
Journal of Computer Virology and Hacking Techniques (2023) 19:565–577
https://doi.org/10.1007/s11416-023-00463-4

ORIG INAL PAPER

CamDec: Advancing Axis P1435-LE video camera security using
honeypot-based deception

Leslie F. Sikos1 · Craig Valli1 · Alexander E. Grojek1 · David J. Holmes1 · Samuel G. Wakeling1 ·
Warren Z. Cabral1 · Nickson M. Karie2

Received: 12 May 2022 / Accepted: 9 January 2023 / Published online: 10 February 2023
© The Author(s) 2023, corrected publication 2023

Abstract
The explosion of online video streaming in recent years resulted in advanced services both in terms of efficiency and
convenience. However, Internet-connected video cameras are prone to exploitation, leading to information security issues and
data privacy concerns. The proliferation of video-capable Internet of Things devices and cloud-managed surveillance systems
further extend these security issues and concerns. In this paper, a novel approach is proposed for video camera deception
via honeypots, offering increased security measures compared to what is available on conventional Internet-enabled video
cameras.

Keywords Video stream security · Video tampering prevention · Honeypot · Cyberattack · Intrusion detection · Video data
privacy · Network forensics

1 Introduction

Recent advancements in cloud-managed video cameras,
video compression and streaming, and artificial intelligence
applications in camera surveillance have enabled automated
anomaly detection [23], pose estimation [18], real-time
movement tracking [24], person (re)identification [31], and
many more automated functions.

However, Internet-connected video surveillance systems
have well-known security and privacy concerns, which are
particularly important, given the large number of cloud-
managed video surveillance systems [1]. The range of
IP camera attacks includes software attacks (weak access
control and authentication, insufficient transport layer protec-
tion, denial of service, cross-site scripting (XSS), cross-site
request forgery (CSRF), path traversal, information leak-
age via file disclosure, command injection, buffer overflow,
reverse engineering, unsigned/unverified upgrade); soft-
ware/hardware attacks (data exfiltration); hardware attacks
(debug protocol attacks, bootloader attacks, time-of-check
to time-of-use (TOCTTOU) attacks, unsigned/unverified

B Leslie F. Sikos
l.sikos@ecu.edu.au

1 Edith Cowan University, Perth, Australia

2 Cyber Security Cooperative Research Centre, Perth, Australia

upgrade); optical attacks (command and control, data exfil-
tration), camera blinding (dazzling)); and—in case of wire-
less cameras—RF/wireless attacks (RF jamming, denial of
service, eavesdropping) [9]. The login page of the web
interface of IP surveillance and security cameras and other
files, such as CGI scripts available through URLs for status
requests, may leak camera model version, firmware, times-
tamps, serial number, P2Pport number,Wi-Fi SSID, etc. even
without authentication [19], while malware might exploit
camera vulnerabilities to access sensitive information, such
as passwords and PIN codes [15].

Given the array of potential cyberattacks against IP cam-
eras (that are enabled by a variety of vulnerabilities and
exploits, as seen, for example, in the Directory of Video
Surveillance Cybersecurity Vulnerabilities and Exploits of
IPVM),1 an increasing number of camera vendors imple-
ment various security countermeasures—see the use of SSL
certificates and the management data encryption on Cisco
Meraki cameras,2 for example.

Many commercial network cameras systems come with
dedicated software applications for monitoring and con-
trol [12]. These are important from the security perspective
because of the following reasons:

1 https://ipvm.com/reports/security-exploits
2 https://meraki.cisco.com/products/smart-cameras/

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-023-00463-4&domain=pdf
https://orcid.org/0000-0003-3368-2215
https://orcid.org/0000-0002-2298-9791
https://orcid.org/0000-0003-2877-2785
https://orcid.org/0000-0002-8644-4387
https://orcid.org/0000-0002-7675-5659
https://orcid.org/0000-0002-5270-0020
https://orcid.org/0000-0001-5173-9268
https://ipvm.com/reports/security-exploits
https://meraki.cisco.com/products/smart-cameras/

566 L. F. Sikos et al.

– They can have security vulnerabilities specific to the
associated product or product line, which might rely on
vendor-specific patches not released for years.

– The features of these software can potentially char-
acterize a device, indicating a product line or even a
particular cameramodel. This is important in determining
how to emulate a camera with a honeypot to be decep-
tive, because leaving out any fundamental property and
including features that are not supported by a camera
would reveal to adversaries that the device is not what it
looks like. Return values of executed commands and the
faithful reproduction of actions such as camera zoom are
actively used by attackers for fingerprinting IP cameras
[27].

– The network traffic generated and utilized by these tools,
along with the (often uncommon) TCP/UDP port num-
ber(s) used by them, are crucial when setting up security
measures in the infrastructure.

2 Related works

Vulnerabilities of IP cameras include, but are not limited to,
default credentials that can be used for brute force attacks,
exposed TCP timestamps that allow attackers to compute
uptime (leading to further attacks), and allowing OS finger-
printing [28]. A variety of freely available software tools can
be used for the cyber-reconnaissance of IP cameras, poten-
tially obtaining device data, such as IP address, hostname,
MAC address, vendor, and server information, and target
camera systems via the Virtual Switch System (VSS) port
used for video streaming [10]. Sabotage intervention has to
be timely, not only the logical tampering of recorded video
footage, but also the physical tampering of camera devices,
whether via occlusion, defocus, or displacement, should be
automatically detected [25].

Baseline security countermeasures for IP cameras include,
but are not limited to, changing default usernames and pass-
words, preventing information forwarding to third-parties,
avoid port-forwarding to the camera, monitoring network
traffic for spikes, and keeping camera firmware up to date.
However, these do not protect from sophisticated cyberat-
tacks, which require additional countermeasures. For exam-
ple, Vempati et al. [30] proposed an approach that employs
a micro-firewall rule to detect known traffic and allows
video streaming even during cyberattacks, such as distributed
denial-of-service (DDoS) attacks.

CameraObscura3 aims to mimic common features of IP
cameras, such as camera stream, login, and firmware upload,
thereby protocolizing botnet actions. It provides JSON-
configurable routes to simulate logins and new firmware

3 https://github.com/CMSecurity/CameraObscura

uploads according to vendor specifications, configurable
headers to simulate a vulnerable web server, a web inter-
face, and logging (text and JSON), as well as payload dumps
(e. g., on fake firmware upload or POST with file).

The SIPHON architecture is an implementation of a dis-
tributed IP camera honeypot, featuring multiple IP cameras,
a network video recorder (NVR), and an IP printer [14]. In
SIPHON, camera locations are spoofed using wormholes
based on instances in cloud services. These instances are
deployed in different cities around the world, which can
mislead adversaries using software tools such as Shodan4

or Fofa5 to identify IoT device locations, but the traffic is
actually directed from the wormholes to a single location.
This is particularly important from the deception point of
view, because having any indication of a honeypot could
discourage adversaries from performing—manual—attacks,
considering all the factors that might impact the probability
of an attacker giving up attacks, which can be estimated by
a monotonic function of the form

pg = h (c (1 + rh ph))

[(cr + cc) (1 − ph (1 − vh))]
[22]

where h is a sigmoidal function (e.g., hyperbolic tangent), cr
is the average (time) cost of reconnaissance, cc is the total cost
of subsequent random system compromise, c is the perceived
remaining cost to the attacker to achieve their goals, ph is
the probability that the system is a honeypot as perceived by
the attacker, rh is the rate of damage to the attacker (where
damage is assumed to be proportional at this rate to the time
the attacker spends in the honeypot), and vh is the ratio of the
attacker’s perceived value of compromise (linear weighting
if the attacker is unsure whether the system is a honeypot).

