"shal": "25f28f48599759dfb8b6df88
b13d93ba0610fa%a",
"name": "VirusShare_c1242905e1c0
af38d0d8f4cSa3dbbdc6",

"type": "HIML document, NomrdSO extended—
ASCII text, with very long lines, with
CRLF line terminators",

"sha256": "e5484a01adf42d668fc51b02b16
c0b86cddbe3f91fd0178011271 c¢73bf51d85f

"
s

"urls": [
"http ://my.jiehun.cn",
"http ://imgl .jiehun.cn/image/sd_nav. gif",
"http ://imgl .jiehun.cn/image/sousuoanniu.
gif",
"http ://shop.jiehun.cn",

"markcount": 34,

"families": [],

"description": "File has been identified by 34
AntiVirus engines on VirusTotal as

malicious",

"severity": 5,

"marks": [

{
"category": "Bkav",
"ioc": "JS.elframeRedirectNMe." ,
"type": "ioc",
"description": null

),

{
"category": "MicroWorld—eScan",
"ioc": "Trojan.Script.503239",
"type": "ioc",
"description": null

}s

{
"category": "CAF-QuickHeal",
"ioc": "HIML.Redirector.J",
"type": "ioc",
"description": null

),

@ Springer

268

J. Bergman, O.B. Popov

3.1.3 RETOMOS setup

The RETOMOS environment in which the data analysis
and the classification tasks were programmed and run was
a 64-bit 8 core AMD FX-8350, 16 GB DDR3 (non-ECC)
RAM, running Arch Linux 5.13.12 and Python 3.9.6 with
Scikit-learn version 0.24.2. The behavioural analysis reports
generated by the Cuckoo server were downloaded to the
analysis computer via rsync. Then they were “washed” and
imported into an SQLite3 database using the RETOMOS
script retomos_feature_extractor.py to become
the input data set for the classifiers. By using Scikit-Learn’s
libraries, the classification models were then built using
the database input in the script retomos_malware_
classifier.py.Theclassificationresults were evaluated
for recall, precision, f1, and accuracy scores using a 5-fold
cross-validation for each classification algorithm. The next
sections describe in detail how this was done.

3.1.4 Tor malware data set

Since there was no data set off-the-shelf, the alternative was
to create a set for training the machine learning classifica-
tion models. According to [22], 55.6% of the data sets used
in digital forensic research were created by the researchers
themselves. Out of a total of 4794 malware samples analysed,
72 ransomware samples using onion sites for their intended
operational behaviour were identified and assembled along
with 78 pseudo-randomly selected samples that did not rely
on Tor using SQLite3 random()® function and verifying that
the randomly selected samples were not part of the 72 con-
firmed Tor related malware samples.

The reason for using only 78 of the non-Tor related mal-
ware samples was the need for a balanced data set. Practically
the data set used could have consisted of 72 Tor related and
4722 non-Tor related samples respectively, though that would
have resulted in an imbalanced data set for training classifi-
cation models. The 72 samples with the Tor flavour included
Tor proxy connection attempts such as
sdfnsdkfndfgkjgnf.onion.to.com. These class
labels were identified by manual inspection of wide-scope
keyword searches on the behavioural reports generated by
Cuckoo. In practice, this was done running using the GNU
grep command in Linux:

$ grep -i ".onion\ |onion\ |
tor browser\|tor_browser" *.Jjson

Since Cuckoo behaviour reports contain a vast amount
of information about network connections, registry entries,

6 https://sqlite.org/lang_corefunc.html#random.

@ Springer

DLLs, API calls and other system and program execution
details, it was simple, yet effective to make clear text searches
on the 4794 report files to find certain activities based on key-
words. The chosen keywords ”.onion”, onion”, “tor”, “tor
browser”, and “tor_browser” were generic but effective and
resulted in 340 number of hits in the collection of 4794 mal-
ware analysis reports. 268 of these were false positives and
were hence excluded from the Tor malware data set; 72 were
kept.

It was deemed better to manually exclude the false posi-
tives than risk missing out the true positives. In addition, the
malware’s usage of registries entries was manually inspected
to identify malware that uses the Tor browser for its opera-
tions. The malware names given by the AV vendors were also
inspected to determine whether the malware sample used to
the Tor network for its operations. The grep key word search
is a very generic and primitive Tor related malware iden-
tification, hence manual inspection by the researchers was
needed to exclude the behavioural log files that contained
the keywords but were not in any way relating to the Tor net-
work. Each report with a connection to the Tor network was
then cross-referenced with their labels (i.e. the names of the
malware, given by the antivirus organisations) retrieved from
VirusTotal.com, as a way to check whether or not the labels
gave any indication of Tor dependent malware. The malware
samples used in this research study were active around 2016.
At that time the anti-malware company Kaspersky identi-
fied a certain Tor using malware family as “Trojan.Onion”
[28]. Hence, Kaspersky’s anti-malware labels were used as
the AV labels in our data set as they were deemed to most
accurately describe the possible Tor related samples in the
malware repository used.