While SIPHONuses physical IoT hardware for the honey-
pots, along with the VPN connections and virtual machines
to handle the networking, the developers also exposed a low-
interaction honeypot running Trendnet camera emulator and
observed the results compared to their high-interaction hon-
eypots running physical IoT hardware. Note that on average,
SSH sessions with the low-interaction honeypots lasted 30
seconds compared to one minute with the high-interaction
honeypots.

As only one low-interaction honeypot is exposed with
SIPHON, compared to the number of high-interaction phys-
ical IoT honeypots along with the different the geographical
locations, this data is inconclusive. The authors found that
the geographical location of the IP address of the exposed
system did make a difference, therefore it’s possible that the
low-interaction honeypot may have generated different data
to the equivalent or similar high-interaction honeypots due to

4 https://www.shodan.io
5 https://fofa.so

123

https://github.com/CMSecurity/CameraObscura
https://www.shodan.io
https://fofa.so

CamDec: Advancing Axis... 567

changes in the geographical location of the IP address they
were exposed at.

Furthermore, as the devices were not modified, attackers
could use the wireless capabilities of the devices to attack
other nearby networks, or discover their real geographical
location compared to the location shown by their IP address.
Another approach, presented in [27], is to remove the Wi-Fi
oscillators from their devices so that attackers cannot lever-
age the Wi-Fi capabilities of the honeypots.

While the authors in [14] discuss possible methods of
device compromise detection and restoration for physical
IoT devices, they do not discuss whichmethods they actually
used in their research, and how regularly they restored and
reset the firmware on their devices. This means that a previ-
ously infected device may still be in use when new attackers
connect to it, meaning they are not connecting to a fresh
honeypot each time and may not act in the same way upon
knowing the device is already infected, or the device may not
respond the same way.

Various parameters of cyberattacks can be utilized in
machine learning to iteratively refine honeypot deception.
For example, by using reinforcement learning, the interac-
tionwith an attack sequence can be prolonged via a transition
reward function of the form

rt (si , a) =
{
1 if i ∈ Y

0 otherwise
[11]

where si is the state and a is the action, rewards the learning
agent if a bot command is input string i , comprised of bash
commands (L , known Linux commands, such as wget, cd,
mount, and chmod), customized commands (C , commands
executing downloaded files), or compound commands (CC ,
multiple commands with bash separators/operators), which
form state set Y = L ∪ C ∪ CC .

3 Known P1345-LE vulnerabilities

Video camera vulnerability exploitation, similar to other
hardware devices, strongly depends on the version of the
firmware installed. A report released in 2018 by the security
team at Vdoo has identified seven zero-day vulnerabilities
that, at the time, affected 390 models of AXIS Communi-
cations’ IP cameras [21]. The P1435-LE on firmware older
than v6.50.2.3 was noted as one of the models affected by the
vulnerabilities identified [3]. This means that if an attacker
manages to obtain a camera’s IP address on theWeb and the-
oretically string multiple vulnerabilities together, a camera
could be fully compromised. From our viewpoint, knowing
the details of the vulnerabilities disclosed enables us in fur-
ther accurately spoofing the IP camera within the honeypot
environment. Since our honeypots do not necessarily have

to be on the latest firmware version, they can represent IP
cameras that are rarely maintained, often though a set-and-
forget approach. These vulnerabilities would allow attackers
to bypass the IP camera’s login page and take full control
of the camera’s configuration and in theory the honeypots,
including the following:

– Accessing the live view and freezing the video stream;
– Controlling the camera’s point of view;
– Disabling the motion detection capabilities;
– Disabling the camera entirely.

An attacker can also take more malicious actions through:

– Modifying the camera’s firmware;
– Adding the camera to a botnet;
– Using the camera as a network infiltration point;
– Using the camera to perform other malicious actions
(DDoS attacks, crypto mining).

All Axis IP camera firmware are built on top of an
underlying Linux operating system, each modified for its
particular camera’s specifications. As Linux is utilized, the
camera makes use of common services including Apache,
GStreamer, and modified versions of FTP, SSH, and Tel-
net to provide core functionality. However, this poses a
problem because new vulnerabilities can be present in the
firmware core service dependencies. From Vdoo’s analysis
of the firmware files and interaction with the camera’s front-
facing interface, multiple issues where identified, ranging
from authorization bypass and shell command injection to
crashing the web server [21]. These vulnerabilities are iden-
tified through the CVE IDs:

– CVE-2018-10658:6 A memory corruption vulnerability
discovered in multiple models of Axis IP cameras, which
causes a denial of service (crash). The crash arises from
code inside the libdbus-send.so shared object (or
similar).
This vulnerability allows an unauthenticated adversary to
send a dbus-request (via the /bin/ssid .srv
interface) with a specially crafted string to crash the
SSID service. This crash arises from the code inside
libdbus-send.so shared object (or similar).
Because the crashes also occur by directly invoking
"/usr/bin/dbus-send" with a similar string, this
may affect other processes that include this code.

– CVE-2018-10659:7 A memory corruption vulnerability
discovered in multiple models of Axis IP cameras, which

6 https://nvd.nist.gov/vuln/detail/CVE-2018-10658
7 https://nvd.nist.gov/vuln/detail/CVE-2018-10659

123

https://nvd.nist.gov/vuln/detail/CVE-2018-10658
https://nvd.nist.gov/vuln/detail/CVE-2018-10659

568 L. F. Sikos et al.

allows remote attackers to cause a denial of service
(crash) by sending a crafted command, which will result
in a code path that calls the UND undefined ARM instruc-
tion.
This vulnerability allows an unauthenticated adversary to
send a specially crafted command (via the /bin/ssid
.srv interface) that will result in a code path that calls
theUND undefinedARM instruction (and possibly a simi-
lar scenario inMIPS or other architectures’ cameras) that
causes the process to crash.

– CVE-2018-10660:8 A shell command injection vulner-
ability was discovered in multiple models of Axis IP
cameras.
To take advantageof this vulnerability, onemust haveper-
missions to change certain parhand parameters. This
can be achieved by either 1) achieving/having administra-
tor privileges (by using the CGI interface), 2) executing
code inside the upnp daemon, or 3) finding other ways
to control certain parhand parameters (see CVE-2018-
10662).
The parhand parameter handler is responsible for
fetching, storing, and changing many of the device’s
internal parameters.When auser sets a parameter through
the web interface, the relevant CGI script (param.cgi)
forwards the set-parameter request to the parhand
binary, which checks access rights, and stores the param-
eter’s value in the relevant configuration file.
Some of the parameters are used for feeding shell
scripts, and are defined as shell-mounted (mount =
"Shell{ �? }" in the parhand configuration file). The
parameters’ values are parsed by the parhand Shell-
Parser, which does not sanitize special shell characters,
and also does not quote the parameters’ values.
The shell scripts directly execute the configuration file
(for the purpose of including the configuration parame-
ters). By setting the parameter’s value with a semicolon
(;), we were able to inject arbitrary shell commands with
root privileges.

– CVE-2018-10661:9 A bypass of access control vulnera-
bility discovered in multiple models of Axis IP cameras.
This vulnerability allows an adversary to bypass the web
server’s authorization mechanism by sending unauthen-
ticated requests that reach the/bin/ssid’s.srv func-
tionality. This vulnerability resides in
modauthzaxisgroupfile.so, a custom autho-
rization module for Apache httpd that was written by
the vendor.
Requests to a world-readable file that are followed
by a backslash and end with the .srv extension
(e.g., http://CAMERA_IP/index.html/a.srv)

8 https://nvd.nist.gov/vuln/detail/CVE-2018-10660
9 https://nvd.nist.gov/vuln/detail/CVE-2018-10661

are treated by the authorization code as standard requests
to the index.html and thus granted access, while the
requests are also treated as legitimate requests to an.srv
path, and are thus handled by the .srv handler simulta-
neously.

– CVE-2018-10662:10 An exposed insecure interface vul-
nerability discovered in multiple models of Axis IP
cameras.
Legitimate requests that reach the /bin/ssid’s .srv
functionality can choose one of several actions by set-
ting the action parameter in the request’s query string.
dbus allows the user to invoke any dbus request as root
(the uid and gid of the /bin/ssid process), with-
out any restriction on the destination or content. Due to
the dbus request originating from a root process, unre-
stricted access is granted to many dbus-services’
interfaces.
While the dbus interface in /bin/ssid only serves
the purpose of fetching specific values from some spe-
cific dbus-enabled services, it exposes a much broader
functionality. Thus, this interface gives users the abil-
ity to control any of the device parhand parameters’
values. Control can be achieved by sending dbus-
requests to invoke policykit_parhand process’
dbus-interface (PolicyKitParhand) functions.

– CVE-2018-10663:11 An incorrect size calculation vul-
nerability discovered in multiple models of Axis IP
cameras.
The return_page and servermanagerreturn
page query string parameters in /bin/ssid’s .srv
functionality are controlled by the user, and returned
back to her in the response to the user’s request. When
dealt with in the response-building code, these fields’
values are trimmed to a size of 0x200 bytes and copied
to a malloced 0x200-bytes space by using the safe
snprintf_chk function. Then the return value of the
snprintf_chk function (supposedly their length) is
saved in a struct member variable for later calculat-
ing the response’s content length.
The vulnerability lies when the return value of the
snprintf_chk function is the “the number of charac-
ters thatwould havebeenwritten ifn hadbeen sufficiently
large.” This makes the calculated content-length larger
than the actual data buffer, and as a result, extra bytes
from memory are leaked in the response.

– CVE-2018-10664:12 A memory corruption vulnerability
discovered in the httpd process in multiple models of
Axis IP cameras.

10 https://nvd.nist.gov/vuln/detail/CVE-2018-10662
11 https://nvd.nist.gov/vuln/detail/CVE-2018-10663
12 https://nvd.nist.gov/vuln/detail/CVE-2018-10664

123

https://nvd.nist.gov/vuln/detail/CVE-2018-10660
https://nvd.nist.gov/vuln/detail/CVE-2018-10661
https://nvd.nist.gov/vuln/detail/CVE-2018-10662
https://nvd.nist.gov/vuln/detail/CVE-2018-10663
https://nvd.nist.gov/vuln/detail/CVE-2018-10664

CamDec: Advancing Axis... 569

This vulnerability allows an unauthenticated adversary to
crash thehttpd process, causing (at least) a black screen
for viewers that were already logged to the camera using
the web interface with default settings.

Upon disclosure from Vdoo, AXIS promptly published
their own security advisory ACV-12840113 combining all
seven vulnerabilities and released firmware updates for all
effected models. From Vdoo’s research, they do not believe
that any of the vulnerabilities have been exploited in the
wild, leading to no known deliberate compromise, malware,
security or data privacy threat. However, they do suggest
the following recommendations to be implemented in newer
firmware as a result of their findings:

– Improved privilege separation: Itwas identified that inad-
equate separation of code execution allowed functions to
be executed with root privileges from an already running
root process. Ensuring that an executed system processes
is limited to only essential outside calls and variables is
critical. This involves segmenting blocks of code execu-
tion and restricting necessary privileges (root) as required
for that segment. Less reliance on root execution makes
it difficult for an attacker to escalate their privilege and
move laterally within the system.

– Adequate input sanitization: It was determined that no
input validation was performed on all user input from the
front-facingweb interfacewhen configuring the camera’s
settings. This leaves potential invalid characters from
not being removed prior to being saved to the camera’s
configuration file. Invalid characters can cause problems
during script execution and potentially lead to bugs and
exploits. Input sanitization is critical to ensure that only
valid characters are accepted as user input.

– Reduced reliance on shell scripts: The firmware makes
use of multiple shell scripts that process user input from
the front-facing web interface. These inputs are then
saved to that camera’s particular configuration file. If
improper input is saved and then executed by the shell
script, arbitrary commands can be executed as root. By
reducing or better eliminating the use of shell script
executing as root, it becomes less likely that arbitrary
malicious code can be executed.

– Encryption of firmware binary:As the camerafirmware is
unencrypted, anyone with technical know-how can view,
extract, and analyze the firmware for anything of interest.
This includes file structures, code/scripts and variable/-
function names to identify how the firmware works and
weak areas that can be exploited. Encryption can be
implemented in two method: 1) encrypting the firmware
binary itself, or 2) security through obscurity.

13 https://www.axis.com/files/faq/Advisory_ACV-128401.pdf

Tomitigate all known vulnerabilities and potential threats,
all affectedAxis cameras have to bemaintainedwith the latest
firmware released.

4 A novel approach for advanced video
camera security via honeypots

The purpose of this research paper is to establish an approach,
calledCameraSecurityUsingDeception (CamDec),whereby
a Cowrie-based honeypot spoofs a hardware-based instance
of a physical device. Such devices may include enterprise-
grade network hardware (routers, switches, access points),
IP cameras, IP phones, video and teleconferencing equip-
ment, and Internet-of-Things (IoT) system-on-a-chip (SoC)/
embedded devices, just to name a few. Traditionally, hon-
eypots have been built to simulate unconfigured, poorly
maintained devices to entice attackers in enterprise networks.
However, this research aims to take this a step further by seek-
ing to identify methods of spoofing IoT hardware, firmware,
and software within a virtual Cowrie honeypot environment.

Specifically, this paper focuses on spoofing an Axis
P1435-LE IP-based camera. Axis Communications is a lead-
ing globalmanufacturer and vendor of network video surveil-
lance and analytics, access control, audio systems equipment,
and communication platforms. The reason for selecting this
specific IP camera brand is its global deployment in a wide
variety of enterprises and commercial environments, includ-
ing both the public and private sectors.

The aim of our research is to develop, design, and build an
implementation of a Cowrie-based honeypot that efficiently
spoofs an Axis IP camera instance. This research focuses
specifically on the Axis P1435-LE IP camera, and hardware,
firmware, and software analyses, enumeration, and finger-
printing conducted on it. Based on these findings, the reverse
engineering of the camera’s default front-facing public inter-
face is attempted to identify the device’s unique traits for
accurately mimicking them.

At the time of writing, the latest firmware release for
P1435-LE is version 9.80.2.2LTS (long-term support).14 The
P1435-LE is described by the manufacturer as a compact
bullet camera suitable for any light condition, with built-in
infrared LEDs, 1080p recording at 50/60 fps, and support for
two lenses (wide and telephoto) [4].

4.1 Camera configuration

As an initial step, a factory resetwas performed on the P1435-
LE, and the default configuration was left unchanged. Once
connected to the Local Area Network (LAN), the camera

14 https://www.axis.com/ftp/pub_soft/MPQT/P1435-LE/latest/
relnote.txt

123

https://www.axis.com/files/faq/Advisory_ACV-128401.pdf
https://www.axis.com/ftp/pub_soft/MPQT/P1435-LE/latest/relnote.txt
https://www.axis.com/ftp/pub_soft/MPQT/P1435-LE/latest/relnote.txt

570 L. F. Sikos et al.

was accessed via the device’s web interface using its default
credentials. This access also enabled the configuration of the
device, with access to functions such as IP addressing, DNS,
date/time, recording settings, and port enabling/disabling.

4.2 Automated Cowrie installation

In the proposed solution, a combination of tools is used to
automatically create and deploy Ubuntu virtual machines
that host Cowrie honeypots. Packer15 is used to download
and install Ubuntu 18.04 LTS, together with Ansible16 to
automatically update and install dependencies for virtual
machines, before using a shell script to configure the Cowrie
honeypot instances.