The class labels in the data set were binary with the Tor
related malware having the value “yes” (1), while in the
opposite case the value was set to “no” (0). After creating
the data set, the class labels were cross-validated by the
two authors of this paper. The researchers manually went
through all 150 malware reports and confirmed that they
were correctly classified as either Tor related or non-Tor
related based on the content of each behavioural analysis log
file. The Tor and non-Tor malware data set is available on
the researchers” Github.com page.” As mentioned, Cuckoo
offers different analysis modules for analysing each malware
sample utilised as input. All these modules log their analysis
results in the behaviour report. These modules’ report entries
were extracted and inserted to the database (i.e. the training
data set) and used as features (or attributes) for the Tor mal-
ware machine learning classification models, see example
in Table 1. In order to not include any irrelevant features,
the same ones as used in similar research articles [24, 39,
55], were inserted to the database, namely: DLLs, Mutexes,

7 https://github.com/jesperatstockholmuniversity/RETOMOS

https://sqlite.org/lang_corefunc.html#random
https://github.com/jesperatstockholmuniversity/RETOMOS

Recognition of tor malware and onion services 269
Table 1 An example of the .
features and the Tor class label ID. No. AV Label ASCII Strings DLLs Tor
from the dataset Creat(?d to train integer string string string boolean
the Tor malware classifiers . .

1 Win32.Trojan MZ.. NTUserDat 0

150 Win32.0nion-Ransom MZ.. NTGetProcess 1

DNSs, IPs, strings, and API calls. These mentioned features
are generally the most important ones for malware analysis
and are further described in the list below.

e AV Label - This was the malware sample name given
to it by AV vendors. In this study we used the labels by
Kaspersky.

e ASCII Strings - Strings found when the malware sample
was run in the sandbox.

e DLLs - Dynamic link library used by the malware when
run in the sandbox.

e Mutexes - Mutex objects used by the malware when run
in sandbox.

e API Calls - API calls made by the malware when run in
sandbox.

e DNS - Domain name system related artefacts registered
from the malware when run in sandbox.

e IP - Internet protocol related artefacts registered from
then malware when run in sandbox.

Together, these recorded malware characteristics create a
wealth of data for the classifiers to learn and make predic-
tions based on; they will not only look at DLLs to classify
an executable, rather they will look at all the malware arte-
facts. Although the created training dataset appears to be
a somewhat a small set, it was deemed sufficient for our
experimental study considering the research deficit in the
Tor flavoured malware. Furthermore, the data set will fit the
purpose as an example and an indication of usefulness which
amounts to a proof of concept.

3.1.5 Classification models

To build the classifiers, features from the SQLite database
containing the behavioural details: Domain Name System
(DNS) requests, API calls, and registry keys of each malware
sample were fetched and inserted in a Pandas data frame that
was then converted to a count vector.® The count vector held
a matrix of counts of each malware sample’s DNS requests,
API calls, and registry key actions, i.e. the features of each
sample. This count vector was then combined with the target

8 https://scikit-learn.org/stable/modules/generated/sklearn.
feature_extraction.text.CountVectorizer.html.

(or class) labels of each sample, i.e. Tor (1) or non-tor (0)
related.

To pre-process the data for the classification models to
reduce the number of redundant features, Scikit Learn’s fea-
ture selection algorithm VarianceThreshold was used.” All
features with variance lower than 0.1 were set to be removed.
Once, the feature selection was done the data set was split
into a training set and a testing set. Scikit Learn’s [37] built in
training/test division algorithm was used to create the train-
ing and test data sets splitting them up in a division of 70%
and 30% respectively.

Once the training and test data sets were divided, the clas-
sification models Logistic Regression (LR), Support Vector
Machine (SVM), Multinominal Naive Bayes (MNB), Ran-
dom Forest (RF), and Decision Tree (DT) were trained on
them. All of these algorithms were part of the Scikit-Learn
library [37].

The multinomial naive Bayes (MNB) algorithm is an
implementation of Bayes’ theorem tailored for multinomi-
ally distributed data. It calculates the probabilities of features
that belong to a specific class based on the characteristics of
each class, combined with prior probabilities. MNB is an
algorithm commonly used in text classification [33, 47].

Support vector machine (SVM)), is an algorithm that lin-
early separates classes in a graph, a linear discriminant,
and calculates the margin between the separated classes and
draws the line in the middle of them [42, p. 92].

Logistic regression (LR) is a linear prediction classifier
that is not by definition a regression, but a probabilistic clas-
sifier that calculates the membership probability of a certain
class based on log-odds calculation [14, 48].

Random forest (RF) is an ensemble learning algorithm that
constructs a collection of randomised tree-structured clas-
sifiers [27]. The randomness in combination with multiple
models, makes RF less sensitive to overfitting.

A decision tree (DT) classifier is constructed as a tree that
splits into leaves with features and classes with a calculated
probability for the class affiliation with a specific leaf feature
[45].

9 https://scikit-learn.org/stable/modules/feature_selection.html#
variance-threshold.

@ Springer

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/feature_selection.html#variance-threshold
https://scikit-learn.org/stable/modules/feature_selection.html#variance-threshold

270

J. Bergman, O.B. Popov

Table2 Precision and recall scores of the multinomial naive Bayes Tor
malware classifier

Table 5 Precision and recall scores of the random forest Tor malware
classifier

Precision Recall F1 score Support Precision Recall F1 score Support
Tor 0.56 1.00 0.71 15 Tor 0.80 0.80 0.80 15
Non-Tor 1.00 0.29 0.45 17 Non-Tor 0.82 0.82 0.82 17

Table 3 Precision and recall scores of the support vector machine Tor
malware classifier

Precision Recall F1 score Support
Tor 0.80 0.80 0.80 15
Non-Tor 0.82 0.82 0.86 17

Table 4 Precision and recall scores of the logistic regression Tor mal-
ware classifier

Precision Recall F1 score Support
Tor 0.94 1.00 0.97 15
Non-Tor 1.00 0.94 0.97 17

3.1.6 Evaluation of the classifiers

Each classification algorithm’s performance rate was evalu-
ated using a 5-fold cross-validation score function in Scikit.'°
Accuracy, precision, recall, and F1 scores of the classifiers
were calculated based on the metrics library from SciKit.!!
The same library was at our the disposal to calculate the
receiver operating characteristic (ROC) and the area under
the ROC curve.