Building on related works of other researchers, Packer,
Ansible, and associated shell scripts have been selected to
be used for this project. The reasoning behind this design is
supported by efficient building and rapid deployment of an
unmanaged image across multiple VM hosts.

In addition, this solution ensures the virtual honeypot
instances’ integrity, and that they meet the specific opera-
tional requirements of the project build and application. The
use of pre-built Vagrant machines17 or Docker containers18

was discarded due to project scope and because of their vul-
nerability to malicious creation and modification.

The security concerns inherent in Docker provide an
edge to attackers [29] through denial-of-service (DoS) and
distributed denial-of-service (DDoS) attacks. Furthermore,
the possibility of privilege escalation is heightened when
employing Docker containers, as they require operational
access to the Linux kernel [16].

Our project approach supports custom configurations,
such as specific camera model templates, so that honey-
pots can run bespoke virtual environments rather than using
default configurations that might otherwise be more readily
detected [6,7]. This approach reduces reliance upon third-
party image updates, such that the desired version of software
can be installed to meet specific application requirements,
together with that of the operating system.

Furthermore, by leveraging the technology of virtualisa-
tion, in the event of a honeypot compromise, or each time the
honeypot is accessed, the administrator can quickly imple-
ment a “destroy and re-deploy” action. In contrast, physical
devices would need to be manually re-flashed with the cor-
rect firmware, assuming that the compromise did not damage
the underlying physical hardware.

15 https://www.packer.io
16 https://www.ansible.com
17 https://www.vagrantup.com
18 https://www.docker.com

4.3 Ensuring plausibility

Plausibility is a critical aspect of any honeypot configu-
ration, where the fundamental goal of the honeypot is to
mimic a vulnerable camera, and to attract and extend attacker
interaction for as long as possible. This mimicry ensures
that sufficient evidence can be collected about attackers
and their malicious actions. The ability of the honeypot to
mimic a hardware-based instance of any physical device is
of paramount importance.

There remains the potential for further research in this field
with a particular focus on improving honeypot believability
throughout the attacker honeypot interaction.

The P1435-LE supports advanced features, including
1080p video recording, Lightfinder,19 Wide Dynamic Range
(WDR), OptimizedIR (Axis proprietary technologies) [2],
and includes support for SSH and Telnet out of the box. To
define a clear scope for our research, the constraints under
which the P1435-LE camera operates had to be outlined. For
this reason, the default configuration and the most common
services of the camera have been analyzed.

In order to determine the most common ports open on the
Axis P1435, the project team turned to IoT search engines
Censys and Shodan. Used by attackers and penetration
testers alike [8], Shodan has become a favorite cyber-toolkit,
because it can identify and index public-facing IP devices.
Access to the IoT search engines is through a web browser,
permitting the search engines to discover device types and
models of interest that have a public-facing presence online.
The search engines work by scanning the Internet using a
custom scan algorithm, leveraging user-entered search crite-
ria, and parsing the banners returned by the device as a result
of the search engine scan. Search terms can be concatenated
and filtered, thereby permitting a customizable search func-
tionality.

For the purposes of this project, the search was defined
using the make and model of the camera of interest. The
results are then displayed through the web browser interface
delivering information such as the following:

(a) IP address
(b) Hostname
(c) ISP
(d) Open ports
(e) Protocols
(f) Device host country
(g) Device host city
(h) Detected banner(s)
(i) Date of last update

19 Axis Lightfinder is a technology to deliver high-resolution, full-color
video with a minimum of motion blur even in near darkness.

123

https://www.packer.io
https://www.ansible.com
https://www.vagrantup.com
https://www.docker.com

CamDec: Advancing Axis... 571

In addition, Shodan can provide an assessment on the like-
lihood that the device is a honeypot.By comparing previously
defined characteristics of known honeypots, Shodan can esti-
mate the probability that a scanned IP address is a honeypot
and describe that probability as a so-called “honeyscore.” A
honeyscore assigns a numeric value between 0.0 and 1.0 to
the IP address.

While the P1435-LE does have added support for SSH
(port 22) and Telnet (port 23), these services are not enabled
by default. Only FTP (port 21) is enabled. While these addi-
tional services can be opened by the administrator of the
camera, in a commercial setting this is unlikely to be the
case, due to the security risk associated with leaving ports
such as SSH and Telnet open. Performing a Nmap scan on
the P1435-LE also confirms the default camera configuration
(see Listing 1).

PORT STATE SERVICE VERSION
21/tcp open ftp Axis P1435 -LE

Network Camera ftpd 9.80.1
(2020)

80/tcp open http Apache httpd
2.4.41 ((Unix) OpenSSL /1.1.1d)

| http -robots.txt: 1 disallowed
entry

|_/
|_http -server -header: Apache

/2.4.41 (Unix) OpenSSL /1.1.1d
|_http -title: AXIS
554/ tcp open rtsp GStreamer rtspd
|_rtsp -methods: ERROR: Script

execution failed (use -d to
debug)

MAC Address: 00:40:8E:DE :34:31 (
Axis Communications AB)

Device type: general purpose
Running: Linux 3.X|4.X
OS CPE: cpe:/o:linux:linux_kernel

:3 cpe:/o:linux:linux_kernel :4
OS Details: Linux 3.2 -4.9
Network Distance: 1 hop
Service Info: OS: Linux; Device:

webcam; CPE: cpe:/h:axis:p1435
-le_network_camera ,

cpe:/o:linux:linux_kernel
:4.9.206 - axis5

Listing 1 Nmap scan results of a P1435-LE default configuration

As determined by the Nmap scan, in conjunction with the
results from Censys and Shodan, the scope for masquerad-
ing the Cowrie honeypot configuration will be limited to the
following open ports of the P1435-LE camera:

– Port 21 (FTP): Axis P1435-LE Network Camera ftpd
9.80.22 (2020)

– Port 80 (HTTP): Apache httpd 2.4.41 ((Unix)
OpenSSL/1.1.1d)

– Port 554 (RTSP): GStreamer rtspd

4.3.1 Mimicking the camera’s file system

The camera’sOSarchitecture is built upon theYocto project’s
Poky OpenEmbedded framework, which was described by
[5] as a collaboration project to develop templates for various
hardware platforms. Its functionality enables developers to
efficiently prototype software projects.

The Axis P1435 camera file system is based on a cus-
tomized version of BusyBox v1.31.0, modified to perform
camera-specific functions from an embedded Linux envi-
ronment. BusyBox is described as a multi-call binary that
combines minimalist versions of common Unix utilities in a
small executable. Licensed under GPLv2, BusyBox is open
source, has an active community participation, and provides
access to the latest versions available through the Busybox
website.20 In the case of P1435, BusyBox is shipped with
over 100 functions, including dd, echo, find, fdisk,
grep, head, tail, uname, inetutils, modutils,
net-tools, sysvinit, and tar, among others.

Mimicking of the camera file system was achieved using
the built-in Cowrie createfs utility. The source files used
were derived from either a Busybox binary or alternatively
from the camera firmware binary file, where the use of one
or the other was dictated by the specific honeypot deploy-
ment deliverable. For example, by downloading an earlier
firmware version for a camera from the OEM website, it is
possible by extracting the squashfs from the firmware .bin
file, to use this to create a “vulnerable-looking” file system
within the honeypot. Known Axis camera CVE vulnerability
lists are available on the company website, however, most
firmware updates cannot be automated, and therefore the
responsibility for updating the firmware remains with the
end user, which may result in overlooked security updates.
This can be witnessed by IoT search engines, which often
reveal outdated firmware.