The features were comprised of strings such as DNS
queries, registry keys, and API calls. The class labels were
binary (yes/no) and the samples were balanced that is 48%
and 52% of each class respectively. Hence, accuracy could
be considered as an adequate measure for the performance of
the classifiers, unlike the case for imbalanced data sets where
accuracy could be a misleading measure [27].

To assess the performance of the developed toolset, hyper-
fine!? was used to calculate the execution times for the entire
program over multiple runs. Hyperfine was configured to exe-
cute the program 10 times and calculate the time differences
between the different executions to produce statistics from
1t.

10 https://scikit-learn.org/stable/modules/cross_validation.html.

I https://scikit-learn.org/stable/modules/classes.html#module-
sklearn.metrics.

12 https://github.com/sharkdp/hyperfine.

@ Springer

Table 6 Precision and recall scores of the decision tree Tor malware
classifier

Precision Recall F1 score Support
Tor 0.94 1.00 0.97 15
Non-Tor 1.00 0.94 0.97 17

3.1.7 Experiment setup limitations

On one hand, Cuckoo sandbox uses virtual machines to exe-
cute the software for the analysis. On the other hand, it is
worth noting that some malware uses virtual environment
recognition techniques to avoid analysis. Therefore, there
were samples which yielded false negatives when run in the
Cuckoo environment. In our data set, only true positives,
i.e. confirmed malware samples, were included. The same
goes for the malware that used packers and other evasion
techniques to avoid detection by malware analysis systems.
Some malicious software is configured not to run until a
certain point in time, therefore such malware samples could
not effectively infect the victim machine and execute prop-
erly since there was a time limitation for each sample of
320s (circa 5min 19 s). Two minutes is the default timeout in
Cuckoo sandbox and was considered too little, thus a longer,
yet reasonable timeout was configured for running each of
the 4794 executables.

4 Results

The classification models were evaluated using the following
metrics: accuracy, precision, recall, and F1 scores; receiver
operating characteristic (ROC) curve and the area under the
ROC curve. The classification performance of the logistic
regression (LR) (see Table 4) and the decision tree (DT) (see
Table 6) algorithms proved to be the most accurate compared
the random forest (RF) (see Table 5), support vector machine
classifier (SVM) (see Table 3) and the multinomial naive
Bayes (MNB) (see Table 2). The 5-fold cross validation of
the classifiers reached accuracy levels as follows.

e MNB: 56%
e SVM: 80%
e LR:87.14%
e RF: 86.66%

https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
https://github.com/sharkdp/hyperfine

Recognition of tor malware and onion services

271

Receiver operating characteristic.

101

0.84

o
o

True Positive Rate

o
S

0.2

0.0

— Support vector machine ROC curve (area = 0.85)
Logistic regression ROC curve (area = 0.95)

= Multinomial naive Bayes ROC curve (area = 0.55)

== Random Forest ROC curve (area = 0.81)

= Decision tree ROC curve (area = 0.97)

0.0 0.2 0.4

0.6 0.8 1.0

False Positive Rate

Fig. 3 Area under the receiver operator curve for the support vector machine classifier (red), logistic regression (yellow line), and multinomial
naive Bayes (green line), random forest (purple line), and decision tree (blue line)

e DT:93.33%

The area under the receiver operating characteristic (ROC)
curve reached a value of 0.85 for the support vector machine,
0.81 for the random forest, and 0.95 for the logistic regres-
sion, 0.97 for the decision tree, and 0.55 for the multinomial
naive Bayes classifier (see Fig. 3). In an ROC curve, the clas-
sifier’s true positive predictions are depicted on the Y axis and
the false positive predictions on the X axis; hence 1,0 (only
true positives) are the ideal values for the classifier [42] [17].
The area under the ROC curve (AUC) is a calculated figure
of the portion of the area of the unit square [17].

The computational performance evaluations of the classi-
fication tool, the script named
retomos_malware_classifier.pyinthedeveloped
toolset, took 560 s on average. Over 10 runs, the classification
took 560s =+ 13.26s with a minimum run time of 549 and
a maximum of 593s.

S hyperfine "python retomos.py -d
tor_and_non-tor_malware.db"
560.071 s

Time (mean sigma):

13.260 s

[User:
110.172 s]
593.375 s
10 runs

451.033 s, System:

5 Discussion

The experiment results indicate that the classification mod-
els could, successfully, distinguish Tor dependent malware
from non-Tor dependent malware based on their respective
behaviour. The main contribution of the research is not only
the sufficient evaluation scores; the clear indications of the
effectiveness of automatically analysing malware to iden-
tify new Onion services subject to, for example, cyber threat
intelligence research, is an equal, if not more evident, con-
tribution.

The decision tree (DT) and the logistic regression (LR)
classifiers were the winners amongst the five considered
classifiers. The DT and the LR classifiers reached the same
precision and recall for both the Tor related and the non-
Tor related samples: 0.94 and recall 1.00 for the Tor related

@ Springer

272

J. Bergman, O.B. Popov

malware, and vice versa 1.00 precision and 0.94 recall for
the non-Tor dependant malware. The harmonised mean, the
F1 score, for both LR and DT was 0.97, which should be
considered rather high. However, the five-fold cross valida-
tion accuracy score for the DT classifier was higher than the
LR score: 0.93 and 0.87 respectively. Neither the random
forest, support vector machine, nor the multinomial naive
Bayes were as precise in its predictions. The MNB achieved
an inferior accuracy score of 56% on a five-fold cross valida-
tion, which is not very surprising, since it is one of the most
rudimentary classification algorithms. However, the MNB
serves the purpose of a reference point in comparison with
the other, more sophisticated algorithms. The DT classifier
reached an accuracy level of 93%, which is a sufficient accu-
racy level. The accuracy score is calculated by taking the
number of correct classifications divided by the number of
total classifications. The accuracy score is an adequate met-
ric of the performance of a classifier given that the data set is
balanced, i.e. having an even distribution of samples adher-
ing to a specific class, as was the case in this research study
[42, p. 190].

The five fold cross-validated accuracy scores were some-
what lower than the non-folded evaluations of the classifi-
cations. An indication that the data set consisted of some
outliers that skewed the accuracy scores when not run with a
dynamic training and test split. A larger training and testing
data set rectifies the problem with the outliers.

Due to the fact that the class label of the used data set
was binary, and that the balance between the classes was 72
respectively 78 samples of each class, accuracy is an appli-
cable and acceptable measure for determining the success
of the classifier. However, receiver operating characteristic
(ROC) curve and area under the ROC curve (AUC) evalu-
ation metrics are less sensitive to unbalanced data sets, and
provide a more comprehensive measure of the performance
of the classifier than scalar measures, such as accuracy or
precision/recall [17, p. 873]. While the measures are not
ideal, the accuracy and precision/recall values still indicate
that the classifiers work reasonably well. The decision tree
and the logistic regression classifiers proved to be the most
successful ones, while the support vector machine, and the
random forest classifiers performed at an acceptable level.
The multinomial naive Bayes was just slightly better than
random guessing.

Even though the data set is balanced and the number of
features is low, the most adequate evaluation metric is the
ROC curve and the area under the ditto. The AUC scores for
both the DT and the LR classifiers are over 0.90, where 1.0 of
course is the perfect [17]. What can be concluded from these
figures is that the classifiers are likely to make a correct pre-
diction on previously unseen, yet characteristically similar,
data.

@ Springer

To identify the Tor dependant malware to include in the
training data set, a keyword search using GNU grep was
used. A simple keyword search on the set of 4794 Cuckoo
behaviour reports resulted in 340 hits, 268 of these were
not relevant (false positives) since they included the word
“onion” or “tor” as part of their name such as “operator”,
“storage browser” which contains both “tor” and “browser”,
or a a foreign word like “chronione”.

Although a keyword search was useful in identifying a
wide scope of positives, both false and true ones, to create a
small data set, it was not as effective in classifying Tor related
and non-Tor related malware. The GNU grep keyword search
yielded 72 true positives that were manually selected and
included in the training data set of 150 samples in total. A
total of 72 true positives in a collection of 340 positives equals
a hit rate of 0.21, which is not to be considered effective, nor
efficient.

To summarise: the presented classification models, unsur-
prisingly, vanquished the keyword search hit rate in our
experiments. With respect of that, the benefit and motiva-
tion of using machine learning-based classifiers is clearly
apparent.

The use case for this toolset is primary as an initial detec-
tion tool for finding new Tor malware and related onion
services and .onion URLs that might need to be assessed
by for example, law enforcement agencies. The malware and
server assessment could be part of offensive and/or defensive
operations, including intelligence gathering via server recog-
nisance, monitoring, and scraping for cybercrime forensics
and investigation.

However, the computational performance of the classifier
in the toolset is low; in order for the toolset to be useful in a
real-world scenario, it needs to be faster. This could be done
by running the classification tasks in parallel on different
CPU cores and fine-tuning the Python code.

Combined with a crawler, the toolset presented in this
article is deemed as an effective technique for LEAs to iden-
tify new Tor related nefarious servers to monitor and collect
information about. With a continuous supply of new malware
samples that can be analysed in the sandbox environment,
investigators can swiftly get hold of the latest Tor dependant
malware and its possible related .onion service URLs.

5.1 Limitations

The data set was limited to 150 malware samples where
72 were Tor related malware samples and 78 were non-Tor
related. While this might be classified as a small sample size,
the results indicate that the classification model is more than
sufficient, and could be subject to modifications and exten-
sions in the future. On the contrary, each malware sample
generates a lot of textual data in the form of analysis log
file entries. Pirscoveanu et al. [39] reduced the number of

Recognition of tor malware and onion services

273

API calls by including only the 200 first API calls from the
behavioural log in keeping the matrix to a “reasonable size”.

6 Conclusion and future research

In this paper, the authors present a toolset called RETOMOS,
that is capable of extracting features from malware behaviour
log files and feeding them to five different machine learning
classifiers out of which two of them succeeded in classifying
Tor related malware at an accuracy level of over 90%.

By using a decision tree classifier, the authors have shown
that it is possible to, with an accuracy of 93%, identify mali-
cious software using the Tor network for its operations by
analysing the behavioural data that is produced when running
the malware in a sandbox environment without connecting
to the Tor network.