4.3.2 Utilizing the user accounts

The Axis P1435-LE camera is delivered with three disabled
factory default accounts, those being:

– Administrator: can change settings, access recordings,
and live view.

– Operator: can access recordings and live view.
– Viewer: can access live view.

20 http://busybox.net/downloads/

123

http://busybox.net/downloads/

572 L. F. Sikos et al.

These accounts can then be enabled as part of the camera
configuration process and assigned appropriate passwords
at the discretion of the camera deployment engineer. Once
configured and enabled, the camera /etc/passwd and
/etc/shadow file contents will need to be copied and
imported in their respective locations within the honeypot,
thereby accurately mimicking the user account structure of
the donor camera.

Since September 2018, the credentials attackers can use
to connect to Cowrie are stored in /etc/userdb.txt. Previ-
ously, this file was located in /data/userdb.txt and came as
a part of the default Cowrie build. However, since Septem-
ber 2018, the userdb.txtmust be created and configured
from /etc/userdb.example as provided in the Cowrie
build.

The credentials for the previously created camera accounts
(Administrator, Operator, and Viewer) can be copied and
added to the honeypot’s userdb.txt file. In addition,
by editing the userdb.txt, it is possible to specify user
account/password combinations that can be used by attack-
ers to gain access to Cowrie, and exclude all others. For this
purpose, we used the top 20 Sucuri Wordpress honeypot
user account/password combination captures, and applied
them to each of the Administrator, Operator, and Viewer
user accounts. This can extend an attacker’s login interaction
attempts with the honeypot, thereby providing the opportu-
nity for generating a more extensive login record.

4.3.3 Replicating camera functions

Some of the ports used by P1435-LE can be reproduced on
Cowrie, as shown in Table 1.

The possibility to replicate the P1435-LE functions from
the honeypot is determined by the feasibility of spoofing the
live feed from the camera in this environment. According to
theNmap scan performed, theRTSP stream servicewas iden-
tified as GStreamer.21 However, for our purposes, VLC,22 a
free and open source multimedia player, was utilized as the
RTSP server on the honeypot for two reasons.

Firstly, it had to be determined if service spoofing is indeed
possible and the mechanisms of how Nmap detects services
in order to accurately match it to the service aiming to be
spoofed. Secondly, to aid with easier mass-scale honeypot
deployment using VMs with sets of standardized software
preloaded that can bemodified by the user to appear as some-
thing else to Nmap.

As part of this research, we attempted to spoof a live
video feed through VLC. Feeding VLC a video file of earlier
recorded footage has the following benefits:

21 https://github.com/GStreamer/gst-rtsp-server
22 https://www.videolan.org/vlc/

1. it looks believable;
2. the first and last frames loop together at a clean cut; and
3. the file used has the same video properties of which the

P1435-LE would record at.

For our purposes, we used a ten-minute recording from
the P1435-LE with the timestamp removed (which would
compromise the authenticity of the stream when the video
stream is played in a loop). This was done in an Ubuntu
18.04 testing environment as follows:

1. Install VLC on Ubuntu:

sudo apt install vlc

2. Set VLC to use root (geteuid to getppid):

sudo sed -i ’s/geteuid/getppid
/’ /usr/bin/vlc

3. Create spoofstream bash script:

sudo nano /home/<user >/<
directory >/<to >/ spoofstream.
sh

4. Copy the command into the spoof stream bash script:

#!/bin/bash
cvlc /home/<user >/<directory >/<

to >/< video_file.extension > :
sout=#rtp{sdp=rtsp ://:554/
axis -media/media.amp} --
repeat --sout -keep

5. Change permissions of the spoofstream bash script:

sudo chmod 774 /home/<user >/<
directory >/<to >/ spoofstream.
sh

6. Create a service file:

sudo nano /etc/systemd/system/
axisspoof.service

7. Copy the configuration into the service file:

[Unit]
Description=Axis Spoof Livefeed

[Service]
WorkingDirectory =/home/<user >/<

directory >/<to >/<
working_directory >

ExecStart =/home/<user >/<
directory >/<to >/ spoofstream.
sh

[Install]
WantedBy=multi -user.target

123

https://github.com/GStreamer/gst-rtsp-server
https://www.videolan.org/vlc/

CamDec: Advancing Axis... 573

Table 1 P1435-LE and Cowrie reproducibility

Port/ Service State Version/Notes Cowrie Reproducibility

21 FTP Open Axis P1435-LE network Camera ftpd 9.80.1 (2020) –

22 SSH Closed OpenSSH 7.9 (protocol 2.0) Configurable banner

23 TELNET Closed Enabled via http://IP/ admin-bin/editcgi.cgi?
file=etc/inittab

Configurable banner

25 SMTP Closed Send images, notifications, video clip Forward SMTP connections
to SMTP Honeypot

80 HTTP Open GUI, Send images, notifications, video clip –

443 SSL Open Apache/2.4.41 (Unix) OpenSSL 1.1.1d TBA

554 RTSP Closed GStreamer rtsp VLC

49152
ONVIF

Closed upnp Portable SDK for Upnp devices 1.6.22 (Linux
4.9.206-axis5; Upnp 1.0)

–

8. Enable the new service on system reboot:

systemctl enable axisspoof.
service

9. Check the status of the new service upon reboot:

systemctl status axisspoof.
service

During the process of getting the live stream to work,
we faced some technical issues. First, installing VLC using
Snap (as suggested on the VLC website) installs VLC in
another directory rather than the default program directory,
which should be avoided. By default, VLC does not have
root permissions, and therefore it will refuse to output the
video stream on port 554; instead, it outputs it on port 8544.
To overcome this, VLC requires root permission for all the
ports lower than 1024 [17].

With the live stream successfully working, upon system
boot and remote users being able to connect on port 554,
another issue occurred. Upon performing a Nmap scan of
the Ubuntu 18.04 testing environment, it was evident that
Nmapwas identifying “VLC rtsp 3.0.8” as the service version
running on port 554 (see Listing 2).

PORT STATE SERVICE VERSION
554/ tcp open rtsp VLC rtspd

3.0.8
|_rtsp -methods: DESCRIBE ,SETUP ,

TEARDOWN ,PLAY ,PAUSE ,
GET_PARAMETER

MAC Address: 00:0C:29:75:62: A1 (
VMware)

Device type: general purpose
Running: Linux 4.X|5.X
OS CPE: cpe:/o:linux:linux_kernel

:4 cpe:/o:linux:linux_kernel :5

Fig. 1 Files containing the VLC version string

OS details: Linux 4.15--5.6
Network Distance: 1 hop

Listing 2 Nmap scan results of VLC implemented Axis Spoof Livefeed

To have VLC report to Nmap something else other than
VLC when using the -sV or -A flags for port scanning, we
developed a script that launchesVLCas root, points to a video
file, and opens an RTSP stream on the host. To do this, the
VLC source code was downloaded and modified by finding
all references to the VLC version string, i.e., 3.0.12 in
the latest release source code at the time of writing,23 which
appears in six files (see Figure 1).

However, only three of these files need to have 3.0.12
replaced. These are configure (lines 592, 593, and 5227),
configure.ac (line 5), and vlc.pot (line 9).

To compile, we followed the steps from https://wiki.
videolan.org/UnixCompile/. However, before compiling,
source code dependencies are needed within Ubuntu [13].
Additionally, because the files have been modified, before
executing./configure, we executed autoreconf -f
-i, which resolves any potential errors [20].

With VLC now complied and installed, VLC was set to
host an RTSP stream, and accessed it via the host. While the
streamwas playing on the host, anNmap scanwas performed
with flags -sV and -A, respectively. Note that the actual

23 http://get.videolan.org/vlc/3.0.12/vlc-3.0.12.tar.xz

123

https://wiki.videolan.org/UnixCompile/
https://wiki.videolan.org/UnixCompile/
http://get.videolan.org/vlc/3.0.12/vlc-3.0.12.tar.xz

574 L. F. Sikos et al.

version string was replaced. However, the service was still
detected correctly as VLC rtspd (see Listing 3).