The developed toolset proved useful and it might be used
by law enforcement agencies to automatically analyse and
identify new Tor-dependent malware and onion services,
without having to utilise intense manual labour. By com-
plementing the toolset with recognisance components, such
as a server scanner or a scraper, it could also enable automa-
tised monitoring and archiving of identified onion services
and onion websites respectively.

The classification model and sandbox environment that
comprise the toolset, should be combined and used to analyse
and classify previously unseen malware. Accordingly, the
Tor malware can be automatically identified at an early stage
of the investigation so that the monitoring and the analysis
could focus on the malware’s related onion services. In a law
enforcement agency setting, this could be a beneficial way of
keeping up-to-date with the latest Tor facilitated malware and
the correlating onion services, whose complex and unique
URLSs are difficult to find otherwise.

One of the future directions of the study might include an
extension of the training data set to train the classifiers to look
perpetually for new Tor malware to generate an even bigger
data set to further improve the classifications and even more
so the predictive potential of Tor malware. Another sugges-
tion is to build in the classification models into the sandbox
environment to create a quicker and more uniform Tor mal-
ware recognition system. Another direction worth exploring
is to combine several algorithmic families such as random
forests or bootstrap, less sensitive to bias and small data sets,
to be used in particular cases for the initial phase of inves-
tigating Tor facilitated malware. Finally, cross-fertilisation
with other paradigms that stem from the area of artificial
intelligence, including neural networks and flavours of deep
learning may offer not only alternative inference mecha-
nisms, but also provide a basis for parallel reasoning as a
way for mutually checking comparative, yet different, pro-
cedures in the investigation process.

Declarations

Some journals require declarations to be submitted in a stan-
dardised format. Please check the Instructions for Authors of
the journal to which you are submitting to see if you need to
complete this section. If yes, your manuscript must contain
the following sections under the heading ‘Declarations’:

Funding Open access funding provided by Stockholm University.

Availability of data and materials Available via links provided in the
article (removed for blind review)

Code Availability Available via links provided in the article (removed
for blind review)

Declarations

Conflict of interest Check journal-specific guidelines for which head-
ing to use: None

Ethics approval Not applicable
Consent to participate Not applicable

Consent for publication Not applicable

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Ahmed, Y.A., Kocer, B., Huda, S., et al.: A system call refinement-
based enhanced minimum redundancy maximum relevance method
for ransomware early detection. J. Netw. Comput. Appl. 167(102),
753 (2020). https://doi.org/10.1016/j.jnca.2020.102753

2. Alazab, M., Venkataraman, S., Watters, P.: Towards understand-
ing malware behaviour by the extraction of api calls. In: Second
Cybercrime and Trustworthy Computing Workshop. IEEE, Bal-
larat, Australia, pp. 52-59 (2010) https://doi.org/10.1109/CTC.
2010.8

3. Alazab, M., Alazab, M., Shalaginov, A., et al.: Intelligent mobile
malware detection using permission requests and api calls. Fut.
Gener. Comput. Syst. 107, 509-521 (2020). https://doi.org/10.
1016/j.future.2020.02.002

4. Bernaschi, M., Celestini, A., Guarino, S., et al.: Spiders like onions:
On the network of tor hidden services. In: The World Wide Web
Conference. Association for Computing Machinery, New York,
NY, USA, WWW ’19, pp. 105-115, (2019) https://doi.org/10.
1145/3308558.3313687

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jnca.2020.102753
https://doi.org/10.1109/CTC.2010.8
https://doi.org/10.1109/CTC.2010.8
https://doi.org/10.1016/j.future.2020.02.002
https://doi.org/10.1016/j.future.2020.02.002
https://doi.org/10.1145/3308558.3313687
https://doi.org/10.1145/3308558.3313687

274

J. Bergman, O.B. Popov

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

Casenove, M., Miraglia, A.: Botnet over tor: the illusion of hiding.
6th International Conference On Cyber Conflict (CyCon 2014) pp
273-282,(2014). https://doi.org/10.1109/CYCON.2014.6916408
Chen, H., Chung, W., Quin, J., et al.: Uncovering the dark web: a
case study of jihad on the web. J. Am. Soc. Inf. Sci. Technol. 59(8),
580 (2008)

CISA, Ransomware-what it is and what to do about it.
(2019) https://www.us-cert.gov/sites/default/files/publications/
Ransomware_Executive_One-Pager_and_Technical_Document-
FINAL.pdf

Crowder, E., Lansiquot , J.: Darknet data mining—a canadian cyber-
crime perspective. (2021) arxiv:2105.13957

Cuckoo, cuckoo/test config.py at master cuckoosandbox/cuckoo.
(2020) https://github.com/cuckoosandbox/cuckoo/blob/master/
tests/test_config.py

Cuckoo.org Analysis package-cuckoo v2.7.0 book. (2019) https://
cuckoo.sh/docs/usage/packages.html?highlight=module
Cuckoo.org , Pre-analysis network routing-cuckoo v2.7.0 book.
(2020) https://cuckoo.sh/docs/installation/host/routing.html?
highlight=tor#routing-tor

D’Agostino, V.D.: Complaint: United States of America v. blake
benthall. (2014) https://www.justice.gov/usao/nys/pressreleases/
November14/BlakeBenthall ArrestPR/Benthall%2C%20Blake
%20Complaint.pdf

Dingledine, R., Mathewson, N., Syverson , P.: Tor: The second-
generation onion router. In: Proceedings of the 13th USENIX
Security Symposium (2004)

Dreiseitl, S., Ohno-Machado, L.: Logistic regression and artificial
neural network classification models: A methodology review. J.
Biomed. Inf. 35, 352-359 (2002). https://doi.org/10.1016/S1532-
0464(03)00034-0

Europol: Drugs and the darknet: Perspectives for enforcement,
research and policy. (2017) https://www.europol.europa.eu/
publications-documents/drugs-and-darknet- perspectives-for-
enforcement-research-and-policy

F-Secure : Ransomware timeline 2010-2017. (2017) https://blog.
f-secure.com/ransomware-timeline-2010-2017/

Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett.
27(8), 861-874 (2006)

Frank, J.M.R.: Sentiment crawling: extremist content collection
through a sentiment analysis guided web-crawler. In: [EEE/ACM
International Conference on Advances in Social Networks Analysis
and Mining (ASONAM). IEEE (2015)

Gandotra, E., Bansal, D., Sofat, S.: Malware analysis and classifi-
cation: a survey. J. Inf. Secu. 5(2), 458 (2014). https://doi.org/10.
4236/jis.2014.52006

Ghafir, 1., Svoboda, J., Prenosil, V.: Tor-based malware and tor
connection detection. In: International Conference on Frontiers of
Communications, Networks and Applications (ICFCNA), pp. 1-6.
(2014) https://doi.org/10.1049/cp.2014.1411

Gheorghe, A.: New backdoor allows full access to mac systems,
bitdefender warns. (2016) https://www.bitdefender.com/blog/labs/
new-mac-backdoor-nukes-os-x-systems/

Grajeda, C., Breitinger, F., Baggili, I.: Availability of datasets for
digital forensics and what is missing. Dig. Investig. 22(5), 594—
5105 (2017). https://doi.org/10.1016/j.diin.2017.06.004

Horejsi, J.: Retefe banking trojan targets UK banking customers.
(2016) https://blog.avast.com/retefe-banking-trojan-targets-uk-
banking-customers

Hwang, J., Kim, J., Lee, S., et al.: Two-stage ransomware detection
using dynamic analysis and machine learning techniques. Wireless
Pers. Commun. 112(112), 2597-2609 (2020). https://doi.org/10.
1007/s11277-020-07166-9

Irshad, A., Dutta, M.K.: Identification of windows-based malware
by dynamic analysis using machine learning algorithm. In: Gao,
X.Z., Tiwari, S., Trivedi, M.C., et al. (eds.) Advances in Computa-

@ Springer

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

tional Intelligence and Communication Technology, pp. 207-218.
Springer, Singapore (2021)

Juarez, M., Afroz, S., Acar, G., et al.: A critical evaluation of
website fingerprinting attacks. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Secu-
rity. Association for Computing Machinery, New York, NY, USA,
CCS 14, pp. 263-274 (2014) https://doi.org/10.1145/2660267.
2660368

Karlsson, I.: Order in the random forest. PhD thesis, Stock-
holm University, Kista, Sweden, (2017) https://su.diva-portal.org/
smash/get/diva2:1090364/FULLTEXTO1.pdf

Kaspersky (2022) The onion ransomware (encryption tro-
jan). https://usa.kaspersky.com/resource-center/threats/onion-
ransomware- virus-threat

Kwon, KH., Priniski, JH., Sakar, S., et al.: Crisis and collective
problem solving in dark web: An exploration of a black hat forum.
In: Proceedings of the 8th International Conference on Social
Media & Society Article No. 45. ACM, pp. 1-5 (2017)

Ligh, M.H., Adair, S., Hartstein, B., et al.: Malware Analyst’s
Cookbook and DVD: Tools and Techniques for Fighting Malicious
Code, st edn. Wiley, London (2011)

Ligh, M.H., Case, A., Levy, J., et al.: The Art of Memory Foren-
sics: Detecting Malware and Threats in Windows, Linux, and Mac
Memory, Ist edn. Wiley, London (2014)

Ling, Z., Luo, J., Wu, K., et al.: Torward: discovery, blocking, and
traceback of malicious traffic over tor. IEEE Trans. Inf. Forensics
Secur. 10(12), 2515-2530 (2015)

Manning, C., Raghavan, P., Schiitze, H.: Introduction to Informa-
tion Retrieval. Cambridge University Press, Cambridge (2008).
https://doi.org/10.1017/CB0O9780511809071.014

Meng, Y., Zhuang, H., Lin, Z., et al.: A survey on machine learning-
based detection and classification technology of malware. In: 2021
International Conference on Computer Information Science and
Artificial Intelligence (CISAI), pp. 783-792, (2021) https://doi.
org/10.1109/CISAI54367.2021.00158

Nunes, E., Diab, A., Gunn, A., et al.: Darknet and deepnet mining
for proactive cyber treat intelligence. In: Conference on Intel-
ligence and Security Informatics (ISI). IEEE, pp. 7-12, (2016)
https://doi.org/10.1109/1S1.2016.7745435

Page, C.: Revil ransomware group goes dark after its tor sites
were hijacked. (2021) https://techcrunch.com/2021/10/18/revil-
ransomware- group- goes-dark-after-its-tor-sites- were-hijacked/
Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn:
machine learning in python. J. Mach. Learn. Res. 12, 2825-2830
(2011)

Pektas, A., Acarman, T.: Ensemble machine learning approach for
android malware classification using hybrid features. In: Proceed-
ings of the 10th International Conference on Computer Recognition
Systems. Springer, pp. 191-200 (2017)