PORT STATE SERVICE VERSION
554/ tcp open rtsp VLC rtspd X

.Y.Z
|_rtsp -methods: DESCRIBE ,SETUP ,

TEARDOWN ,PLAY ,PAUSE ,
GET_PARAMETER

MAC Address: 00:0C:29:75:62: A1 (
VMware)

Listing 3 Nmap scan results detected the change in version, however
still VLC rtspd as the running service

This is a major problem for the believability aspect,
because it would give away the appearance of the P1435-
LE camera, and an attacker may raise questions as to why an
IP camera would have VLC running on it.

To determine from where the string VLC rtspd was
pulled from, the contents of the VLC source code was
searched, but no reference was found to such a string. Further
research lead to Nmap’s nmap-service-probes file,
which contains a list of regex-based search patterns format-
ted similarly to the Perl syntax to identify the service running
on the identified ports.

While this file could not be located on the local host,
reviewing the Nmap source code online led to the nmap-
service-probesfile.24 Doing a search for the stringVLC
rtspdwithin this file revealed the regular expression string
used to identify the service (see Listing 4).

match rtsp m|^RTSP /1\.0 200 OK\r\
nServer: VLC /([\w._-]+)\r\
nContent -Length: 0\r\nPublic:
DESCRIBE ,SETUP ,TEARDOWN ,PLAY ,
PAUSE ,GET_PARAMETER\r\n\r\n| p
/VLC rtspd/ v/$1/ cpe:/a:
videolan:vlc_media_player:$1/

Listing 4 Nmap’s VLC rtsp match command

The caveat is that the string Nmap outputs describing the
identify of the service is hard-codedwithinNmap, rather than
theVLC source code, as identified from the above Perl search
pattern p/VLC rtspd/, is essentially p/service/.

Next, it was attempted to find within the VLC source
code what the match command is looking for so that it
can be modified appropriately. We searched the VLC source
code contents for the specific string DESCRIBE, SETUP,
TEARDOWN, PLAY, PAUSE, GET_PARAMETER, as it
matches specifically what Nmap intends to find, which only
appears in two files, as shown in Figure 2.

24 https://svn.nmap.org/nmap-releases/nmap-7.90/nmap-service-
probes

Fig. 2 Files containing the string Nmap is searching for

Fig. 3 Location of theVLC rtspd matchPerl search patternwithin
VLC’s source code

However, only the httpd.c requires modification. We
were able to locatewith probable cause that the VLC rtspd
stringsNmap is detecting for are located between lines 1738–
1821 of this file, as shown in Figure 3. It is highly likely that
this is the only source which outputs the required parameters
needed by thematch commandwithin theVLCsource code.

In order to attempt to mimic GStreamer’s Nmap out-
put, it’s match command was also identified within the
nmap-service-probes file by doing a search for the
string GStreamer rtsp (see Listing 5).

match rtsp m|^HTTP /1\.0 503
Service Unavailable\r\nServer:
GStreamer RTSP Server\r\

nConnection: close\r\nCache -
Control: no -store\r\nPragma:

123

https://svn.nmap.org/nmap-releases/nmap-7.90/nmap-service-probes
https://svn.nmap.org/nmap-releases/nmap-7.90/nmap-service-probes

CamDec: Advancing Axis... 575

Fig. 4 Modified httpd.c file with GStreamer rtspd match
Perl search pattern

no -cache\r\nDate: .*\r\n\r\n$|
p/GStreamer rtspd/

Listing 5 Nmap’s GStreamer rtsp match command

The httpd.c file was then modified as follows:

• Lines 1783–1821 were replaced to contain only the
required parameters and values of GStreamers Nmap
detection, these being i_status, Server,
Connection, Cache-control, Pragma, and
Date as shown in Figure 4.

• Lines 263–287 where deleted entirely, and
• Line 234 was modified from { 503, "Service
unavailable" }, to { 503, "Service
Unavailable" } — note the capital U.

After running make uninstall and make clean,
and recompiling the new changes along with the replaced
3.0.12 strings as mentioned earlier, Nmap cannot detect
what the service is runningon the openport. Instead, it tries its
best to guess what the unrecognized service is, as none of the
Perl search patterns got a result. Nmap will instead create a
unique fingerprint ID listing the details of its attempted detec-
tion so that the unidentified service can be officially added
within the nmap-service-probes file and distributed
in the next update. Of particular interest, when performing a
scanwith the -A flag, Nmap detects and outputs themodified
changes to the source code (see Listing 6).

PORT STATE SERVICE VERSION
554/ tcp open rtsp?
|_rtsp -methods: ERROR: Script

execution failed (use -d to
debug)

| fingerprint -strings:

| RTSPRequest:
| RTSP /1.255 503 Service

Unavailable
| Server: GStreamer RTSP

Server
| Connection: close
| Cache -Control: no -store
| Pragma: no -cache
|_ Date: Sat , 02 Sep 1978

16:04:44 GMT
MAC Address: 00:0C:29:75:62: A1 (

VMware)

Listing 6 Nmap scan results of modified VLC source code to mimic
GStreamer

Given that the service is hard-coded into Nmap rather
than pulling the service name from the detected open port,
such is the case with the version number, this approach has
challenges in terms of ease of implementation and version-
dependence, given the required amount of tinkering required
just to get this far. The authors believe that this should be
possible to achieve with additional work.

Future work on this area includes:

• Performing a Wireshark packet capture of Nmap’s ser-
vice detection probing on the modified VLC implemen-
tation,

• Further reverse engineering and modification of VLC’s
source code,

• Reverse engineering of GStreamer’s source code, and
• Better understanding of the specifics of Nmap’s finger-
print ID syntax.

5 Evaluation

Malware Information Sharing Platform (MISP)25 is an open
source utility that provides a central indicators of compro-
mise (IoC) database that is easily accessible for both technical
and non-technical users, providing information about mal-
ware and attacks, which are stored in a semistructured format
[26]. The correlation features of MISP allow valuable data
to be automatically provided, thereby showing the relation-
ship between each event in the database. This data can then
be exported in many different formats, including OpenIOC,
plain text, and XML outputs, along with intrusion detection
system (IDS) rules [26].

By using MISP with Cowrie, honeypots can automati-
cally report findings toMISP, which can be exported in many
different formats based on potential requirements. This also
allows the reports of multiple honeypot instances to be col-

25 https://www.misp-project.org

123

https://www.misp-project.org

576 L. F. Sikos et al.

Fig. 5 Attributes stored by Cowrie in MISP for the Adobe Reader DC
installer file

lated into one centralized reporting system,where the number
of sightings of a particular sample or file can be accurately
measured frommultiple systems or sessions, and the data can
be correlated to provide forensically valuable statistics.

Cowrie includes a MISP module in its code that can
automatically upload information about any files that are
uploaded to the honeypot during an SSH session, allow-
ing MISP to store and correlate reports about these samples
instead of having to inspect the honeypot logs manually. This
allows for significantly faster and easier incident reporting
and data collation than attempting to parse plain-text logs
manually.

By using this approach, we monitored the incidents on
our proposed honeypot approach, while also providing statis-
tics and forensically valuable information with regards to the
number of sightings on a particular file or sample across
numerous honeypots.

Figure 5 shows the attributes that are added into MISP by
Cowrie’s default MISP module when a connecting user uses
the wget command in their SSH session to download the
Adobe Reader DC installer.26 The information includes file
size, entropy, multiple hashes, and the sample itself. Note
that although the sample is stored as “malware-sample”, it
may not always be malicious, because non-malicious data
can also be uploaded to Cowrie.