Pirscoveanu, RS., Hansen, SS., Larsen, TMT., et al.: Analysis of
malware behavior: type classification using machine learning. In:
2015 International Conference on Cyber Situational Awareness,
Data Analytics and Assessment (CyberSA). IEEE, pp. 113-118,
(2015) https://doi.org/10.1109/CyberSA.2015.7166115

Popov, O., Bergman, J., Valassi, C.: A framework for a forensically
sound harvesting the dark web. In: CECC 2018: Proceedings of the
Central European Cybersecurity Conference 2018. ACM, pp. 1-7,
(2018) https://doi.org/10.1145/3277570.3277584

Portnoff, RS., Afroz, S., Durrett, G., et al.: Tools for automated
analysis of cybercriminal markets. In: International World Wide
Web Conference Committee (IW3C2). ACM, pp. 1-5, (2017)
https://doi.org/10.1145/3038912.3052600

Provost, E., Fawcett, T.: Data Science for Business-What You Need
to Know about Data Mining and Data-Analytic Thinking, 1st edn.
O’Reilly, USA (2013)

https://doi.org/10.1109/CYCON.2014.6916408
https://www.us-cert.gov/sites/default/files/publications/Ransomware_Executive_One-Pager_and_Technical_Document-FINAL.pdf
https://www.us-cert.gov/sites/default/files/publications/Ransomware_Executive_One-Pager_and_Technical_Document-FINAL.pdf
https://www.us-cert.gov/sites/default/files/publications/Ransomware_Executive_One-Pager_and_Technical_Document-FINAL.pdf
http://arxiv.org/abs/2105.13957
https://github.com/cuckoosandbox/cuckoo/blob/master/tests/test_config.py
https://github.com/cuckoosandbox/cuckoo/blob/master/tests/test_config.py
https://cuckoo.sh/docs/usage/packages.html?highlight=module
https://cuckoo.sh/docs/usage/packages.html?highlight=module
https://cuckoo.sh/docs/installation/host/routing.html?highlight=tor#routing-tor
https://cuckoo.sh/docs/installation/host/routing.html?highlight=tor#routing-tor
https://www.justice.gov/usao/nys/pressreleases/November14/BlakeBenthallArrestPR/Benthall%2C%20Blake%20Complaint.pdf
https://www.justice.gov/usao/nys/pressreleases/November14/BlakeBenthallArrestPR/Benthall%2C%20Blake%20Complaint.pdf
https://www.justice.gov/usao/nys/pressreleases/November14/BlakeBenthallArrestPR/Benthall%2C%20Blake%20Complaint.pdf
https://doi.org/10.1016/S1532-0464(03)00034-0
https://doi.org/10.1016/S1532-0464(03)00034-0
https://www.europol.europa.eu/publications-documents/drugs-and-darknet-perspectives-for-enforcement-research-and-policy
https://www.europol.europa.eu/publications-documents/drugs-and-darknet-perspectives-for-enforcement-research-and-policy
https://www.europol.europa.eu/publications-documents/drugs-and-darknet-perspectives-for-enforcement-research-and-policy
https://blog.f-secure.com/ransomware-timeline-2010-2017/
https://blog.f-secure.com/ransomware-timeline-2010-2017/
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.1049/cp.2014.1411
https://www.bitdefender.com/blog/labs/new-mac-backdoor-nukes-os-x-systems/
https://www.bitdefender.com/blog/labs/new-mac-backdoor-nukes-os-x-systems/
https://doi.org/10.1016/j.diin.2017.06.004
https://blog.avast.com/retefe-banking-trojan-targets-uk-banking-customers
https://blog.avast.com/retefe-banking-trojan-targets-uk-banking-customers
https://doi.org/10.1007/s11277-020-07166-9
https://doi.org/10.1007/s11277-020-07166-9
https://doi.org/10.1145/2660267.2660368
https://doi.org/10.1145/2660267.2660368
https://su.diva-portal.org/smash/get/diva2:1090364/FULLTEXT01.pdf
https://su.diva-portal.org/smash/get/diva2:1090364/FULLTEXT01.pdf
https://usa.kaspersky.com/resource-center/threats/onion-ransomware-virus-threat
https://usa.kaspersky.com/resource-center/threats/onion-ransomware-virus-threat
https://doi.org/10.1017/CBO9780511809071.014
https://doi.org/10.1109/CISAI54367.2021.00158
https://doi.org/10.1109/CISAI54367.2021.00158
https://doi.org/10.1109/ISI.2016.7745435
https://techcrunch.com/2021/10/18/revil-ransomware-group-goes-dark-after-its-tor-sites-were-hijacked/
https://techcrunch.com/2021/10/18/revil-ransomware-group-goes-dark-after-its-tor-sites-were-hijacked/
https://doi.org/10.1109/CyberSA.2015.7166115
https://doi.org/10.1145/3277570.3277584
https://doi.org/10.1145/3038912.3052600

Recognition of tor malware and onion services

275

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

Rabaut, JT.: Complaint: United states of america v. alexan-
dre cazes. (2017). https://www.justice.gov/opa/press-release/file/
982821/download

Reed, T.: New mac backdoor malware: Eleanor. (2016) https://blog.
malwarebytes.com/cybercrime/2016/07/new-mac-backdoor-
malware-eleanor/

Rokach, L., Maimon, O.: Decision Trees. World Scientific Publish-
ing, Singapore (2010)

Saleem, J., Islam, R., Kabir, MA.: The anonymity of the dark web:
a survey. IEEE Access 10:33,628-33,660. (2022). https://doi.org/
10.1109/ACCESS.2022.3161547

Scikit-Learn-Developers: 1.9.2. multinomial naive bayes.
(2020) https://scikit-learn.org/stable/modules/naive_bayes.html#
multinomial-naive-bayes

Scikit-Learn-Developers: 1.1.11. logistic regression.
https://scikit-learn.org/stable/modules/generated/sklearn.
linear_model.LogisticRegression.html?highlight=logistic
9%20regression#sklearn.linear_model.LogisticRegression
Shalaginov, A., Banin, S., Dehghantanha, A., et al.: Machine learn-
ing aided static malware analysis: a survey and tutorial. Adv. Inf.
Sec. 70, 559 (2018). https://doi.org/10.1007/978-3-319-73951-
9.2

Sophos: The current state of ransomware: Cryptowall. (2015)
https://news.sophos.com/en-us/2015/12/17/the-current- state- of-
ransomware-cryptowall/

Spitters, M., Klaver, F., Koot, G., et al.: Authorship analysis on
dark marketplace forums. In: European Intelligence and Security
Informatics Conference. IEEE, pp. 631-641, (2015)

StatCounter: Desktop operating system market share worldwide
aug 2021-aug 2022. (2022), https://gs.statcounter.com/os- market-
share/desktop/worldwide

(2022)

53.

54.

55.

56.

57.

58.

59.

60.

61.

Tai, XH., Soska, K., Christin, N.: Adversarial matching of dark
net market vendor accounts. In: KDD ’19: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. IEEE, pp. 1871-1880, (2019) https://doi.org/10.
1145/3292500.3330763

Tarakanov, D.: The inevitable move-64-bit zeus enhanced
with tor. (2013) https://securelist.com/the-inevitable-move-64-
bit-zeus-enhanced-with-tor/58184/

Tian, R., Batten, L., Islam, R., et al.: An automated classification
system based on the strings of trojan and virus families. In: 2009
4th International Conference on Malicious and Unwanted Software
(MALWARE). IEEE, pp. 23-30, (2009)

Tor-Project: dir-spec.txt-torspec-tor’s protocol specifications.
(2022a) https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
Tor-Project: glossary.txt - torspec - tor’s protocol specifications.
(2022b) https://gitweb.torproject.org/torspec.git/tree/glossary.txt
Tor-Project “tor rendezvous specification - version 3”. (2022c)
urlhttps://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt
Virusshare.com Virusshare.com-because sharing is caring. (2020)
https://virusshare.com/research

Westlake, B., Bouchard, M., Frank, R.: Assessing the validity of
automated webcrawlers as data collection tools to investigate online
child sexual exploitation. Sexual Abuse 29(7), 685-708 (2015).
https://doi.org/10.1177/1079063215616818

Zainor, F.: Trojan-spy:js/retefe description. (2019) https://www.f-
secure.com/v-descs/trojan-spy_js_retefe.shtml

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://www.justice.gov/opa/press-release/file/982821/download
https://www.justice.gov/opa/press-release/file/982821/download
https://blog.malwarebytes.com/cybercrime/2016/07/new-mac-backdoor-malware-eleanor/
https://blog.malwarebytes.com/cybercrime/2016/07/new-mac-backdoor-malware-eleanor/
https://blog.malwarebytes.com/cybercrime/2016/07/new-mac-backdoor-malware-eleanor/
https://doi.org/10.1109/ACCESS.2022.3161547
https://doi.org/10.1109/ACCESS.2022.3161547
https://scikit-learn.org/stable/modules/naive_bayes.html#multinomial-naive-bayes
https://scikit-learn.org/stable/modules/naive_bayes.html#multinomial-naive-bayes
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regression#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regression#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regression#sklearn.linear_model.LogisticRegression
https://doi.org/10.1007/978-3-319-73951-9_2
https://doi.org/10.1007/978-3-319-73951-9_2
https://news.sophos.com/en-us/2015/12/17/the-current-state-of-ransomware-cryptowall/
https://news.sophos.com/en-us/2015/12/17/the-current-state-of-ransomware-cryptowall/
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://doi.org/10.1145/3292500.3330763
https://doi.org/10.1145/3292500.3330763
https://securelist.com/the-inevitable-move-64-bit-zeus-enhanced-with-tor/58184/
https://securelist.com/the-inevitable-move-64-bit-zeus-enhanced-with-tor/58184/
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/glossary.txt
https://virusshare.com/research
https://doi.org/10.1177/1079063215616818
https://www.f-secure.com/v-descs/trojan-spy_js_retefe.shtml
https://www.f-secure.com/v-descs/trojan-spy_js_retefe.shtml

	Recognition of tor malware and onion services
	Abstract
	1 Introduction
	2 Related work
	2.1 The tor network
	2.1.1 Tor onion services
	2.1.2 The.onion top level domain

	2.2 Crawling onion services
	2.3 Malware analysis
	2.4 Automated malware analysis and classification
	2.5 Tor facilitated malware

	3 Research method
	3.1 Experiment setup and its limitations
	3.1.1 Malware samples
	3.1.2 Cuckoo Sandbox setup
	3.1.3 RETOMOS setup
	3.1.4 Tor malware data set
	3.1.5 Classification models
	3.1.6 Evaluation of the classifiers
	3.1.7 Experiment setup limitations

	4 Results
	5 Discussion
	5.1 Limitations

	6 Conclusion and future research
	Declarations
	References