By default, the hashes and the sample files are correlated,
allowing MISP to link similar events that involve files with
the same hashes together. However, if the exact same file
is uploaded to Cowrie, it will just increment the number of
sightings in MISP rather than creating a new event, which
reduces duplicate reports but results in correlation charts not
displaying every instance of the event.

26 http://admdownload.adobe.com/bin/live/readerdc_en_a_install.exe

6 Conclusions

This paper presented a novel approach for honeypot-based
hardening of video camera security, and presented an imple-
mentation for an Axis camera model. In particular, this
approach provides mechanisms to mimic the Axis P1435-
LE camera, spoof videostreams through VLC, while keeping
believability, frame boundaries, and video file properties in
mind. This requires taking the characteristics of the cho-
sen device model to mimic into account to an extent that
adversaries—at least initially—will not realize that they
are interacting with a honeypot and not a video camera.
The proprietary solutions, varying device characteristics,
and software implementations all pose challenges in terms
of practicality and scalability, and in particular, prevent
device-specific components and streamlined development
practices for future software versions and device models.
This approach has been evaluated using MISP, which allows
for generating reports, identifying threats and camera hack-
ing attempts, and linking similar events.

Funding Open Access funding enabled and organized by CAUL and
its Member Institutions.

Data availability The datasets generated during and/or analyzed dur-
ing the current study are available from the corresponding author on
reasonable request.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Alsmirat, M.A., Obaidat, I., Jararweh, Y., Al-Saleh, M.: A security
framework for cloud-based video surveillance system. Multime-
dia Tools Appl. 76, 22787–22802 (2017). https://doi.org/10.1007/
s11042-017-4488-1

2. Axis Communications: Axis introduces two new bullet-style
HDTV network cameras for difficult light conditions (2015).
https://www.axis.com/files/press_releases/pr_p1435e_p1435le_
1512.pdf

3. Axis Communications: Acv-128401affected product list
(2018). https://www.axis.com/files/sales/ACV-128401_Affected_
Product_List.pdf

4. Axis Communications: AXIS P1435-LE network camera
compact and fully-featured HDTV for any light condi-
tion (2020). https://www.axis.com/files/datasheet/ds_p1435le__
t10054259_en_2005.pdf

123

http://admdownload.adobe.com/bin/live/readerdc_en_a_install.exe
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11042-017-4488-1
https://doi.org/10.1007/s11042-017-4488-1
https://www.axis.com/files/press_releases/pr_p1435e_p1435le_1512.pdf
https://www.axis.com/files/press_releases/pr_p1435e_p1435le_1512.pdf
https://www.axis.com/files/sales/ACV-128401_Affected_Product_List.pdf
https://www.axis.com/files/sales/ACV-128401_Affected_Product_List.pdf
https://www.axis.com/files/datasheet/ds_p1435le__t10054259_en_2005.pdf
https://www.axis.com/files/datasheet/ds_p1435le__t10054259_en_2005.pdf

CamDec: Advancing Axis... 577

5. Bäckman, M., Hagfjäll, F.: Application security for embedded
systems. Master’s thesis, Department of Electrical and Informa-
tion Technology, Lund University (2017), https://www.eit.lth.se/
sprapport.php?uid=1032

6. Cabral, W.Z., Valli, C., Sikos, L.F., Wakeling, S.G.: Review and
analysis of Cowrie artefacts and their potential to be used decep-
tively. In: 2019 InternationalConferenceonComputational Science
andComputational Intelligence, IEEE, pp. 166–171 (2019), https://
doi.org/10.1109/CSCI49370.2019.00035

7. Cabral, W.Z., Valli, C., Sikos, L.F., Wakeling, S.G.: Analysis of
Conpot and its BACnet features for cyber-deception. In: Daimi,
K., Arabnia, H.R., Deligiannidis, L., Hwang, M.S., Tinetti, F.G.
(eds.) Advances in Security, Networks, and Internet of Things, pp.
329–339. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-71017-0_23

8. Chen, Y., Lian, X., Yu, D., Lv, S., Hao, S., Ma, Y.: Exploring
Shodan from the perspective of industrial control systems. IEEE
Access 8, 75359–75369 (2020). https://doi.org/10.1109/ACCESS.
2020.2988691

9. Costin, A.: Security of CCTV and video surveillance systems:
threats, vulnerabilities, attacks, and mitigations. In: Proceedings
of the 6th International Workshop on Trustworthy Embedded
Devices, ACM, New York, pp. 45–54 (2016), https://doi.org/10.
1145/2995289.2995290

10. Cusack,B., Tian, Z.: Evaluating IP surveillance camera vulnerabili-
ties. In: Valli C (ed.) Australian Information Security Management
Conference, Springer, Heidelberg, pp. 25–32 (2017), https://doi.
org/10.4225/75/5a84efba95b46

11. Dowling, S., Schukat,M., Barrett, E.:Using reinforcement learning
to conceal honeypot functionality. In: Brefeld U, Curry E, Daly
E, MacNamee B, Marascu A, Pinelli F, Berlingerio M, Hurley N
(eds) Machine Learning and Knowledge Discovery in Databases,
Springer, Cham, pp. 341–355 (2019), https://doi.org/10.1007/978-
3-030-10997-4_21

12. Egashira, T., Meng, L., Tomiyama, H.: A home security cam-
era system based on cloud and SNS. In: Chiplunkar NN, Fukao
T (eds) Advances in Artificial Intelligence and Data Engineer-
ing, Springer, Singapore, pp. 1375–1381 (2020), https://doi.org/
10.1007/978-981-15-3514-7_103

13. Exchange, S.: Error : you must put some ‘source’ URIs in
your sources.list (2015). https://askubuntu.com/questions/496549/
error-you-must-put-some-source-uris-in-your-sources-list

14. Guarnizo, J., Tambe, A., Bhunia, S.S., Ochoa, M., Tippenhauer,
N.O., Shabtai, A., Elovici, Y.: SIPHON: towards scalable high-
interaction physical honeypots. In: Proceedings of the 3rd ACM
Workshop on Cyber-Physical System Security, ACM, New York,
pp. 57–68 (2017), https://doi.org/10.1145/3055186.3055192

15. Guri, M., Bykhovsky, D.: aIR-Jumper: covert air-gap exfiltra-
tion/infiltration via security cameras & infrared (IR). Comput.
Secur. 82, 15–29 (2018). https://doi.org/10.1016/j.cose.2018.11.
004

16. Kaliappan, V., Yu, S., Soundararajan, R., Jeon, S., Min, D., Choi,
E.: High-secured data communication for cloud enabled secure
docker image sharing technique using blockchain-based homo-
morphic encryption. Energies 15(15), 89 (2022). https://doi.org/
10.3390/en15155544

17. Kili, A.: How to install and run VLC Media Player as root
in Linux (2017). https://www.tecmint.com/run-vlc-media-player-
as-root-in-linux/

18. Liu, J., Gu, Y., Kamijo, S.: Customer pose estimation using
orientational spatio-temporal network from surveillance camera.
Multimedia Syst. 24, 439–457 (2018). https://doi.org/10.1007/
s00530-017-0570-9

19. Luo, T., Xu, Z., Jin, X., Jia, Y., Ouyang, X.: IoTCandyJar:
towards an intelligent-interaction honeypot for IoT devices. In:
Black Hat USA 2017 (2017), https://www.blackhat.com/docs/

us-17/thursday/us-17-Luo-Iotcandyjar-Towards-An-Intelligent-
Interaction-Honeypot-For-IoT-Devices-wp.pdf

20. Overflow, S.: How to overcome “aclocal-1.15’ is missing on your
system” warning? (2016), https://stackoverflow.com/questions/
33278928/how-to-overcome-aclocal-1-15-is-missing-on-your-
system-warning/33279062

21. Peles, O.: Vdoo discovers significant vulnerabilities in Axis
cameras (2018). https://www.vdoo.com/blog/vdoo-discovers-
significant-vulnerabilities-in-axis-cameras

22. Rowe, N.C., Duong, B.T., Custy, E.J.: Fake honeypots: a defensive
tactic for cyberspace. In: Proceedings of the 2006 IEEE Information
Assurance Workshop, IEEE, pp. 223–230 (2006), https://doi.org/
10.1109/IAW.2006.1652099

23. Saini, D.K., Ahir, D., Ganatra, A.: Techniques and challenges in
building intelligent systems: Anomaly detection in camera surveil-
lance. In: Satapathy SC, Das S (eds) Proceedings of First Interna-
tional Conference on Information andCommunication Technology
for Intelligent Systems, vol. 2, pp. 11–21, Springer, Cham (2016),
https://doi.org/10.1007/978-3-319-30927-9_2

24. Singh, D.K., Kushwaha, D.S.: Tracking movements of humans in a
real-time surveillance scene. In: PantM, Deep K, Bansal JC, Nagar
A, Das KN (eds) Proceedings of Fifth International Conference
on Soft Computing for Problem Solving, Springer, Singapore, pp.
491–500 (2016), https://doi.org/10.1007/978-981-10-0451-3_45

25. Sitara, K.,Mehtre, B.M.: Automated camera sabotage detection for
enhancing video surveillance systems. Multimedia Tools Appl. 78,
5819–5841 (2019). https://doi.org/10.1007/s11042-018-6165-4

26. Skopik, F., Settanni, G., Fiedler, R.: A problem shared is a problem
halved: a survey on the dimensions of collective cyber defense
through security information sharing. Comput. Secur. 60, 154–176
(2016). https://doi.org/10.1016/j.cose.2016.04.003

27. Tambe, A., Aung, Y.L., Sridharan, R., Ochoa, M., Tippenhauer,
N.O., Shabtai, A., Elovici, Y.: Detection of threats to IoT devices
using scalable VPN-forwarded honeypots. In: Proceedings of the
Ninth ACMConference on Data and Application Security and Pri-
vacy, ACM, New York, pp. 85–96 (2019), https://doi.org/10.1145/
3292006.3300024

28. Tekeoglu, A., Tosun, A.S.: Investigating security and privacy
of a cloud-based wireless IP camera: NetCam. In: Proceedings
of the 24th International Conference on Computer Communica-
tion and Networks, IEEE (201x), https://doi.org/10.1109/ICCCN.
2015.7288421

29. Tomar, A., Mishra, P., Bisht, R., Kumar, P.: A step towards gener-
ation of DoS/DDoS attacks dataset for docker-centric computing.
Int. J. Math. Eng. Manag. Sci. 7(1), 81–91 (2022). https://doi.org/
10.33889/IJMEMS.2022.7.1.006

30. Vempati, J.,Dantu,R., Thompson,M.:Uninterruptedvideo surveil-
lance in the face of an attack. In: Proceedings of the 17th IEEE
International Conference on Trust, Security and Privacy in Com-
puting and Communications/12th IEEE International Conference
on Big Data Science and Engineering, IEEE, pp. 843–848 (2018),
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00121

31. Wu L, Lovell BC, Wang Y (2019) Deep learning in person re-
identification for cyber-physical surveillance systems. In: Alazab
M, Tang M (eds) Deep Learning Applications for Cyber Secu-
rity, Springer, Cham, pp 45–72, https://doi.org/10.1007/978-3-
030-13057-2_3

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://www.eit.lth.se/sprapport.php?uid=1032
https://www.eit.lth.se/sprapport.php?uid=1032
https://doi.org/10.1109/CSCI49370.2019.00035
https://doi.org/10.1109/CSCI49370.2019.00035
https://doi.org/10.1007/978-3-030-71017-0_23
https://doi.org/10.1007/978-3-030-71017-0_23
https://doi.org/10.1109/ACCESS.2020.2988691
https://doi.org/10.1109/ACCESS.2020.2988691
https://doi.org/10.1145/2995289.2995290
https://doi.org/10.1145/2995289.2995290
https://doi.org/10.4225/75/5a84efba95b46
https://doi.org/10.4225/75/5a84efba95b46
https://doi.org/10.1007/978-3-030-10997-4_21
https://doi.org/10.1007/978-3-030-10997-4_21
https://doi.org/10.1007/978-981-15-3514-7_103
https://doi.org/10.1007/978-981-15-3514-7_103
https://askubuntu.com/questions/496549/error-you-must-put-some-source-uris-in-your-sources-list
https://askubuntu.com/questions/496549/error-you-must-put-some-source-uris-in-your-sources-list
https://doi.org/10.1145/3055186.3055192
https://doi.org/10.1016/j.cose.2018.11.004
https://doi.org/10.1016/j.cose.2018.11.004
https://doi.org/10.3390/en15155544
https://doi.org/10.3390/en15155544
https://www.tecmint.com/run-vlc-media-player-as-root-in-linux/
https://www.tecmint.com/run-vlc-media-player-as-root-in-linux/
https://doi.org/10.1007/s00530-017-0570-9
https://doi.org/10.1007/s00530-017-0570-9
https://www.blackhat.com/docs/us-17/thursday/us-17-Luo-Iotcandyjar-Towards-An-Intelligent-Interaction-Honeypot-For-IoT-Devices-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Luo-Iotcandyjar-Towards-An-Intelligent-Interaction-Honeypot-For-IoT-Devices-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Luo-Iotcandyjar-Towards-An-Intelligent-Interaction-Honeypot-For-IoT-Devices-wp.pdf
https://stackoverflow.com/questions/33278928/how-to-overcome-aclocal-1-15-is-missing-on-your-system-warning/33279062
https://stackoverflow.com/questions/33278928/how-to-overcome-aclocal-1-15-is-missing-on-your-system-warning/33279062
https://stackoverflow.com/questions/33278928/how-to-overcome-aclocal-1-15-is-missing-on-your-system-warning/33279062
https://www.vdoo.com/blog/vdoo-discovers-significant-vulnerabilities-in-axis-cameras
https://www.vdoo.com/blog/vdoo-discovers-significant-vulnerabilities-in-axis-cameras
https://doi.org/10.1109/IAW.2006.1652099
https://doi.org/10.1109/IAW.2006.1652099
https://doi.org/10.1007/978-3-319-30927-9_2
https://doi.org/10.1007/978-981-10-0451-3_45
https://doi.org/10.1007/s11042-018-6165-4
https://doi.org/10.1016/j.cose.2016.04.003
https://doi.org/10.1145/3292006.3300024
https://doi.org/10.1145/3292006.3300024
https://doi.org/10.1109/ICCCN.2015.7288421
https://doi.org/10.1109/ICCCN.2015.7288421
https://doi.org/10.33889/IJMEMS.2022.7.1.006
https://doi.org/10.33889/IJMEMS.2022.7.1.006
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00121
https://doi.org/10.1007/978-3-030-13057-2_3
https://doi.org/10.1007/978-3-030-13057-2_3

	CamDec: Advancing Axis P1435-LE video camera security using honeypot-based deception
	Abstract
	1 Introduction
	2 Related works
	3 Known P1345-LE vulnerabilities
	4 A novel approach for advanced video camera security via honeypots
	4.1 Camera configuration
	4.2 Automated Cowrie installation
	4.3 Ensuring plausibility
	4.3.1 Mimicking the camera's file system
	4.3.2 Utilizing the user accounts
	4.3.3 Replicating camera functions

	5 Evaluation
	6 Conclusions
	References

